mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 06:16:36 +07:00
Merge branch 'kvm-arm64/pre-nv-5.9' into kvmarm-master/next-WIP
Signed-off-by: Marc Zyngier <maz@kernel.org>
This commit is contained in:
commit
300dca6853
@ -62,7 +62,8 @@
|
||||
#define ARM64_HAS_GENERIC_AUTH 52
|
||||
#define ARM64_HAS_32BIT_EL1 53
|
||||
#define ARM64_BTI 54
|
||||
#define ARM64_HAS_ARMv8_4_TTL 55
|
||||
|
||||
#define ARM64_NCAPS 55
|
||||
#define ARM64_NCAPS 56
|
||||
|
||||
#endif /* __ASM_CPUCAPS_H */
|
||||
|
@ -95,6 +95,7 @@ extern void *__nvhe_undefined_symbol;
|
||||
|
||||
struct kvm;
|
||||
struct kvm_vcpu;
|
||||
struct kvm_s2_mmu;
|
||||
|
||||
DECLARE_KVM_NVHE_SYM(__kvm_hyp_init);
|
||||
DECLARE_KVM_HYP_SYM(__kvm_hyp_vector);
|
||||
@ -108,9 +109,10 @@ DECLARE_KVM_HYP_SYM(__bp_harden_hyp_vecs);
|
||||
#endif
|
||||
|
||||
extern void __kvm_flush_vm_context(void);
|
||||
extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
|
||||
extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
|
||||
extern void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu);
|
||||
extern void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
|
||||
int level);
|
||||
extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu);
|
||||
extern void __kvm_tlb_flush_local_vmid(struct kvm_s2_mmu *mmu);
|
||||
|
||||
extern void __kvm_timer_set_cntvoff(u64 cntvoff);
|
||||
|
||||
|
@ -124,33 +124,12 @@ static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
|
||||
|
||||
static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return (unsigned long *)&vcpu_gp_regs(vcpu)->regs.pc;
|
||||
}
|
||||
|
||||
static inline unsigned long *__vcpu_elr_el1(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return (unsigned long *)&vcpu_gp_regs(vcpu)->elr_el1;
|
||||
}
|
||||
|
||||
static inline unsigned long vcpu_read_elr_el1(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
if (vcpu->arch.sysregs_loaded_on_cpu)
|
||||
return read_sysreg_el1(SYS_ELR);
|
||||
else
|
||||
return *__vcpu_elr_el1(vcpu);
|
||||
}
|
||||
|
||||
static inline void vcpu_write_elr_el1(const struct kvm_vcpu *vcpu, unsigned long v)
|
||||
{
|
||||
if (vcpu->arch.sysregs_loaded_on_cpu)
|
||||
write_sysreg_el1(v, SYS_ELR);
|
||||
else
|
||||
*__vcpu_elr_el1(vcpu) = v;
|
||||
return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
|
||||
}
|
||||
|
||||
static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return (unsigned long *)&vcpu_gp_regs(vcpu)->regs.pstate;
|
||||
return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
|
||||
}
|
||||
|
||||
static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
|
||||
@ -179,14 +158,14 @@ static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
|
||||
static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
|
||||
u8 reg_num)
|
||||
{
|
||||
return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs.regs[reg_num];
|
||||
return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
|
||||
}
|
||||
|
||||
static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
|
||||
unsigned long val)
|
||||
{
|
||||
if (reg_num != 31)
|
||||
vcpu_gp_regs(vcpu)->regs.regs[reg_num] = val;
|
||||
vcpu_gp_regs(vcpu)->regs[reg_num] = val;
|
||||
}
|
||||
|
||||
static inline unsigned long vcpu_read_spsr(const struct kvm_vcpu *vcpu)
|
||||
@ -197,7 +176,7 @@ static inline unsigned long vcpu_read_spsr(const struct kvm_vcpu *vcpu)
|
||||
if (vcpu->arch.sysregs_loaded_on_cpu)
|
||||
return read_sysreg_el1(SYS_SPSR);
|
||||
else
|
||||
return vcpu_gp_regs(vcpu)->spsr[KVM_SPSR_EL1];
|
||||
return __vcpu_sys_reg(vcpu, SPSR_EL1);
|
||||
}
|
||||
|
||||
static inline void vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long v)
|
||||
@ -210,7 +189,7 @@ static inline void vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long v)
|
||||
if (vcpu->arch.sysregs_loaded_on_cpu)
|
||||
write_sysreg_el1(v, SYS_SPSR);
|
||||
else
|
||||
vcpu_gp_regs(vcpu)->spsr[KVM_SPSR_EL1] = v;
|
||||
__vcpu_sys_reg(vcpu, SPSR_EL1) = v;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -519,11 +498,11 @@ static __always_inline void kvm_skip_instr(struct kvm_vcpu *vcpu, bool is_wide_i
|
||||
static __always_inline void __kvm_skip_instr(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
|
||||
vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
|
||||
vcpu_gp_regs(vcpu)->pstate = read_sysreg_el2(SYS_SPSR);
|
||||
|
||||
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
||||
|
||||
write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, SYS_SPSR);
|
||||
write_sysreg_el2(vcpu_gp_regs(vcpu)->pstate, SYS_SPSR);
|
||||
write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
|
||||
}
|
||||
|
||||
|
@ -66,19 +66,34 @@ struct kvm_vmid {
|
||||
u32 vmid;
|
||||
};
|
||||
|
||||
struct kvm_arch {
|
||||
struct kvm_s2_mmu {
|
||||
struct kvm_vmid vmid;
|
||||
|
||||
/* stage2 entry level table */
|
||||
pgd_t *pgd;
|
||||
phys_addr_t pgd_phys;
|
||||
|
||||
/* VTCR_EL2 value for this VM */
|
||||
u64 vtcr;
|
||||
/*
|
||||
* stage2 entry level table
|
||||
*
|
||||
* Two kvm_s2_mmu structures in the same VM can point to the same
|
||||
* pgd here. This happens when running a guest using a
|
||||
* translation regime that isn't affected by its own stage-2
|
||||
* translation, such as a non-VHE hypervisor running at vEL2, or
|
||||
* for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
|
||||
* canonical stage-2 page tables.
|
||||
*/
|
||||
pgd_t *pgd;
|
||||
phys_addr_t pgd_phys;
|
||||
|
||||
/* The last vcpu id that ran on each physical CPU */
|
||||
int __percpu *last_vcpu_ran;
|
||||
|
||||
struct kvm *kvm;
|
||||
};
|
||||
|
||||
struct kvm_arch {
|
||||
struct kvm_s2_mmu mmu;
|
||||
|
||||
/* VTCR_EL2 value for this VM */
|
||||
u64 vtcr;
|
||||
|
||||
/* The maximum number of vCPUs depends on the used GIC model */
|
||||
int max_vcpus;
|
||||
|
||||
@ -170,6 +185,16 @@ enum vcpu_sysreg {
|
||||
APGAKEYLO_EL1,
|
||||
APGAKEYHI_EL1,
|
||||
|
||||
ELR_EL1,
|
||||
SP_EL1,
|
||||
SPSR_EL1,
|
||||
|
||||
CNTVOFF_EL2,
|
||||
CNTV_CVAL_EL0,
|
||||
CNTV_CTL_EL0,
|
||||
CNTP_CVAL_EL0,
|
||||
CNTP_CTL_EL0,
|
||||
|
||||
/* 32bit specific registers. Keep them at the end of the range */
|
||||
DACR32_EL2, /* Domain Access Control Register */
|
||||
IFSR32_EL2, /* Instruction Fault Status Register */
|
||||
@ -221,7 +246,15 @@ enum vcpu_sysreg {
|
||||
#define NR_COPRO_REGS (NR_SYS_REGS * 2)
|
||||
|
||||
struct kvm_cpu_context {
|
||||
struct kvm_regs gp_regs;
|
||||
struct user_pt_regs regs; /* sp = sp_el0 */
|
||||
|
||||
u64 spsr_abt;
|
||||
u64 spsr_und;
|
||||
u64 spsr_irq;
|
||||
u64 spsr_fiq;
|
||||
|
||||
struct user_fpsimd_state fp_regs;
|
||||
|
||||
union {
|
||||
u64 sys_regs[NR_SYS_REGS];
|
||||
u32 copro[NR_COPRO_REGS];
|
||||
@ -254,6 +287,9 @@ struct kvm_vcpu_arch {
|
||||
void *sve_state;
|
||||
unsigned int sve_max_vl;
|
||||
|
||||
/* Stage 2 paging state used by the hardware on next switch */
|
||||
struct kvm_s2_mmu *hw_mmu;
|
||||
|
||||
/* HYP configuration */
|
||||
u64 hcr_el2;
|
||||
u32 mdcr_el2;
|
||||
@ -384,15 +420,20 @@ struct kvm_vcpu_arch {
|
||||
system_supports_generic_auth()) && \
|
||||
((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH))
|
||||
|
||||
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs)
|
||||
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
|
||||
|
||||
/*
|
||||
* Only use __vcpu_sys_reg if you know you want the memory backed version of a
|
||||
* register, and not the one most recently accessed by a running VCPU. For
|
||||
* example, for userspace access or for system registers that are never context
|
||||
* switched, but only emulated.
|
||||
* Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
|
||||
* memory backed version of a register, and not the one most recently
|
||||
* accessed by a running VCPU. For example, for userspace access or
|
||||
* for system registers that are never context switched, but only
|
||||
* emulated.
|
||||
*/
|
||||
#define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)])
|
||||
#define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)])
|
||||
|
||||
#define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
|
||||
|
||||
#define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
|
||||
|
||||
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
|
||||
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
|
||||
@ -538,7 +579,7 @@ DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
|
||||
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
|
||||
{
|
||||
/* The host's MPIDR is immutable, so let's set it up at boot time */
|
||||
cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
|
||||
ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
|
||||
}
|
||||
|
||||
static inline bool kvm_arch_requires_vhe(void)
|
||||
|
@ -134,8 +134,8 @@ int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
|
||||
void free_hyp_pgds(void);
|
||||
|
||||
void stage2_unmap_vm(struct kvm *kvm);
|
||||
int kvm_alloc_stage2_pgd(struct kvm *kvm);
|
||||
void kvm_free_stage2_pgd(struct kvm *kvm);
|
||||
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
|
||||
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
|
||||
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
||||
phys_addr_t pa, unsigned long size, bool writable);
|
||||
|
||||
@ -577,13 +577,13 @@ static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
|
||||
return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
|
||||
}
|
||||
|
||||
static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
|
||||
static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
struct kvm_vmid *vmid = &kvm->arch.vmid;
|
||||
struct kvm_vmid *vmid = &mmu->vmid;
|
||||
u64 vmid_field, baddr;
|
||||
u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
|
||||
|
||||
baddr = kvm->arch.pgd_phys;
|
||||
baddr = mmu->pgd_phys;
|
||||
vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
|
||||
return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
|
||||
}
|
||||
@ -592,10 +592,10 @@ static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
|
||||
* Must be called from hyp code running at EL2 with an updated VTTBR
|
||||
* and interrupts disabled.
|
||||
*/
|
||||
static __always_inline void __load_guest_stage2(struct kvm *kvm)
|
||||
static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
write_sysreg(kvm->arch.vtcr, vtcr_el2);
|
||||
write_sysreg(kvm_get_vttbr(kvm), vttbr_el2);
|
||||
write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
|
||||
write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
|
||||
|
||||
/*
|
||||
* ARM errata 1165522 and 1530923 require the actual execution of the
|
||||
|
@ -178,10 +178,12 @@
|
||||
#define PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[2:1] */
|
||||
#define PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
|
||||
#define PTE_S2_XN (_AT(pteval_t, 2) << 53) /* XN[1:0] */
|
||||
#define PTE_S2_SW_RESVD (_AT(pteval_t, 15) << 55) /* Reserved for SW */
|
||||
|
||||
#define PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[2:1] */
|
||||
#define PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
|
||||
#define PMD_S2_XN (_AT(pmdval_t, 2) << 53) /* XN[1:0] */
|
||||
#define PMD_S2_SW_RESVD (_AT(pmdval_t, 15) << 55) /* Reserved for SW */
|
||||
|
||||
#define PUD_S2_RDONLY (_AT(pudval_t, 1) << 6) /* HAP[2:1] */
|
||||
#define PUD_S2_RDWR (_AT(pudval_t, 3) << 6) /* HAP[2:1] */
|
||||
|
@ -256,4 +256,13 @@ stage2_pgd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
|
||||
return (boundary - 1 < end - 1) ? boundary : end;
|
||||
}
|
||||
|
||||
/*
|
||||
* Level values for the ARMv8.4-TTL extension, mapping PUD/PMD/PTE and
|
||||
* the architectural page-table level.
