mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
Merge branch 'linus' into timers/core
Pick up upstream changes to get the prerequisites for the timer changes.
This commit is contained in:
commit
26eafeaab9
@ -39,8 +39,8 @@ up.
|
||||
Although MT wq wasted a lot of resource, the level of concurrency
|
||||
provided was unsatisfactory. The limitation was common to both ST and
|
||||
MT wq albeit less severe on MT. Each wq maintained its own separate
|
||||
worker pool. A MT wq could provide only one execution context per CPU
|
||||
while a ST wq one for the whole system. Work items had to compete for
|
||||
worker pool. An MT wq could provide only one execution context per CPU
|
||||
while an ST wq one for the whole system. Work items had to compete for
|
||||
those very limited execution contexts leading to various problems
|
||||
including proneness to deadlocks around the single execution context.
|
||||
|
||||
@ -151,7 +151,7 @@ Application Programming Interface (API)
|
||||
|
||||
``alloc_workqueue()`` allocates a wq. The original
|
||||
``create_*workqueue()`` functions are deprecated and scheduled for
|
||||
removal. ``alloc_workqueue()`` takes three arguments - @``name``,
|
||||
removal. ``alloc_workqueue()`` takes three arguments - ``@name``,
|
||||
``@flags`` and ``@max_active``. ``@name`` is the name of the wq and
|
||||
also used as the name of the rescuer thread if there is one.
|
||||
|
||||
@ -197,7 +197,7 @@ resources, scheduled and executed.
|
||||
served by worker threads with elevated nice level.
|
||||
|
||||
Note that normal and highpri worker-pools don't interact with
|
||||
each other. Each maintain its separate pool of workers and
|
||||
each other. Each maintains its separate pool of workers and
|
||||
implements concurrency management among its workers.
|
||||
|
||||
``WQ_CPU_INTENSIVE``
|
||||
@ -249,8 +249,8 @@ unbound worker-pools and only one work item could be active at any given
|
||||
time thus achieving the same ordering property as ST wq.
|
||||
|
||||
In the current implementation the above configuration only guarantees
|
||||
ST behavior within a given NUMA node. Instead alloc_ordered_queue should
|
||||
be used to achieve system wide ST behavior.
|
||||
ST behavior within a given NUMA node. Instead ``alloc_ordered_queue()`` should
|
||||
be used to achieve system-wide ST behavior.
|
||||
|
||||
|
||||
Example Execution Scenarios
|
||||
|
@ -32,8 +32,6 @@ cpufreq-stats.txt - General description of sysfs cpufreq stats.
|
||||
|
||||
index.txt - File index, Mailing list and Links (this document)
|
||||
|
||||
intel-pstate.txt - Intel pstate cpufreq driver specific file.
|
||||
|
||||
pcc-cpufreq.txt - PCC cpufreq driver specific file.
|
||||
|
||||
|
||||
|
@ -15,11 +15,14 @@ Required properties
|
||||
|
||||
compatible : Must be "ams,as3645a".
|
||||
reg : The I2C address of the device. Typically 0x30.
|
||||
#address-cells : 1
|
||||
#size-cells : 0
|
||||
|
||||
|
||||
Required properties of the "flash" child node
|
||||
=============================================
|
||||
Required properties of the flash child node (0)
|
||||
===============================================
|
||||
|
||||
reg: 0
|
||||
flash-timeout-us: Flash timeout in microseconds. The value must be in
|
||||
the range [100000, 850000] and divisible by 50000.
|
||||
flash-max-microamp: Maximum flash current in microamperes. Has to be
|
||||
@ -33,20 +36,21 @@ ams,input-max-microamp: Maximum flash controller input current. The
|
||||
and divisible by 50000.
|
||||
|
||||
|
||||
Optional properties of the "flash" child node
|
||||
=============================================
|
||||
Optional properties of the flash child node
|
||||
===========================================
|
||||
|
||||
label : The label of the flash LED.
|
||||
|
||||
|
||||
Required properties of the "indicator" child node
|
||||
=================================================
|
||||
Required properties of the indicator child node (1)
|
||||
===================================================
|
||||
|
||||
reg: 1
|
||||
led-max-microamp: Maximum indicator current. The allowed values are
|
||||
2500, 5000, 7500 and 10000.
|
||||
|
||||
Optional properties of the "indicator" child node
|
||||
=================================================
|
||||
Optional properties of the indicator child node
|
||||
===============================================
|
||||
|
||||
label : The label of the indicator LED.
|
||||
|
||||
@ -55,16 +59,20 @@ Example
|
||||
=======
|
||||
|
||||
as3645a@30 {
|
||||
#address-cells: 1
|
||||
#size-cells: 0
|
||||
reg = <0x30>;
|
||||
compatible = "ams,as3645a";
|
||||
flash {
|
||||
flash@0 {
|
||||
reg = <0x0>;
|
||||
flash-timeout-us = <150000>;