|
||||
*/
|
||||
#define S2_NO_LEVEL_HINT 0
|
||||
#define S2_PUD_LEVEL 1
|
||||
#define S2_PMD_LEVEL 2
|
||||
#define S2_PTE_LEVEL 3
|
||||
|
||||
#endif /* __ARM64_S2_PGTABLE_H_ */
|
||||
|
@ -746,6 +746,7 @@
|
||||
|
||||
/* id_aa64mmfr2 */
|
||||
#define ID_AA64MMFR2_E0PD_SHIFT 60
|
||||
#define ID_AA64MMFR2_TTL_SHIFT 48
|
||||
#define ID_AA64MMFR2_FWB_SHIFT 40
|
||||
#define ID_AA64MMFR2_AT_SHIFT 32
|
||||
#define ID_AA64MMFR2_LVA_SHIFT 16
|
||||
|
@ -10,6 +10,7 @@
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
#include <linux/bitfield.h>
|
||||
#include <linux/mm_types.h>
|
||||
#include <linux/sched.h>
|
||||
#include <asm/cputype.h>
|
||||
@ -59,6 +60,50 @@
|
||||
__ta; \
|
||||
})
|
||||
|
||||
/*
|
||||
* Level-based TLBI operations.
|
||||
*
|
||||
* When ARMv8.4-TTL exists, TLBI operations take an additional hint for
|
||||
* the level at which the invalidation must take place. If the level is
|
||||
* wrong, no invalidation may take place. In the case where the level
|
||||
* cannot be easily determined, a 0 value for the level parameter will
|
||||
* perform a non-hinted invalidation.
|
||||
*
|
||||
* For Stage-2 invalidation, use the level values provided to that effect
|
||||
* in asm/stage2_pgtable.h.
|
||||
*/
|
||||
#define TLBI_TTL_MASK GENMASK_ULL(47, 44)
|
||||
#define TLBI_TTL_TG_4K 1
|
||||
#define TLBI_TTL_TG_16K 2
|
||||
#define TLBI_TTL_TG_64K 3
|
||||
|
||||
#define __tlbi_level(op, addr, level) \
|
||||
do { \
|
||||
u64 arg = addr; \
|
||||
\
|
||||
if (cpus_have_const_cap(ARM64_HAS_ARMv8_4_TTL) && \
|
||||
level) { \
|
||||
u64 ttl = level & 3; \
|
||||
\
|
||||
switch (PAGE_SIZE) { \
|
||||
case SZ_4K: \
|
||||
ttl |= TLBI_TTL_TG_4K << 2; \
|
||||
break; \
|
||||
case SZ_16K: \
|
||||
ttl |= TLBI_TTL_TG_16K << 2; \
|
||||
break; \
|
||||
case SZ_64K: \
|
||||
ttl |= TLBI_TTL_TG_64K << 2; \
|
||||
break; \
|
||||
} \
|
||||
\
|
||||
arg &= ~TLBI_TTL_MASK; \
|
||||
arg |= FIELD_PREP(TLBI_TTL_MASK, ttl); \
|
||||
} \
|
||||
\
|
||||
__tlbi(op, arg); \
|
||||
} while(0)
|
||||
|
||||
/*
|
||||
* TLB Invalidation
|
||||
* ================
|
||||
|
@ -102,13 +102,12 @@ int main(void)
|
||||
DEFINE(VCPU_FAULT_DISR, offsetof(struct kvm_vcpu, arch.fault.disr_el1));
|
||||
DEFINE(VCPU_WORKAROUND_FLAGS, offsetof(struct kvm_vcpu, arch.workaround_flags));
|
||||
DEFINE(VCPU_HCR_EL2, offsetof(struct kvm_vcpu, arch.hcr_el2));
|
||||
DEFINE(CPU_GP_REGS, offsetof(struct kvm_cpu_context, gp_regs));
|
||||
DEFINE(CPU_USER_PT_REGS, offsetof(struct kvm_cpu_context, regs));
|
||||
DEFINE(CPU_APIAKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APIAKEYLO_EL1]));
|
||||
DEFINE(CPU_APIBKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APIBKEYLO_EL1]));
|
||||
DEFINE(CPU_APDAKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APDAKEYLO_EL1]));
|
||||
DEFINE(CPU_APDBKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APDBKEYLO_EL1]));
|
||||
DEFINE(CPU_APGAKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APGAKEYLO_EL1]));
|
||||
DEFINE(CPU_USER_PT_REGS, offsetof(struct kvm_regs, regs));
|
||||
DEFINE(HOST_CONTEXT_VCPU, offsetof(struct kvm_cpu_context, __hyp_running_vcpu));
|
||||
DEFINE(HOST_DATA_CONTEXT, offsetof(struct kvm_host_data, host_ctxt));
|
||||
#endif
|
||||
|
@ -323,6 +323,7 @@ static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
|
||||
|
||||
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
|
||||
@ -1882,6 +1883,16 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
|
||||
.matches = has_cpuid_feature,
|
||||
.cpu_enable = cpu_has_fwb,
|
||||
},
|
||||
{
|
||||
.desc = "ARMv8.4 Translation Table Level",
|
||||
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
||||
.capability = ARM64_HAS_ARMv8_4_TTL,
|
||||
.sys_reg = SYS_ID_AA64MMFR2_EL1,
|
||||
.sign = FTR_UNSIGNED,
|
||||
.field_pos = ID_AA64MMFR2_TTL_SHIFT,
|
||||
.min_field_value = 1,
|
||||
.matches = has_cpuid_feature,
|
||||
},
|
||||
#ifdef CONFIG_ARM64_HW_AFDBM
|
||||
{
|
||||
/*
|
||||
|
@ -51,6 +51,93 @@ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
|
||||
struct arch_timer_context *timer,
|
||||
enum kvm_arch_timer_regs treg);
|
||||
|
||||
u32 timer_get_ctl(struct arch_timer_context *ctxt)
|
||||
{
|
||||
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
||||
|
||||
switch(arch_timer_ctx_index(ctxt)) {
|
||||
case TIMER_VTIMER:
|
||||
return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
|
||||
case TIMER_PTIMER:
|
||||
return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
|
||||
default:
|
||||
WARN_ON(1);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
u64 timer_get_cval(struct arch_timer_context *ctxt)
|
||||
{
|
||||
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
||||
|
||||
switch(arch_timer_ctx_index(ctxt)) {
|
||||
case TIMER_VTIMER:
|
||||
return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
|
||||
case TIMER_PTIMER:
|
||||
return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
|
||||
default:
|
||||
WARN_ON(1);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static u64 timer_get_offset(struct arch_timer_context *ctxt)
|
||||
{
|
||||
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
||||
|
||||
switch(arch_timer_ctx_index(ctxt)) {
|
||||
case TIMER_VTIMER:
|
||||
return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
|
||||
{
|
||||
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
||||
|
||||
switch(arch_timer_ctx_index(ctxt)) {
|
||||
case TIMER_VTIMER:
|
||||
__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
|
||||
break;
|
||||
case TIMER_PTIMER:
|
||||
__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
|
||||
break;
|
||||
default:
|
||||
WARN_ON(1);
|
||||
}
|
||||
}
|
||||
|
||||
static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
|
||||
{
|
||||
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
||||
|
||||
switch(arch_timer_ctx_index(ctxt)) {
|
||||
case TIMER_VTIMER:
|
||||
__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
|
||||
break;
|
||||
case TIMER_PTIMER:
|
||||
__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
|
||||
break;
|
||||
default:
|
||||
WARN_ON(1);
|
||||
}
|
||||
}
|
||||
|
||||
static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
|
||||
{
|
||||
struct kvm_vcpu *vcpu = ctxt->vcpu;
|
||||
|
||||
switch(arch_timer_ctx_index(ctxt)) {
|
||||
case TIMER_VTIMER:
|
||||
__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
|
||||
break;
|
||||
default:
|
||||
WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
|
||||
}
|
||||
}
|
||||
|
||||
u64 kvm_phys_timer_read(void)
|
||||
{
|
||||
return timecounter->cc->read(timecounter->cc);
|
||||
@ -124,8 +211,8 @@ static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
|
||||
{
|
||||
u64 cval, now;
|
||||
|
||||
cval = timer_ctx->cnt_cval;
|
||||
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
|
||||
cval = timer_get_cval(timer_ctx);
|
||||
now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
|
||||
|
||||
if (now < cval) {
|
||||
u64 ns;
|
||||
@ -144,8 +231,8 @@ static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
|
||||
{
|
||||
WARN_ON(timer_ctx && timer_ctx->loaded);
|
||||
return timer_ctx &&
|
||||
!(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
|
||||
(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
|
||||
((timer_get_ctl(timer_ctx) &
|
||||
(ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -256,8 +343,8 @@ static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
|
||||
if (!kvm_timer_irq_can_fire(timer_ctx))
|
||||
return false;
|
||||
|
||||
cval = timer_ctx->cnt_cval;
|
||||
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
|
||||
cval = timer_get_cval(timer_ctx);
|
||||
now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
|
||||
|
||||
return cval <= now;
|
||||
}
|
||||
@ -350,8 +437,8 @@ static void timer_save_state(struct arch_timer_context *ctx)
|
||||
|
||||
switch (index) {
|
||||
case TIMER_VTIMER:
|
||||
ctx->cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
|
||||
ctx->cnt_cval = read_sysreg_el0(SYS_CNTV_CVAL);
|
||||
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
|
||||
timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
|
||||
|
||||
/* Disable the timer */
|
||||
write_sysreg_el0(0, SYS_CNTV_CTL);
|
||||
@ -359,8 +446,8 @@ static void timer_save_state(struct arch_timer_context *ctx)
|
||||
|
||||
break;
|
||||
case TIMER_PTIMER:
|
||||
ctx->cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
|
||||
ctx->cnt_cval = read_sysreg_el0(SYS_CNTP_CVAL);
|
||||
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
|
||||
timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
|
||||
|
||||
/* Disable the timer */
|
||||
write_sysreg_el0(0, SYS_CNTP_CTL);
|
||||
@ -429,14 +516,14 @@ static void timer_restore_state(struct arch_timer_context *ctx)
|
||||
|
||||
switch (index) {
|
||||
case TIMER_VTIMER:
|
||||
write_sysreg_el0(ctx->cnt_cval, SYS_CNTV_CVAL);
|
||||
write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
|
||||
isb();
|
||||
write_sysreg_el0(ctx->cnt_ctl, SYS_CNTV_CTL);
|
||||
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
|
||||
break;
|
||||
case TIMER_PTIMER:
|
||||
write_sysreg_el0(ctx->cnt_cval, SYS_CNTP_CVAL);
|
||||
write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
|
||||
isb();
|
||||
write_sysreg_el0(ctx->cnt_ctl, SYS_CNTP_CTL);
|
||||
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
|
||||
break;
|
||||
case NR_KVM_TIMERS:
|
||||
BUG();
|
||||
@ -528,7 +615,7 @@ void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
|
||||
kvm_timer_vcpu_load_nogic(vcpu);
|
||||
}
|
||||
|
||||
set_cntvoff(map.direct_vtimer->cntvoff);
|
||||
set_cntvoff(timer_get_offset(map.direct_vtimer));
|
||||
|
||||
kvm_timer_unblocking(vcpu);
|
||||
|
||||
@ -615,7 +702,7 @@ static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
|
||||
}
|
||||
}
|
||||
|
||||
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
|
||||
void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
|
||||
|
||||
@ -639,8 +726,8 @@ int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
|
||||
* resets the timer to be disabled and unmasked and is compliant with
|
||||
* the ARMv7 architecture.
|
||||
*/
|
||||
vcpu_vtimer(vcpu)->cnt_ctl = 0;
|
||||
vcpu_ptimer(vcpu)->cnt_ctl = 0;
|
||||
timer_set_ctl(vcpu_vtimer(vcpu), 0);
|
||||
timer_set_ctl(vcpu_ptimer(vcpu), 0);
|
||||
|
||||
if (timer->enabled) {
|
||||
kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
|
||||
@ -668,13 +755,13 @@ static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
|
||||
|
||||
mutex_lock(&kvm->lock);
|
||||
kvm_for_each_vcpu(i, tmp, kvm)
|
||||
vcpu_vtimer(tmp)->cntvoff = cntvoff;
|
||||
timer_set_offset(vcpu_vtimer(tmp), cntvoff);
|
||||
|
||||
/*
|
||||
* When called from the vcpu create path, the CPU being created is not
|
||||
* included in the loop above, so we just set it here as well.
|
||||
*/
|
||||
vcpu_vtimer(vcpu)->cntvoff = cntvoff;
|
||||
timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
|
||||
mutex_unlock(&kvm->lock);
|
||||
}
|
||||
|
||||
@ -684,9 +771,12 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
|
||||
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
|
||||
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
|
||||
|
||||
vtimer->vcpu = vcpu;
|
||||
ptimer->vcpu = vcpu;
|
||||
|
||||
/* Synchronize cntvoff across all vtimers of a VM. */
|
||||
update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
|
||||
ptimer->cntvoff = 0;
|
||||
timer_set_offset(ptimer, 0);
|
||||
|
||||
hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
|
||||
timer->bg_timer.function = kvm_bg_timer_expire;
|
||||
@ -704,9 +794,6 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
|
||||
|
||||
vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
|
||||
ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
|
||||
|
||||
vtimer->vcpu = vcpu;
|
||||
ptimer->vcpu = vcpu;
|
||||
}
|
||||
|
||||
static void kvm_timer_init_interrupt(void *info)
|
||||
@ -756,10 +843,12 @@ static u64 read_timer_ctl(struct arch_timer_context *timer)
|
||||
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
|
||||
* regardless of ENABLE bit for our implementation convenience.
|
||||
*/
|
||||
u32 ctl = timer_get_ctl(timer);
|
||||
|
||||
if (!kvm_timer_compute_delta(timer))
|
||||
return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
|
||||
else
|
||||
return timer->cnt_ctl;
|
||||
ctl |= ARCH_TIMER_CTRL_IT_STAT;
|
||||
|
||||
return ctl;
|
||||
}
|
||||
|
||||
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
|
||||
@ -795,8 +884,8 @@ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
|
||||
|
||||
switch (treg) {
|
||||
case TIMER_REG_TVAL:
|
||||
val = timer->cnt_cval - kvm_phys_timer_read() + timer->cntvoff;
|
||||
val &= lower_32_bits(val);
|
||||
val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
|
||||
val = lower_32_bits(val);
|
||||
break;
|
||||
|
||||
case TIMER_REG_CTL:
|
||||
@ -804,11 +893,11 @@ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
|
||||
break;
|
||||
|
||||
case TIMER_REG_CVAL:
|
||||
val = timer->cnt_cval;
|
||||
val = timer_get_cval(timer);
|
||||
break;
|
||||
|
||||
case TIMER_REG_CNT:
|
||||
val = kvm_phys_timer_read() - timer->cntvoff;
|
||||
val = kvm_phys_timer_read() - timer_get_offset(timer);
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -842,15 +931,15 @@ static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
|
||||
{
|
||||
switch (treg) {
|
||||
case TIMER_REG_TVAL:
|
||||
timer->cnt_cval = kvm_phys_timer_read() - timer->cntvoff + (s32)val;
|
||||
timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
|
||||
break;
|
||||
|
||||
case TIMER_REG_CTL:
|
||||
timer->cnt_ctl = val & ~ARCH_TIMER_CTRL_IT_STAT;
|
||||
timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
|
||||
break;
|
||||
|
||||
case TIMER_REG_CVAL:
|
||||
timer->cnt_cval = val;
|
||||
timer_set_cval(timer, val);
|
||||
break;
|
||||
|
||||
default:
|
||||
|
@ -106,22 +106,15 @@ static int kvm_arm_default_max_vcpus(void)
|
||||
*/
|
||||
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
||||
{
|
||||
int ret, cpu;
|
||||
int ret;
|
||||
|
||||
ret = kvm_arm_setup_stage2(kvm, type);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
|
||||
if (!kvm->arch.last_vcpu_ran)
|
||||
return -ENOMEM;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
|
||||
|
||||
ret = kvm_alloc_stage2_pgd(kvm);
|
||||
ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
|
||||
if (ret)
|
||||
goto out_fail_alloc;
|
||||
return ret;
|
||||
|
||||
ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
|
||||
if (ret)
|
||||
@ -129,18 +122,12 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
||||
|
||||
kvm_vgic_early_init(kvm);
|
||||
|
||||
/* Mark the initial VMID generation invalid */
|
||||
kvm->arch.vmid.vmid_gen = 0;
|
||||
|
||||
/* The maximum number of VCPUs is limited by the host's GIC model */
|
||||
kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
|
||||
|
||||
return ret;
|
||||
out_free_stage2_pgd:
|
||||
kvm_free_stage2_pgd(kvm);
|
||||
out_fail_alloc:
|
||||
free_percpu(kvm->arch.last_vcpu_ran);
|
||||
kvm->arch.last_vcpu_ran = NULL;
|
||||
kvm_free_stage2_pgd(&kvm->arch.mmu);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -160,9 +147,6 @@ void kvm_arch_destroy_vm(struct kvm *kvm)
|
||||
|
||||
kvm_vgic_destroy(kvm);
|
||||
|
||||
free_percpu(kvm->arch.last_vcpu_ran);
|
||||
kvm->arch.last_vcpu_ran = NULL;
|
||||
|
||||
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
||||
if (kvm->vcpus[i]) {
|
||||
kvm_vcpu_destroy(kvm->vcpus[i]);
|
||||
@ -279,6 +263,8 @@ int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
|
||||
|
||||
kvm_arm_pvtime_vcpu_init(&vcpu->arch);
|
||||
|
||||
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
|
||||
|
||||
err = kvm_vgic_vcpu_init(vcpu);
|
||||
if (err)
|
||||
return err;
|
||||
@ -334,16 +320,18 @@ void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
||||
|
||||
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
||||
{
|
||||
struct kvm_s2_mmu *mmu;
|
||||
int *last_ran;
|
||||
|
||||
last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
|
||||
mmu = vcpu->arch.hw_mmu;
|
||||
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
|
||||
|
||||
/*
|
||||
* We might get preempted before the vCPU actually runs, but
|
||||
* over-invalidation doesn't affect correctness.
|
||||
*/
|
||||
if (*last_ran != vcpu->vcpu_id) {
|
||||
kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
|
||||
kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
|
||||
*last_ran = vcpu->vcpu_id;
|
||||
}
|
||||
|
||||
@ -680,7 +668,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
|
||||
*/
|
||||
cond_resched();
|
||||
|
||||
update_vmid(&vcpu->kvm->arch.vmid);
|
||||
update_vmid(&vcpu->arch.hw_mmu->vmid);
|
||||
|
||||
check_vcpu_requests(vcpu);
|
||||
|
||||
@ -729,13 +717,13 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
|
||||
*/
|
||||
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
|
||||
|
||||
if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
|
||||
if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
|
||||
kvm_request_pending(vcpu)) {
|
||||
vcpu->mode = OUTSIDE_GUEST_MODE;
|
||||
isb(); /* Ensure work in x_flush_hwstate is committed */
|
||||
kvm_pmu_sync_hwstate(vcpu);
|
||||
if (static_branch_unlikely(&userspace_irqchip_in_use))
|
||||
kvm_timer_sync_hwstate(vcpu);
|
||||
kvm_timer_sync_user(vcpu);
|
||||
kvm_vgic_sync_hwstate(vcpu);
|
||||
local_irq_enable();
|
||||
preempt_enable();
|
||||
@ -780,7 +768,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
|
||||
* timer virtual interrupt state.
|
||||
*/
|
||||
if (static_branch_unlikely(&userspace_irqchip_in_use))
|
||||
kvm_timer_sync_hwstate(vcpu);
|
||||
kvm_timer_sync_user(vcpu);
|
||||
|
||||
kvm_arch_vcpu_ctxsync_fp(vcpu);
|
||||
|
||||
|
@ -85,7 +85,7 @@ void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
|
||||
WARN_ON_ONCE(!irqs_disabled());
|
||||
|
||||
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
|
||||
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.gp_regs.fp_regs,
|
||||
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.fp_regs,
|
||||
vcpu->arch.sve_state,
|
||||
vcpu->arch.sve_max_vl);
|
||||
|
||||
@ -109,12 +109,10 @@ void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
|
||||
local_irq_save(flags);
|
||||
|
||||
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
|
||||
u64 *guest_zcr = &vcpu->arch.ctxt.sys_regs[ZCR_EL1];
|
||||
|
||||
fpsimd_save_and_flush_cpu_state();
|
||||
|
||||
if (guest_has_sve)
|
||||
*guest_zcr = read_sysreg_s(SYS_ZCR_EL12);
|
||||
__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_s(SYS_ZCR_EL12);
|
||||
} else if (host_has_sve) {
|
||||
/*
|
||||
* The FPSIMD/SVE state in the CPU has not been touched, and we
|
||||
|
@ -101,19 +101,69 @@ static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
|
||||
return size;
|
||||
}
|
||||
|
||||
static int validate_core_offset(const struct kvm_vcpu *vcpu,
|
||||
const struct kvm_one_reg *reg)
|
||||
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
{
|
||||
u64 off = core_reg_offset_from_id(reg->id);
|
||||
int size = core_reg_size_from_offset(vcpu, off);
|
||||
|
||||
if (size < 0)
|
||||
return -EINVAL;
|
||||
return NULL;
|
||||
|
||||
if (KVM_REG_SIZE(reg->id) != size)
|
||||
return -EINVAL;
|
||||
return NULL;
|
||||
|
||||
return 0;
|
||||
switch (off) {
|
||||
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
|
||||
KVM_REG_ARM_CORE_REG(regs.regs[30]):
|
||||
off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
|
||||
off /= 2;
|
||||
return &vcpu->arch.ctxt.regs.regs[off];
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(regs.sp):
|
||||
return &vcpu->arch.ctxt.regs.sp;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(regs.pc):
|
||||
return &vcpu->arch.ctxt.regs.pc;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(regs.pstate):
|
||||
return &vcpu->arch.ctxt.regs.pstate;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(sp_el1):
|
||||
return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(elr_el1):
|
||||
return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
|
||||
return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
|
||||
return &vcpu->arch.ctxt.spsr_abt;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
|
||||
return &vcpu->arch.ctxt.spsr_und;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
|
||||
return &vcpu->arch.ctxt.spsr_irq;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
|
||||
return &vcpu->arch.ctxt.spsr_fiq;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
|
||||
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
|
||||
off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
|
||||
off /= 4;
|
||||
return &vcpu->arch.ctxt.fp_regs.vregs[off];
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
|
||||
return &vcpu->arch.ctxt.fp_regs.fpsr;
|
||||
|
||||
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
|
||||
return &vcpu->arch.ctxt.fp_regs.fpcr;
|
||||
|
||||
default:
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
@ -125,8 +175,8 @@ static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
* off the index in the "array".
|
||||
*/
|
||||
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
|
||||
struct kvm_regs *regs = vcpu_gp_regs(vcpu);
|
||||
int nr_regs = sizeof(*regs) / sizeof(__u32);
|
||||
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
|
||||
void *addr;
|
||||
u32 off;
|
||||
|
||||
/* Our ID is an index into the kvm_regs struct. */
|
||||
@ -135,10 +185,11 @@ static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
|
||||
return -ENOENT;
|
||||
|
||||
if (validate_core_offset(vcpu, reg))
|
||||
addr = core_reg_addr(vcpu, reg);
|
||||
if (!addr)
|
||||
return -EINVAL;
|
||||
|
||||
if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
|
||||
if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
|
||||
return -EFAULT;
|
||||
|
||||
return 0;
|
||||
@ -147,10 +198,9 @@ static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
{
|
||||
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
|
||||
struct kvm_regs *regs = vcpu_gp_regs(vcpu);
|
||||
int nr_regs = sizeof(*regs) / sizeof(__u32);
|
||||
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
|
||||
__uint128_t tmp;
|
||||
void *valp = &tmp;
|
||||
void *valp = &tmp, *addr;
|
||||
u64 off;
|
||||
int err = 0;
|
||||
|
||||
@ -160,7 +210,8 @@ static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
|
||||
return -ENOENT;
|
||||
|
||||
if (validate_core_offset(vcpu, reg))
|
||||
addr = core_reg_addr(vcpu, reg);
|
||||
if (!addr)
|
||||
return -EINVAL;
|
||||
|
||||
if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
|
||||
@ -198,7 +249,7 @@ static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
||||
}
|
||||
}
|
||||
|
||||
memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
|
||||
memcpy(addr, valp, KVM_REG_SIZE(reg->id));
|
||||
|
||||
if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
|
||||
int i;
|
||||
|
@ -16,8 +16,7 @@
|
||||
#include <asm/kvm_mmu.h>
|
||||
#include <asm/kvm_ptrauth.h>
|
||||
|
||||
#define CPU_GP_REG_OFFSET(x) (CPU_GP_REGS + x)
|
||||
#define CPU_XREG_OFFSET(x) CPU_GP_REG_OFFSET(CPU_USER_PT_REGS + 8*x)
|
||||
#define CPU_XREG_OFFSET(x) (CPU_USER_PT_REGS + 8*x)
|
||||
#define CPU_SP_EL0_OFFSET (CPU_XREG_OFFSET(30) + 8)
|
||||
|
||||
.text
|
||||
|
@ -88,9 +88,8 @@
|
||||
default: write_debug(ptr[0], reg, 0); \
|
||||
}
|
||||
|
||||
static inline void __debug_save_state(struct kvm_vcpu *vcpu,
|
||||
struct kvm_guest_debug_arch *dbg,
|
||||
struct kvm_cpu_context *ctxt)
|
||||
static void __debug_save_state(struct kvm_guest_debug_arch *dbg,
|
||||
struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
u64 aa64dfr0;
|
||||
int brps, wrps;
|
||||
@ -104,12 +103,11 @@ static inline void __debug_save_state(struct kvm_vcpu *vcpu,
|
||||
save_debug(dbg->dbg_wcr, dbgwcr, wrps);
|
||||
save_debug(dbg->dbg_wvr, dbgwvr, wrps);
|
||||
|
||||
ctxt->sys_regs[MDCCINT_EL1] = read_sysreg(mdccint_el1);
|
||||
ctxt_sys_reg(ctxt, MDCCINT_EL1) = read_sysreg(mdccint_el1);
|
||||
}
|
||||
|
||||
static inline void __debug_restore_state(struct kvm_vcpu *vcpu,
|
||||
struct kvm_guest_debug_arch *dbg,
|
||||
struct kvm_cpu_context *ctxt)
|
||||
static void __debug_restore_state(struct kvm_guest_debug_arch *dbg,
|
||||
struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
u64 aa64dfr0;
|
||||
int brps, wrps;
|
||||
@ -124,7 +122,7 @@ static inline void __debug_restore_state(struct kvm_vcpu *vcpu,
|
||||
restore_debug(dbg->dbg_wcr, dbgwcr, wrps);
|
||||
restore_debug(dbg->dbg_wvr, dbgwvr, wrps);
|
||||
|
||||
write_sysreg(ctxt->sys_regs[MDCCINT_EL1], mdccint_el1);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, MDCCINT_EL1), mdccint_el1);
|
||||
}
|
||||
|
||||
static inline void __debug_switch_to_guest_common(struct kvm_vcpu *vcpu)
|
||||
@ -142,8 +140,8 @@ static inline void __debug_switch_to_guest_common(struct kvm_vcpu *vcpu)
|
||||
host_dbg = &vcpu->arch.host_debug_state.regs;
|
||||
guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);
|
||||
|
||||
__debug_save_state(vcpu, host_dbg, host_ctxt);
|
||||
__debug_restore_state(vcpu, guest_dbg, guest_ctxt);
|
||||
__debug_save_state(host_dbg, host_ctxt);
|
||||
__debug_restore_state(guest_dbg, guest_ctxt);
|
||||
}
|
||||
|
||||
static inline void __debug_switch_to_host_common(struct kvm_vcpu *vcpu)
|
||||
@ -161,8 +159,8 @@ static inline void __debug_switch_to_host_common(struct kvm_vcpu *vcpu)
|
||||
host_dbg = &vcpu->arch.host_debug_state.regs;
|
||||
guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);
|
||||
|
||||
__debug_save_state(vcpu, guest_dbg, guest_ctxt);
|
||||
__debug_restore_state(vcpu, host_dbg, host_ctxt);
|
||||
__debug_save_state(guest_dbg, guest_ctxt);
|
||||
__debug_restore_state(host_dbg, host_ctxt);
|
||||
|
||||
vcpu->arch.flags &= ~KVM_ARM64_DEBUG_DIRTY;
|
||||
}
|
||||
|
@ -53,7 +53,7 @@ static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
|
||||
if (!vcpu_el1_is_32bit(vcpu))
|
||||
return;
|
||||
|
||||
vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
|
||||
__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
|
||||
}
|
||||
|
||||
static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
|
||||
@ -122,9 +122,9 @@ static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
|
||||
}
|
||||
}
|
||||
|
||||
static inline void __activate_vm(struct kvm *kvm)
|
||||
static inline void __activate_vm(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
__load_guest_stage2(kvm);
|
||||
__load_guest_stage2(mmu);
|
||||
}
|
||||
|
||||
static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar)
|
||||
@ -266,17 +266,16 @@ static inline bool __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
|
||||
|
||||
if (sve_guest) {
|
||||
sve_load_state(vcpu_sve_pffr(vcpu),
|
||||
&vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
|
||||
&vcpu->arch.ctxt.fp_regs.fpsr,
|
||||
sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
|
||||
write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
|
||||
write_sysreg_s(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR_EL12);
|
||||
} else {
|
||||
__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
|
||||
__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
|
||||
}
|
||||
|
||||
/* Skip restoring fpexc32 for AArch64 guests */
|
||||
if (!(read_sysreg(hcr_el2) & HCR_RW))
|
||||
write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
|
||||
fpexc32_el2);
|
||||
write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
|
||||
|
||||
vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
|
||||
|
||||
@ -365,11 +364,14 @@ static inline bool esr_is_ptrauth_trap(u32 esr)
|
||||
return false;
|
||||
}
|
||||
|
||||
#define __ptrauth_save_key(regs, key) \
|
||||
({ \
|
||||
regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
|
||||
regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
|
||||
})
|
||||
#define __ptrauth_save_key(ctxt, key) \
|
||||
do { \
|
||||
u64 __val; \
|
||||
__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
|
||||
ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
|
||||
__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
|
||||
ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
|
||||
} while(0)
|
||||
|
||||
static inline bool __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
@ -381,11 +383,11 @@ static inline bool __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
|
||||
return false;
|
||||
|
||||
ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
|
||||
__ptrauth_save_key(ctxt->sys_regs, APIA);
|
||||
__ptrauth_save_key(ctxt->sys_regs, APIB);
|
||||
__ptrauth_save_key(ctxt->sys_regs, APDA);
|
||||
__ptrauth_save_key(ctxt->sys_regs, APDB);
|
||||
__ptrauth_save_key(ctxt->sys_regs, APGA);
|
||||
__ptrauth_save_key(ctxt, APIA);
|
||||
__ptrauth_save_key(ctxt, APIB);
|
||||
__ptrauth_save_key(ctxt, APDA);
|
||||
__ptrauth_save_key(ctxt, APDB);
|
||||
__ptrauth_save_key(ctxt, APGA);
|
||||
|
||||
vcpu_ptrauth_enable(vcpu);
|
||||
|
||||
|
@ -17,95 +17,95 @@
|
||||
|
||||
static inline void __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1);
|
||||
ctxt_sys_reg(ctxt, MDSCR_EL1) = read_sysreg(mdscr_el1);
|
||||
}
|
||||
|
||||
static inline void __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0);
|
||||
ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0);
|
||||
ctxt_sys_reg(ctxt, TPIDR_EL0) = read_sysreg(tpidr_el0);
|
||||
ctxt_sys_reg(ctxt, TPIDRRO_EL0) = read_sysreg(tpidrro_el0);
|
||||
}
|
||||
|
||||
static inline void __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
|
||||
ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
|
||||
ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
|
||||
ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
|
||||
ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
|
||||
ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR);
|
||||
ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR);
|
||||
ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0);
|
||||
ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1);
|
||||
ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR);
|
||||
ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR);
|
||||
ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR);
|
||||
ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR);
|
||||
ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR);
|
||||
ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL);
|
||||
ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1);
|
||||
ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1);
|
||||
ctxt_sys_reg(ctxt, CSSELR_EL1) = read_sysreg(csselr_el1);
|
||||
ctxt_sys_reg(ctxt, SCTLR_EL1) = read_sysreg_el1(SYS_SCTLR);
|
||||
ctxt_sys_reg(ctxt, CPACR_EL1) = read_sysreg_el1(SYS_CPACR);
|
||||
ctxt_sys_reg(ctxt, TTBR0_EL1) = read_sysreg_el1(SYS_TTBR0);
|
||||
ctxt_sys_reg(ctxt, TTBR1_EL1) = read_sysreg_el1(SYS_TTBR1);
|
||||
ctxt_sys_reg(ctxt, TCR_EL1) = read_sysreg_el1(SYS_TCR);
|
||||
ctxt_sys_reg(ctxt, ESR_EL1) = read_sysreg_el1(SYS_ESR);
|
||||
ctxt_sys_reg(ctxt, AFSR0_EL1) = read_sysreg_el1(SYS_AFSR0);
|
||||
ctxt_sys_reg(ctxt, AFSR1_EL1) = read_sysreg_el1(SYS_AFSR1);
|
||||
ctxt_sys_reg(ctxt, FAR_EL1) = read_sysreg_el1(SYS_FAR);
|
||||
ctxt_sys_reg(ctxt, MAIR_EL1) = read_sysreg_el1(SYS_MAIR);
|
||||
ctxt_sys_reg(ctxt, VBAR_EL1) = read_sysreg_el1(SYS_VBAR);
|
||||
ctxt_sys_reg(ctxt, CONTEXTIDR_EL1) = read_sysreg_el1(SYS_CONTEXTIDR);
|
||||
ctxt_sys_reg(ctxt, AMAIR_EL1) = read_sysreg_el1(SYS_AMAIR);
|
||||
ctxt_sys_reg(ctxt, CNTKCTL_EL1) = read_sysreg_el1(SYS_CNTKCTL);
|
||||
ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
|
||||
ctxt_sys_reg(ctxt, TPIDR_EL1) = read_sysreg(tpidr_el1);
|
||||
|
||||
ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1);
|
||||
ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR);
|
||||
ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
|
||||
ctxt_sys_reg(ctxt, SP_EL1) = read_sysreg(sp_el1);
|
||||
ctxt_sys_reg(ctxt, ELR_EL1) = read_sysreg_el1(SYS_ELR);
|
||||
ctxt_sys_reg(ctxt, SPSR_EL1) = read_sysreg_el1(SYS_SPSR);
|
||||
}
|
||||
|
||||
static inline void __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR);
|
||||
ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
|
||||
ctxt->regs.pc = read_sysreg_el2(SYS_ELR);
|
||||
ctxt->regs.pstate = read_sysreg_el2(SYS_SPSR);
|
||||
|
||||
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
|
||||
ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
|
||||
ctxt_sys_reg(ctxt, DISR_EL1) = read_sysreg_s(SYS_VDISR_EL2);
|
||||
}
|
||||
|
||||
static inline void __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, MDSCR_EL1), mdscr_el1);
|
||||
}
|
||||
|
||||
static inline void __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0);
|
||||
write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL0), tpidr_el0);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, TPIDRRO_EL0), tpidrro_el0);
|
||||
}
|
||||
|
||||
static inline void __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
|
||||
write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, MPIDR_EL1), vmpidr_el2);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, CSSELR_EL1), csselr_el1);
|
||||
|
||||
if (has_vhe() ||
|
||||
!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
|
||||
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
|
||||
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
|
||||
} else if (!ctxt->__hyp_running_vcpu) {
|
||||
/*
|
||||
* Must only be done for guest registers, hence the context
|
||||
* test. We're coming from the host, so SCTLR.M is already
|
||||
* set. Pairs with nVHE's __activate_traps().
|
||||
*/
|
||||
write_sysreg_el1((ctxt->sys_regs[TCR_EL1] |
|
||||
write_sysreg_el1((ctxt_sys_reg(ctxt, TCR_EL1) |
|
||||
TCR_EPD1_MASK | TCR_EPD0_MASK),
|
||||
SYS_TCR);
|
||||
isb();
|
||||
}
|
||||
|
||||
write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
|
||||
write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
|
||||
write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
|
||||
write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
|
||||
write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
|
||||
write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
|
||||
write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR);
|
||||
write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR);
|
||||
write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR);
|
||||
write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
|
||||
write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR);
|
||||
write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL);
|
||||
write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
|
||||
write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, CPACR_EL1), SYS_CPACR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1), SYS_TTBR0);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1), SYS_TTBR1);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, ESR_EL1), SYS_ESR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR0_EL1), SYS_AFSR0);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR1_EL1), SYS_AFSR1);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, FAR_EL1), SYS_FAR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, MAIR_EL1), SYS_MAIR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, VBAR_EL1), SYS_VBAR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, CONTEXTIDR_EL1), SYS_CONTEXTIDR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, AMAIR_EL1), SYS_AMAIR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, CNTKCTL_EL1), SYS_CNTKCTL);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, PAR_EL1), par_el1);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL1), tpidr_el1);
|
||||
|
||||
if (!has_vhe() &&
|
||||
cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT) &&
|
||||
@ -120,19 +120,19 @@ static inline void __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
|
||||
* deconfigured and disabled. We can now restore the host's
|
||||
* S1 configuration: SCTLR, and only then TCR.
|
||||
*/
|
||||
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
|
||||
isb();
|
||||
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
|
||||
}
|
||||
|
||||
write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
|
||||
write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
|
||||
write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
|
||||
write_sysreg(ctxt_sys_reg(ctxt, SP_EL1), sp_el1);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, ELR_EL1), SYS_ELR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, SPSR_EL1), SYS_SPSR);
|
||||
}
|
||||
|
||||
static inline void __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
|
||||
{
|
||||
u64 pstate = ctxt->gp_regs.regs.pstate;
|
||||
u64 pstate = ctxt->regs.pstate;
|
||||
u64 mode = pstate & PSR_AA32_MODE_MASK;
|
||||
|
||||
/*
|
||||
@ -149,55 +149,45 @@ static inline void __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctx
|
||||
if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
|
||||
pstate = PSR_MODE_EL2h | PSR_IL_BIT;
|
||||
|
||||
write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR);
|
||||
write_sysreg_el2(ctxt->regs.pc, SYS_ELR);
|
||||
write_sysreg_el2(pstate, SYS_SPSR);
|
||||
|
||||
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
|
||||
write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
|
||||
write_sysreg_s(ctxt_sys_reg(ctxt, DISR_EL1), SYS_VDISR_EL2);
|
||||
}
|
||||
|
||||
static inline void __sysreg32_save_state(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u64 *spsr, *sysreg;
|
||||
|
||||
if (!vcpu_el1_is_32bit(vcpu))
|
||||
return;
|
||||
|
||||
spsr = vcpu->arch.ctxt.gp_regs.spsr;
|
||||
sysreg = vcpu->arch.ctxt.sys_regs;
|
||||
vcpu->arch.ctxt.spsr_abt = read_sysreg(spsr_abt);
|
||||
vcpu->arch.ctxt.spsr_und = read_sysreg(spsr_und);
|
||||
vcpu->arch.ctxt.spsr_irq = read_sysreg(spsr_irq);
|
||||
vcpu->arch.ctxt.spsr_fiq = read_sysreg(spsr_fiq);
|
||||
|
||||
spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
|
||||
spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
|
||||
spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
|
||||
spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);
|
||||
|
||||
sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
|
||||
sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);
|
||||
__vcpu_sys_reg(vcpu, DACR32_EL2) = read_sysreg(dacr32_el2);
|
||||
__vcpu_sys_reg(vcpu, IFSR32_EL2) = read_sysreg(ifsr32_el2);
|
||||
|
||||
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
|
||||
sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
|
||||
__vcpu_sys_reg(vcpu, DBGVCR32_EL2) = read_sysreg(dbgvcr32_el2);
|
||||
}
|
||||
|
||||
static inline void __sysreg32_restore_state(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u64 *spsr, *sysreg;
|
||||
|
||||
if (!vcpu_el1_is_32bit(vcpu))
|
||||
return;
|
||||
|
||||
spsr = vcpu->arch.ctxt.gp_regs.spsr;
|
||||
sysreg = vcpu->arch.ctxt.sys_regs;
|
||||
write_sysreg(vcpu->arch.ctxt.spsr_abt, spsr_abt);
|
||||
write_sysreg(vcpu->arch.ctxt.spsr_und, spsr_und);
|
||||
write_sysreg(vcpu->arch.ctxt.spsr_irq, spsr_irq);
|
||||
write_sysreg(vcpu->arch.ctxt.spsr_fiq, spsr_fiq);
|
||||
|
||||
write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
|
||||
write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
|
||||
write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
|
||||
write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);
|
||||
|
||||
write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
|
||||
write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);
|
||||
write_sysreg(__vcpu_sys_reg(vcpu, DACR32_EL2), dacr32_el2);
|
||||
write_sysreg(__vcpu_sys_reg(vcpu, IFSR32_EL2), ifsr32_el2);
|
||||
|
||||
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
|
||||
write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
|
||||
write_sysreg(__vcpu_sys_reg(vcpu, DBGVCR32_EL2), dbgvcr32_el2);
|
||||
}
|
||||
|
||||
#endif /* __ARM64_KVM_HYP_SYSREG_SR_H__ */
|
||||
|
@ -52,9 +52,9 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
|
||||
* configured and enabled. We can now restore the guest's S1
|
||||
* configuration: SCTLR, and only then TCR.
|
||||
*/
|
||||
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
|
||||
isb();
|
||||
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
|
||||
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
|
||||
}
|
||||
}
|
||||
|
||||
@ -194,7 +194,7 @@ int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
|
||||
__sysreg32_restore_state(vcpu);
|
||||
__sysreg_restore_state_nvhe(guest_ctxt);
|
||||
|
||||
__activate_vm(kern_hyp_va(vcpu->kvm));
|
||||
__activate_vm(kern_hyp_va(vcpu->arch.hw_mmu));
|
||||
__activate_traps(vcpu);
|
||||
|
||||
__hyp_vgic_restore_state(vcpu);
|
||||
|
@ -12,7 +12,8 @@ struct tlb_inv_context {
|
||||
u64 tcr;
|
||||
};
|
||||
|
||||
static void __tlb_switch_to_guest(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
|
||||
struct tlb_inv_context *cxt)
|
||||
{
|
||||
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
|
||||
u64 val;
|
||||
@ -30,12 +31,10 @@ static void __tlb_switch_to_guest(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
isb();
|
||||
}
|
||||
|
||||
/* __load_guest_stage2() includes an ISB for the workaround. */
|
||||
__load_guest_stage2(kvm);
|
||||
asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
|
||||
__load_guest_stage2(mmu);
|
||||
}
|
||||
|
||||
static void __tlb_switch_to_host(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
|
||||
{
|
||||
write_sysreg(0, vttbr_el2);
|
||||
|
||||
@ -47,15 +46,16 @@ static void __tlb_switch_to_host(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
}
|
||||
}
|
||||
|
||||
void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
|
||||
phys_addr_t ipa, int level)
|
||||
{
|
||||
struct tlb_inv_context cxt;
|
||||
|
||||
dsb(ishst);
|
||||
|
||||
/* Switch to requested VMID */
|
||||
kvm = kern_hyp_va(kvm);
|
||||
__tlb_switch_to_guest(kvm, &cxt);
|
||||
mmu = kern_hyp_va(mmu);
|
||||
__tlb_switch_to_guest(mmu, &cxt);
|
||||
|
||||
/*
|
||||
* We could do so much better if we had the VA as well.
|
||||
@ -63,7 +63,7 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
* whole of Stage-1. Weep...
|
||||
*/
|
||||
ipa >>= 12;
|
||||
__tlbi(ipas2e1is, ipa);
|
||||
__tlbi_level(ipas2e1is, ipa, level);
|
||||
|
||||
/*
|
||||
* We have to ensure completion of the invalidation at Stage-2,
|
||||
@ -98,39 +98,39 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
if (icache_is_vpipt())
|
||||
__flush_icache_all();
|
||||
|
||||
__tlb_switch_to_host(kvm, &cxt);
|
||||
__tlb_switch_to_host(&cxt);
|
||||
}
|
||||
|
||||
void __kvm_tlb_flush_vmid(struct kvm *kvm)
|
||||
void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
struct tlb_inv_context cxt;
|
||||
|
||||
dsb(ishst);
|
||||
|
||||
/* Switch to requested VMID */
|
||||
kvm = kern_hyp_va(kvm);
|
||||
__tlb_switch_to_guest(kvm, &cxt);
|
||||
mmu = kern_hyp_va(mmu);
|
||||
__tlb_switch_to_guest(mmu, &cxt);
|
||||
|
||||
__tlbi(vmalls12e1is);
|
||||
dsb(ish);
|
||||
isb();
|
||||
|
||||
__tlb_switch_to_host(kvm, &cxt);
|
||||
__tlb_switch_to_host(&cxt);
|
||||
}
|
||||
|
||||
void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu)
|
||||
void __kvm_tlb_flush_local_vmid(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
struct kvm *kvm = kern_hyp_va(kern_hyp_va(vcpu)->kvm);
|
||||
struct tlb_inv_context cxt;
|
||||
|
||||
/* Switch to requested VMID */
|
||||
__tlb_switch_to_guest(kvm, &cxt);
|
||||
mmu = kern_hyp_va(mmu);
|
||||
__tlb_switch_to_guest(mmu, &cxt);
|
||||
|
||||
__tlbi(vmalle1);
|
||||
dsb(nsh);
|
||||
isb();
|
||||
|
||||
__tlb_switch_to_host(kvm, &cxt);
|
||||
__tlb_switch_to_host(&cxt);
|
||||
}
|
||||
|
||||
void __kvm_flush_vm_context(void)
|
||||
|
@ -125,7 +125,7 @@ static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
|
||||
* stage 2 translation, and __activate_traps clear HCR_EL2.TGE
|
||||
* (among other things).
|
||||
*/
|
||||
__activate_vm(vcpu->kvm);
|
||||
__activate_vm(vcpu->arch.hw_mmu);
|
||||
__activate_traps(vcpu);
|
||||
|
||||
sysreg_restore_guest_state_vhe(guest_ctxt);
|
||||
|
@ -16,7 +16,8 @@ struct tlb_inv_context {
|
||||
u64 sctlr;
|
||||
};
|
||||
|
||||
static void __tlb_switch_to_guest(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
|
||||
struct tlb_inv_context *cxt)
|
||||
{
|
||||
u64 val;
|
||||
|
||||
@ -52,14 +53,14 @@ static void __tlb_switch_to_guest(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
* place before clearing TGE. __load_guest_stage2() already
|
||||
* has an ISB in order to deal with this.
|
||||
*/
|
||||
__load_guest_stage2(kvm);
|
||||
__load_guest_stage2(mmu);
|
||||
val = read_sysreg(hcr_el2);
|
||||
val &= ~HCR_TGE;
|
||||
write_sysreg(val, hcr_el2);
|
||||
isb();
|
||||
}
|
||||
|
||||
static void __tlb_switch_to_host(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
|
||||
{
|
||||
/*
|
||||
* We're done with the TLB operation, let's restore the host's
|
||||
@ -78,14 +79,15 @@ static void __tlb_switch_to_host(struct kvm *kvm, struct tlb_inv_context *cxt)
|
||||
local_irq_restore(cxt->flags);
|
||||
}
|
||||
|
||||
void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
|
||||
phys_addr_t ipa, int level)
|
||||
{
|
||||
struct tlb_inv_context cxt;
|
||||
|
||||
dsb(ishst);
|
||||
|
||||
/* Switch to requested VMID */
|
||||
__tlb_switch_to_guest(kvm, &cxt);
|
||||
__tlb_switch_to_guest(mmu, &cxt);
|
||||
|
||||
/*
|
||||
* We could do so much better if we had the VA as well.
|
||||
@ -93,7 +95,7 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
* whole of Stage-1. Weep...
|
||||
*/
|
||||
ipa >>= 12;
|
||||
__tlbi(ipas2e1is, ipa);
|
||||
__tlbi_level(ipas2e1is, ipa, level);
|
||||
|
||||
/*
|
||||
* We have to ensure completion of the invalidation at Stage-2,
|
||||
@ -106,38 +108,37 @@ void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
dsb(ish);
|
||||
isb();
|
||||
|
||||
__tlb_switch_to_host(kvm, &cxt);
|
||||
__tlb_switch_to_host(&cxt);
|
||||
}
|
||||
|
||||
void __kvm_tlb_flush_vmid(struct kvm *kvm)
|
||||
void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
struct tlb_inv_context cxt;
|
||||
|
||||
dsb(ishst);
|
||||
|
||||
/* Switch to requested VMID */
|
||||
__tlb_switch_to_guest(kvm, &cxt);
|
||||
__tlb_switch_to_guest(mmu, &cxt);
|
||||
|
||||
__tlbi(vmalls12e1is);
|
||||
dsb(ish);
|
||||
isb();
|
||||
|
||||
__tlb_switch_to_host(kvm, &cxt);
|
||||
__tlb_switch_to_host(&cxt);
|
||||
}
|
||||
|
||||
void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu)
|
||||
void __kvm_tlb_flush_local_vmid(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
struct kvm *kvm = vcpu->kvm;
|
||||
struct tlb_inv_context cxt;
|
||||
|
||||
/* Switch to requested VMID */
|
||||
__tlb_switch_to_guest(kvm, &cxt);
|
||||
__tlb_switch_to_guest(mmu, &cxt);
|
||||
|
||||
__tlbi(vmalle1);
|
||||
dsb(nsh);
|
||||
isb();
|
||||
|
||||
__tlb_switch_to_host(kvm, &cxt);
|
||||
__tlb_switch_to_host(&cxt);
|
||||
}
|
||||
|
||||
void __kvm_flush_vm_context(void)
|
||||
|
@ -64,7 +64,7 @@ static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode,
|
||||
case PSR_MODE_EL1h:
|
||||
vbar = vcpu_read_sys_reg(vcpu, VBAR_EL1);
|
||||
sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
|
||||
vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
|
||||
vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL1);
|
||||
break;
|
||||
default:
|
||||
/* Don't do that */
|
||||
|
@ -55,12 +55,13 @@ static bool memslot_is_logging(struct kvm_memory_slot *memslot)
|
||||
*/
|
||||
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
||||
{
|
||||
kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
|
||||
kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
|
||||
}
|
||||
|
||||
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
||||
static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
|
||||
int level)
|
||||
{
|
||||
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
|
||||
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -90,37 +91,39 @@ static bool kvm_is_device_pfn(unsigned long pfn)
|
||||
|
||||
/**
|
||||
* stage2_dissolve_pmd() - clear and flush huge PMD entry
|
||||
* @kvm: pointer to kvm structure.
|
||||
* @mmu: pointer to mmu structure to operate on
|
||||
* @addr: IPA
|
||||
* @pmd: pmd pointer for IPA
|
||||
*
|
||||
* Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
|
||||
*/
|
||||
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
|
||||
static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
|
||||
{
|
||||
if (!pmd_thp_or_huge(*pmd))
|
||||
return;
|
||||
|
||||
pmd_clear(pmd);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
|
||||
put_page(virt_to_page(pmd));
|
||||
}
|
||||
|
||||
/**
|
||||
* stage2_dissolve_pud() - clear and flush huge PUD entry
|
||||
* @kvm: pointer to kvm structure.
|
||||
* @mmu: pointer to mmu structure to operate on
|
||||
* @addr: IPA
|
||||
* @pud: pud pointer for IPA
|
||||
*
|
||||
* Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
|
||||
*/
|
||||
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
|
||||
static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
|
||||
if (!stage2_pud_huge(kvm, *pudp))
|
||||
return;
|
||||
|
||||
stage2_pud_clear(kvm, pudp);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
|
||||
put_page(virt_to_page(pudp));
|
||||
}
|
||||
|
||||
@ -156,40 +159,44 @@ static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
||||
return p;
|
||||
}
|
||||
|
||||
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
|
||||
static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
|
||||
stage2_pgd_clear(kvm, pgd);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
||||
stage2_p4d_free(kvm, p4d_table);
|
||||
put_page(virt_to_page(pgd));
|
||||
}
|
||||
|
||||
static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr)
|
||||
static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
|
||||
stage2_p4d_clear(kvm, p4d);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
||||
stage2_pud_free(kvm, pud_table);
|
||||
put_page(virt_to_page(p4d));
|
||||
}
|
||||
|
||||
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
|
||||
static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
|
||||
|
||||
VM_BUG_ON(stage2_pud_huge(kvm, *pud));
|
||||
stage2_pud_clear(kvm, pud);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
||||
stage2_pmd_free(kvm, pmd_table);
|
||||
put_page(virt_to_page(pud));
|
||||
}
|
||||
|
||||
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
|
||||
static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
|
||||
{
|
||||
pte_t *pte_table = pte_offset_kernel(pmd, 0);
|
||||
VM_BUG_ON(pmd_thp_or_huge(*pmd));
|
||||
pmd_clear(pmd);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
||||
free_page((unsigned long)pte_table);
|
||||
put_page(virt_to_page(pmd));
|
||||
}
|
||||
@ -255,7 +262,7 @@ static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
|
||||
* we then fully enforce cacheability of RAM, no matter what the guest
|
||||
* does.
|
||||
*/
|
||||
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
phys_addr_t start_addr = addr;
|
||||
@ -267,7 +274,7 @@ static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
pte_t old_pte = *pte;
|
||||
|
||||
kvm_set_pte(pte, __pte(0));
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
|
||||
|
||||
/* No need to invalidate the cache for device mappings */
|
||||
if (!kvm_is_device_pfn(pte_pfn(old_pte)))
|
||||
@ -277,13 +284,14 @@ static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
}
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
|
||||
if (stage2_pte_table_empty(kvm, start_pte))
|
||||
clear_stage2_pmd_entry(kvm, pmd, start_addr);
|
||||
if (stage2_pte_table_empty(mmu->kvm, start_pte))
|
||||
clear_stage2_pmd_entry(mmu, pmd, start_addr);
|
||||
}
|
||||
|
||||
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
|
||||
static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
phys_addr_t next, start_addr = addr;
|
||||
pmd_t *pmd, *start_pmd;
|
||||
|
||||
@ -295,24 +303,25 @@ static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
|
||||
pmd_t old_pmd = *pmd;
|
||||
|
||||
pmd_clear(pmd);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
|
||||
|
||||
kvm_flush_dcache_pmd(old_pmd);
|
||||
|
||||
put_page(virt_to_page(pmd));
|
||||
} else {
|
||||
unmap_stage2_ptes(kvm, pmd, addr, next);
|
||||
unmap_stage2_ptes(mmu, pmd, addr, next);
|
||||
}
|
||||
}
|
||||
} while (pmd++, addr = next, addr != end);
|
||||
|
||||
if (stage2_pmd_table_empty(kvm, start_pmd))
|
||||
clear_stage2_pud_entry(kvm, pud, start_addr);
|
||||
clear_stage2_pud_entry(mmu, pud, start_addr);
|
||||
}
|
||||
|
||||
static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
|
||||
static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
phys_addr_t next, start_addr = addr;
|
||||
pud_t *pud, *start_pud;
|
||||
|
||||
@ -324,22 +333,23 @@ static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
|
||||
pud_t old_pud = *pud;
|
||||
|
||||
stage2_pud_clear(kvm, pud);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
|
||||
kvm_flush_dcache_pud(old_pud);
|
||||
put_page(virt_to_page(pud));
|
||||
} else {
|
||||
unmap_stage2_pmds(kvm, pud, addr, next);
|
||||
unmap_stage2_pmds(mmu, pud, addr, next);
|
||||
}
|
||||
}
|
||||
} while (pud++, addr = next, addr != end);
|
||||
|
||||
if (stage2_pud_table_empty(kvm, start_pud))
|
||||
clear_stage2_p4d_entry(kvm, p4d, start_addr);
|
||||
clear_stage2_p4d_entry(mmu, p4d, start_addr);
|
||||
}
|
||||
|
||||
static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
phys_addr_t next, start_addr = addr;
|
||||
p4d_t *p4d, *start_p4d;
|
||||
|
||||
@ -347,11 +357,11 @@ static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
do {
|
||||
next = stage2_p4d_addr_end(kvm, addr, end);
|
||||
if (!stage2_p4d_none(kvm, *p4d))
|
||||
unmap_stage2_puds(kvm, p4d, addr, next);
|
||||
unmap_stage2_puds(mmu, p4d, addr, next);
|
||||
} while (p4d++, addr = next, addr != end);
|
||||
|
||||
if (stage2_p4d_table_empty(kvm, start_p4d))
|
||||
clear_stage2_pgd_entry(kvm, pgd, start_addr);
|
||||
clear_stage2_pgd_entry(mmu, pgd, start_addr);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -365,8 +375,9 @@ static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
* destroying the VM), otherwise another faulting VCPU may come in and mess
|
||||
* with things behind our backs.
|
||||
*/
|
||||
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
|
||||
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pgd_t *pgd;
|
||||
phys_addr_t addr = start, end = start + size;
|
||||
phys_addr_t next;
|
||||
@ -374,18 +385,18 @@ static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
|
||||
assert_spin_locked(&kvm->mmu_lock);
|
||||
WARN_ON(size & ~PAGE_MASK);
|
||||
|
||||
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
|
||||
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
||||
do {
|
||||
/*
|
||||
* Make sure the page table is still active, as another thread
|
||||
* could have possibly freed the page table, while we released
|
||||
* the lock.
|
||||
*/
|
||||
if (!READ_ONCE(kvm->arch.pgd))
|
||||
if (!READ_ONCE(mmu->pgd))
|
||||
break;
|
||||
next = stage2_pgd_addr_end(kvm, addr, end);
|
||||
if (!stage2_pgd_none(kvm, *pgd))
|
||||
unmap_stage2_p4ds(kvm, pgd, addr, next);
|
||||
unmap_stage2_p4ds(mmu, pgd, addr, next);
|
||||
/*
|
||||
* If the range is too large, release the kvm->mmu_lock
|
||||
* to prevent starvation and lockup detector warnings.
|
||||
@ -395,7 +406,7 @@ static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
|
||||
} while (pgd++, addr = next, addr != end);
|
||||
}
|
||||
|
||||
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
pte_t *pte;
|
||||
@ -407,9 +418,10 @@ static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
}
|
||||
|
||||
static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
|
||||
static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pmd_t *pmd;
|
||||
phys_addr_t next;
|
||||
|
||||
@ -420,14 +432,15 @@ static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
|
||||
if (pmd_thp_or_huge(*pmd))
|
||||
kvm_flush_dcache_pmd(*pmd);
|
||||
else
|
||||
stage2_flush_ptes(kvm, pmd, addr, next);
|
||||
stage2_flush_ptes(mmu, pmd, addr, next);
|
||||
}
|
||||
} while (pmd++, addr = next, addr != end);
|
||||
}
|
||||
|
||||
static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
|
||||
static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pud_t *pud;
|
||||
phys_addr_t next;
|
||||
|
||||
@ -438,14 +451,15 @@ static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
|
||||
if (stage2_pud_huge(kvm, *pud))
|
||||
kvm_flush_dcache_pud(*pud);
|
||||
else
|
||||
stage2_flush_pmds(kvm, pud, addr, next);
|
||||
stage2_flush_pmds(mmu, pud, addr, next);
|
||||
}
|
||||
} while (pud++, addr = next, addr != end);
|
||||
}
|
||||
|
||||
static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
p4d_t *p4d;
|
||||
phys_addr_t next;
|
||||
|
||||
@ -453,23 +467,24 @@ static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
do {
|
||||
next = stage2_p4d_addr_end(kvm, addr, end);
|
||||
if (!stage2_p4d_none(kvm, *p4d))
|
||||
stage2_flush_puds(kvm, p4d, addr, next);
|
||||
stage2_flush_puds(mmu, p4d, addr, next);
|
||||
} while (p4d++, addr = next, addr != end);
|
||||
}
|
||||
|
||||
static void stage2_flush_memslot(struct kvm *kvm,
|
||||
struct kvm_memory_slot *memslot)
|
||||
{
|
||||
struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
|
||||
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
|
||||
phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
|
||||
phys_addr_t next;
|
||||
pgd_t *pgd;
|
||||
|
||||
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
|
||||
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
||||
do {
|
||||
next = stage2_pgd_addr_end(kvm, addr, end);
|
||||
if (!stage2_pgd_none(kvm, *pgd))
|
||||
stage2_flush_p4ds(kvm, pgd, addr, next);
|
||||
stage2_flush_p4ds(mmu, pgd, addr, next);
|
||||
|
||||
if (next != end)
|
||||
cond_resched_lock(&kvm->mmu_lock);
|
||||
@ -996,21 +1011,23 @@ int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
|
||||
* @kvm: The KVM struct pointer for the VM.
|
||||
* kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
|
||||
* @kvm: The pointer to the KVM structure
|
||||
* @mmu: The pointer to the s2 MMU structure
|
||||
*
|
||||
* Allocates only the stage-2 HW PGD level table(s) of size defined by
|
||||
* stage2_pgd_size(kvm).
|
||||
* stage2_pgd_size(mmu->kvm).
|
||||
*
|
||||
* Note we don't need locking here as this is only called when the VM is
|
||||
* created, which can only be done once.
|
||||
*/
|
||||
int kvm_alloc_stage2_pgd(struct kvm *kvm)
|
||||
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
phys_addr_t pgd_phys;
|
||||
pgd_t *pgd;
|
||||
int cpu;
|
||||
|
||||
if (kvm->arch.pgd != NULL) {
|
||||
if (mmu->pgd != NULL) {
|
||||
kvm_err("kvm_arch already initialized?\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
@ -1024,8 +1041,20 @@ int kvm_alloc_stage2_pgd(struct kvm *kvm)
|
||||
if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
|
||||
return -EINVAL;
|
||||
|
||||
kvm->arch.pgd = pgd;
|
||||
kvm->arch.pgd_phys = pgd_phys;
|
||||
mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
|
||||
if (!mmu->last_vcpu_ran) {
|
||||
free_pages_exact(pgd, stage2_pgd_size(kvm));
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
|
||||
|
||||
mmu->kvm = kvm;
|
||||
mmu->pgd = pgd;
|
||||
mmu->pgd_phys = pgd_phys;
|
||||
mmu->vmid.vmid_gen = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -1064,7 +1093,7 @@ static void stage2_unmap_memslot(struct kvm *kvm,
|
||||
|
||||
if (!(vma->vm_flags & VM_PFNMAP)) {
|
||||
gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
|
||||
unmap_stage2_range(kvm, gpa, vm_end - vm_start);
|
||||
unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
|
||||
}
|
||||
hva = vm_end;
|
||||
} while (hva < reg_end);
|
||||
@ -1096,39 +1125,34 @@ void stage2_unmap_vm(struct kvm *kvm)
|
||||
srcu_read_unlock(&kvm->srcu, idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_free_stage2_pgd - free all stage-2 tables
|
||||
* @kvm: The KVM struct pointer for the VM.
|
||||
*
|
||||
* Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
|
||||
* underlying level-2 and level-3 tables before freeing the actual level-1 table
|
||||
* and setting the struct pointer to NULL.
|
||||
*/
|
||||
void kvm_free_stage2_pgd(struct kvm *kvm)
|
||||
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
void *pgd = NULL;
|
||||
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
if (kvm->arch.pgd) {
|
||||
unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
|
||||
pgd = READ_ONCE(kvm->arch.pgd);
|
||||
kvm->arch.pgd = NULL;
|
||||
kvm->arch.pgd_phys = 0;
|
||||
if (mmu->pgd) {
|
||||
unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
|
||||
pgd = READ_ONCE(mmu->pgd);
|
||||
mmu->pgd = NULL;
|
||||
}
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
|
||||
/* Free the HW pgd, one page at a time */
|
||||
if (pgd)
|
||||
if (pgd) {
|
||||
free_pages_exact(pgd, stage2_pgd_size(kvm));
|
||||
free_percpu(mmu->last_vcpu_ran);
|
||||
}
|
||||
}
|
||||
|
||||
static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
|
||||
phys_addr_t addr)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pgd_t *pgd;
|
||||
p4d_t *p4d;
|
||||
|
||||
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
|
||||
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
||||
if (stage2_pgd_none(kvm, *pgd)) {
|
||||
if (!cache)
|
||||
return NULL;
|
||||
@ -1140,13 +1164,14 @@ static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache
|
||||
return stage2_p4d_offset(kvm, pgd, addr);
|
||||
}
|
||||
|
||||
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
|
||||
phys_addr_t addr)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
p4d_t *p4d;
|
||||
pud_t *pud;
|
||||
|
||||
p4d = stage2_get_p4d(kvm, cache, addr);
|
||||
p4d = stage2_get_p4d(mmu, cache, addr);
|
||||
if (stage2_p4d_none(kvm, *p4d)) {
|
||||
if (!cache)
|
||||
return NULL;
|
||||
@ -1158,13 +1183,14 @@ static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache
|
||||
return stage2_pud_offset(kvm, p4d, addr);
|
||||
}
|
||||
|
||||
static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
|
||||
phys_addr_t addr)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
|
||||
pud = stage2_get_pud(kvm, cache, addr);
|
||||
pud = stage2_get_pud(mmu, cache, addr);
|
||||
if (!pud || stage2_pud_huge(kvm, *pud))
|
||||
return NULL;
|
||||
|
||||
@ -1179,13 +1205,14 @@ static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache
|
||||
return stage2_pmd_offset(kvm, pud, addr);
|
||||
}
|
||||
|
||||
static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
|
||||
*cache, phys_addr_t addr, const pmd_t *new_pmd)
|
||||
static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
|
||||
struct kvm_mmu_memory_cache *cache,
|
||||
phys_addr_t addr, const pmd_t *new_pmd)
|
||||
{
|
||||
pmd_t *pmd, old_pmd;
|
||||
|
||||
retry:
|
||||
pmd = stage2_get_pmd(kvm, cache, addr);
|
||||
pmd = stage2_get_pmd(mmu, cache, addr);
|
||||
VM_BUG_ON(!pmd);
|
||||
|
||||
old_pmd = *pmd;
|
||||
@ -1218,7 +1245,7 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
|
||||
* get handled accordingly.
|
||||
*/
|
||||
if (!pmd_thp_or_huge(old_pmd)) {
|
||||
unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
|
||||
unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
|
||||
goto retry;
|
||||
}
|
||||
/*
|
||||
@ -1234,7 +1261,7 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
|
||||
*/
|
||||
WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
|
||||
pmd_clear(pmd);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
|
||||
} else {
|
||||
get_page(virt_to_page(pmd));
|
||||
}
|
||||
@ -1243,13 +1270,15 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
|
||||
struct kvm_mmu_memory_cache *cache,
|
||||
phys_addr_t addr, const pud_t *new_pudp)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pud_t *pudp, old_pud;
|
||||
|
||||
retry:
|
||||
pudp = stage2_get_pud(kvm, cache, addr);
|
||||
pudp = stage2_get_pud(mmu, cache, addr);
|
||||
VM_BUG_ON(!pudp);
|
||||
|
||||
old_pud = *pudp;
|
||||
@ -1268,13 +1297,13 @@ static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cac
|
||||
* the range for this block and retry.
|
||||
*/
|
||||
if (!stage2_pud_huge(kvm, old_pud)) {
|
||||
unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
|
||||
unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
|
||||
goto retry;
|
||||
}
|
||||
|
||||
WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
|
||||
stage2_pud_clear(kvm, pudp);
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
|
||||
} else {
|
||||
get_page(virt_to_page(pudp));
|
||||
}
|
||||
@ -1289,9 +1318,10 @@ static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cac
|
||||
* leaf-entry is returned in the appropriate level variable - pudpp,
|
||||
* pmdpp, ptepp.
|
||||
*/
|
||||
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
|
||||
static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
|
||||
pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pud_t *pudp;
|
||||
pmd_t *pmdp;
|
||||
pte_t *ptep;
|
||||
@ -1300,7 +1330,7 @@ static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
|
||||
*pmdpp = NULL;
|
||||
*ptepp = NULL;
|
||||
|
||||
pudp = stage2_get_pud(kvm, NULL, addr);
|
||||
pudp = stage2_get_pud(mmu, NULL, addr);
|
||||
if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
|
||||
return false;
|
||||
|
||||
@ -1326,14 +1356,14 @@ static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
|
||||
static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr)
|
||||
{
|
||||
pud_t *pudp;
|
||||
pmd_t *pmdp;
|
||||
pte_t *ptep;
|
||||
bool found;
|
||||
|
||||
found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
|
||||
found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
|
||||
if (!found)
|
||||
return false;
|
||||
|
||||
@ -1345,10 +1375,12 @@ static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
|
||||
return kvm_s2pte_exec(ptep);
|
||||
}
|
||||
|
||||
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
static int stage2_set_pte(struct kvm_s2_mmu *mmu,
|
||||
struct kvm_mmu_memory_cache *cache,
|
||||
phys_addr_t addr, const pte_t *new_pte,
|
||||
unsigned long flags)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte, old_pte;
|
||||
@ -1358,7 +1390,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
VM_BUG_ON(logging_active && !cache);
|
||||
|
||||
/* Create stage-2 page table mapping - Levels 0 and 1 */
|
||||
pud = stage2_get_pud(kvm, cache, addr);
|
||||
pud = stage2_get_pud(mmu, cache, addr);
|
||||
if (!pud) {
|
||||
/*
|
||||
* Ignore calls from kvm_set_spte_hva for unallocated
|
||||
@ -1372,7 +1404,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
* on to allocate page.
|
||||
*/
|
||||
if (logging_active)
|
||||
stage2_dissolve_pud(kvm, addr, pud);
|
||||
stage2_dissolve_pud(mmu, addr, pud);
|
||||
|
||||
if (stage2_pud_none(kvm, *pud)) {
|
||||
if (!cache)
|
||||
@ -1396,7 +1428,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
* allocate page.
|
||||
*/
|
||||
if (logging_active)
|
||||
stage2_dissolve_pmd(kvm, addr, pmd);
|
||||
stage2_dissolve_pmd(mmu, addr, pmd);
|
||||
|
||||
/* Create stage-2 page mappings - Level 2 */
|
||||
if (pmd_none(*pmd)) {
|
||||
@ -1420,7 +1452,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
||||
return 0;
|
||||
|
||||
kvm_set_pte(pte, __pte(0));
|
||||
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
||||
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
|
||||
} else {
|
||||
get_page(virt_to_page(pte));
|
||||
}
|
||||
@ -1486,8 +1518,8 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
||||
if (ret)
|
||||
goto out;
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
ret = stage2_set_pte(kvm, &cache, addr, &pte,
|
||||
KVM_S2PTE_FLAG_IS_IOMAP);
|
||||
ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
|
||||
KVM_S2PTE_FLAG_IS_IOMAP);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
if (ret)
|
||||
goto out;
|
||||
@ -1526,9 +1558,10 @@ static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
|
||||
* @addr: range start address
|
||||
* @end: range end address
|
||||
*/
|
||||
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
|
||||
static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pmd_t *pmd;
|
||||
phys_addr_t next;
|
||||
|
||||
@ -1549,13 +1582,14 @@ static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
|
||||
|
||||
/**
|
||||
* stage2_wp_puds - write protect P4D range
|
||||
* @pgd: pointer to pgd entry
|
||||
* @p4d: pointer to p4d entry
|
||||
* @addr: range start address
|
||||
* @end: range end address
|
||||
*/
|
||||
static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
|
||||
static void stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pud_t *pud;
|
||||
phys_addr_t next;
|
||||
|
||||
@ -1567,7 +1601,7 @@ static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
|
||||
if (!kvm_s2pud_readonly(pud))
|
||||
kvm_set_s2pud_readonly(pud);
|
||||
} else {
|
||||
stage2_wp_pmds(kvm, pud, addr, next);
|
||||
stage2_wp_pmds(mmu, pud, addr, next);
|
||||
}
|
||||
}
|
||||
} while (pud++, addr = next, addr != end);
|
||||
@ -1579,9 +1613,10 @@ static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
|
||||
* @addr: range start address
|
||||
* @end: range end address
|
||||
*/
|
||||
static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
static void stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
|
||||
phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
p4d_t *p4d;
|
||||
phys_addr_t next;
|
||||
|
||||
@ -1589,7 +1624,7 @@ static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
do {
|
||||
next = stage2_p4d_addr_end(kvm, addr, end);
|
||||
if (!stage2_p4d_none(kvm, *p4d))
|
||||
stage2_wp_puds(kvm, p4d, addr, next);
|
||||
stage2_wp_puds(mmu, p4d, addr, next);
|
||||
} while (p4d++, addr = next, addr != end);
|
||||
}
|
||||
|
||||
@ -1599,12 +1634,13 @@ static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
|
||||
* @addr: Start address of range
|
||||
* @end: End address of range
|
||||
*/
|
||||
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
|
||||
static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pgd_t *pgd;
|
||||
phys_addr_t next;
|
||||
|
||||
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
|
||||
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
||||
do {
|
||||
/*
|
||||
* Release kvm_mmu_lock periodically if the memory region is
|
||||
@ -1616,11 +1652,11 @@ static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
|
||||
* the lock.
|
||||
*/
|
||||
cond_resched_lock(&kvm->mmu_lock);
|
||||
if (!READ_ONCE(kvm->arch.pgd))
|
||||
if (!READ_ONCE(mmu->pgd))
|
||||
break;
|
||||
next = stage2_pgd_addr_end(kvm, addr, end);
|
||||
if (stage2_pgd_present(kvm, *pgd))
|
||||
stage2_wp_p4ds(kvm, pgd, addr, next);
|
||||
stage2_wp_p4ds(mmu, pgd, addr, next);
|
||||
} while (pgd++, addr = next, addr != end);
|
||||
}
|
||||
|
||||
@ -1650,7 +1686,7 @@ void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
|
||||
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
||||
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
stage2_wp_range(kvm, start, end);
|
||||
stage2_wp_range(&kvm->arch.mmu, start, end);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
kvm_flush_remote_tlbs(kvm);
|
||||
}
|
||||
@ -1674,7 +1710,7 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
|
||||
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
|
||||
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
|
||||
|
||||
stage2_wp_range(kvm, start, end);
|
||||
stage2_wp_range(&kvm->arch.mmu, start, end);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1837,6 +1873,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
pgprot_t mem_type = PAGE_S2;
|
||||
bool logging_active = memslot_is_logging(memslot);
|
||||
unsigned long vma_pagesize, flags = 0;
|
||||
struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
|
||||
|
||||
write_fault = kvm_is_write_fault(vcpu);
|
||||
exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
|
||||
@ -1958,7 +1995,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
* execute permissions, and we preserve whatever we have.
|
||||
*/
|
||||
needs_exec = exec_fault ||
|
||||
(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
|
||||
(fault_status == FSC_PERM && stage2_is_exec(mmu, fault_ipa));
|
||||
|
||||
if (vma_pagesize == PUD_SIZE) {
|
||||
pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
|
||||
@ -1970,7 +2007,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
if (needs_exec)
|
||||
new_pud = kvm_s2pud_mkexec(new_pud);
|
||||
|
||||
ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
|
||||
ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
|
||||
} else if (vma_pagesize == PMD_SIZE) {
|
||||
pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
|
||||
|
||||
@ -1982,7 +2019,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
if (needs_exec)
|
||||
new_pmd = kvm_s2pmd_mkexec(new_pmd);
|
||||
|
||||
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
|
||||
ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
|
||||
} else {
|
||||
pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
|
||||
|
||||
@ -1994,7 +2031,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
if (needs_exec)
|
||||
new_pte = kvm_s2pte_mkexec(new_pte);
|
||||
|
||||
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
|
||||
ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
|
||||
}
|
||||
|
||||
out_unlock:
|
||||
@ -2023,7 +2060,7 @@ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
|
||||
|
||||
spin_lock(&vcpu->kvm->mmu_lock);
|
||||
|
||||
if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
|
||||
if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
|
||||
goto out;
|
||||
|
||||
if (pud) { /* HugeTLB */
|
||||
@ -2197,14 +2234,14 @@ static int handle_hva_to_gpa(struct kvm *kvm,
|
||||
|
||||
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
|
||||
{
|
||||
unmap_stage2_range(kvm, gpa, size);
|
||||
unmap_stage2_range(&kvm->arch.mmu, gpa, size);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int kvm_unmap_hva_range(struct kvm *kvm,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
if (!kvm->arch.pgd)
|
||||
if (!kvm->arch.mmu.pgd)
|
||||
return 0;
|
||||
|
||||
trace_kvm_unmap_hva_range(start, end);
|
||||
@ -2224,7 +2261,7 @@ static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data
|
||||
* therefore stage2_set_pte() never needs to clear out a huge PMD
|
||||
* through this calling path.
|
||||
*/
|
||||
stage2_set_pte(kvm, NULL, gpa, pte, 0);
|
||||
stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -2235,7 +2272,7 @@ int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
||||
kvm_pfn_t pfn = pte_pfn(pte);
|
||||
pte_t stage2_pte;
|
||||
|
||||
if (!kvm->arch.pgd)
|
||||
if (!kvm->arch.mmu.pgd)
|
||||
return 0;
|
||||
|
||||
trace_kvm_set_spte_hva(hva);
|
||||
@ -2258,7 +2295,7 @@ static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
|
||||
pte_t *pte;
|
||||
|
||||
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
|
||||
if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
|
||||
if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
|
||||
return 0;
|
||||
|
||||
if (pud)
|
||||
@ -2276,7 +2313,7 @@ static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *
|
||||
pte_t *pte;
|
||||
|
||||
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
|
||||
if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
|
||||
if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
|
||||
return 0;
|
||||
|
||||
if (pud)
|
||||
@ -2289,7 +2326,7 @@ static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *
|
||||
|
||||
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
|
||||
{
|
||||
if (!kvm->arch.pgd)
|
||||
if (!kvm->arch.mmu.pgd)
|
||||
return 0;
|
||||
trace_kvm_age_hva(start, end);
|
||||
return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
|
||||
@ -2297,7 +2334,7 @@ int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
|
||||
|
||||
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
|
||||
{
|
||||
if (!kvm->arch.pgd)
|
||||
if (!kvm->arch.mmu.pgd)
|
||||
return 0;
|
||||
trace_kvm_test_age_hva(hva);
|
||||
return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
|
||||
@ -2510,7 +2547,7 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
||||
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
if (ret)
|
||||
unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
|
||||
unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
|
||||
else
|
||||
stage2_flush_memslot(kvm, memslot);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
@ -2529,7 +2566,7 @@ void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
|
||||
|
||||
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
||||
{
|
||||
kvm_free_stage2_pgd(kvm);
|
||||
kvm_free_stage2_pgd(&kvm->arch.mmu);
|
||||
}
|
||||
|
||||
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
||||
@ -2539,7 +2576,7 @@ void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
||||
phys_addr_t size = slot->npages << PAGE_SHIFT;
|
||||
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
unmap_stage2_range(kvm, gpa, size);
|
||||
unmap_stage2_range(&kvm->arch.mmu, gpa, size);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
}
|
||||
|
||||
|
@ -100,7 +100,7 @@ static const unsigned long vcpu_reg_offsets[VCPU_NR_MODES][16] = {
|
||||
*/
|
||||
unsigned long *vcpu_reg32(const struct kvm_vcpu *vcpu, u8 reg_num)
|
||||
{
|
||||
unsigned long *reg_array = (unsigned long *)&vcpu->arch.ctxt.gp_regs.regs;
|
||||
unsigned long *reg_array = (unsigned long *)&vcpu->arch.ctxt.regs;
|
||||
unsigned long mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
|
||||
|
||||
switch (mode) {
|
||||
@ -147,8 +147,20 @@ unsigned long vcpu_read_spsr32(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
int spsr_idx = vcpu_spsr32_mode(vcpu);
|
||||
|
||||
if (!vcpu->arch.sysregs_loaded_on_cpu)
|
||||
return vcpu_gp_regs(vcpu)->spsr[spsr_idx];
|
||||
if (!vcpu->arch.sysregs_loaded_on_cpu) {
|
||||
switch (spsr_idx) {
|
||||
case KVM_SPSR_SVC:
|
||||
return __vcpu_sys_reg(vcpu, SPSR_EL1);
|
||||
case KVM_SPSR_ABT:
|
||||
return vcpu->arch.ctxt.spsr_abt;
|
||||
case KVM_SPSR_UND:
|
||||
return vcpu->arch.ctxt.spsr_und;
|
||||
case KVM_SPSR_IRQ:
|
||||
return vcpu->arch.ctxt.spsr_irq;
|
||||
case KVM_SPSR_FIQ:
|
||||
return vcpu->arch.ctxt.spsr_fiq;
|
||||
}
|
||||
}
|
||||
|
||||
switch (spsr_idx) {
|
||||
case KVM_SPSR_SVC:
|
||||
@ -171,7 +183,24 @@ void vcpu_write_spsr32(struct kvm_vcpu *vcpu, unsigned long v)
|
||||
int spsr_idx = vcpu_spsr32_mode(vcpu);
|
||||
|
||||
if (!vcpu->arch.sysregs_loaded_on_cpu) {
|
||||
vcpu_gp_regs(vcpu)->spsr[spsr_idx] = v;
|
||||
switch (spsr_idx) {
|
||||
case KVM_SPSR_SVC:
|
||||
__vcpu_sys_reg(vcpu, SPSR_EL1) = v;
|
||||
break;
|
||||
case KVM_SPSR_ABT:
|
||||
vcpu->arch.ctxt.spsr_abt = v;
|
||||
break;
|
||||
case KVM_SPSR_UND:
|
||||
vcpu->arch.ctxt.spsr_und = v;
|
||||
break;
|
||||
case KVM_SPSR_IRQ:
|
||||
vcpu->arch.ctxt.spsr_irq = v;
|
||||
break;
|
||||
case KVM_SPSR_FIQ:
|
||||
vcpu->arch.ctxt.spsr_fiq = v;
|
||||
break;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -288,7 +288,7 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
|
||||
|
||||
/* Reset core registers */
|
||||
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
|
||||
vcpu_gp_regs(vcpu)->regs.pstate = pstate;
|
||||
vcpu_gp_regs(vcpu)->pstate = pstate;
|
||||
|
||||
/* Reset system registers */
|
||||
kvm_reset_sys_regs(vcpu);
|
||||
|
@ -94,6 +94,7 @@ static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
|
||||
case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
|
||||
case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
|
||||
case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
|
||||
case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
|
||||
case PAR_EL1: *val = read_sysreg_s(SYS_PAR_EL1); break;
|
||||
case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
|
||||
case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
|
||||
@ -133,6 +134,7 @@ static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
|
||||
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
|
||||
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
|
||||
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
|
||||
case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
|
||||
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
|
||||
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
|
||||
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
|
||||
|
@ -301,8 +301,8 @@ TRACE_EVENT(kvm_timer_save_state,
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->ctl = ctx->cnt_ctl;
|
||||
__entry->cval = ctx->cnt_cval;
|
||||
__entry->ctl = timer_get_ctl(ctx);
|
||||
__entry->cval = timer_get_cval(ctx);
|
||||
__entry->timer_idx = arch_timer_ctx_index(ctx);
|
||||
),
|
||||
|
||||
@ -323,8 +323,8 @@ TRACE_EVENT(kvm_timer_restore_state,
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->ctl = ctx->cnt_ctl;
|
||||
__entry->cval = ctx->cnt_cval;
|
||||
__entry->ctl = timer_get_ctl(ctx);
|
||||
__entry->cval = timer_get_cval(ctx);
|
||||
__entry->timer_idx = arch_timer_ctx_index(ctx);
|
||||
),
|
||||
|
||||
|
@ -26,16 +26,9 @@ enum kvm_arch_timer_regs {
|
||||
struct arch_timer_context {
|
||||
struct kvm_vcpu *vcpu;
|
||||
|
||||
/* Registers: control register, timer value */
|
||||
u32 cnt_ctl;
|
||||
u64 cnt_cval;
|
||||
|
||||
/* Timer IRQ */
|
||||
struct kvm_irq_level irq;
|
||||
|
||||
/* Virtual offset */
|
||||
u64 cntvoff;
|
||||
|
||||
/* Emulated Timer (may be unused) */
|
||||
struct hrtimer hrtimer;
|
||||
|
||||
@ -71,7 +64,7 @@ int kvm_timer_hyp_init(bool);
|
||||
int kvm_timer_enable(struct kvm_vcpu *vcpu);
|
||||
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu);
|
||||
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu);
|
||||
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu);
|
||||
void kvm_timer_sync_user(struct kvm_vcpu *vcpu);
|
||||
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu);
|
||||
void kvm_timer_update_run(struct kvm_vcpu *vcpu);
|
||||
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu);
|
||||
@ -109,4 +102,8 @@ void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
|
||||
enum kvm_arch_timer_regs treg,
|
||||
u64 val);
|
||||
|
||||
/* Needed for tracing */
|
||||
u32 timer_get_ctl(struct arch_timer_context *ctxt);
|
||||
u64 timer_get_cval(struct arch_timer_context *ctxt);
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user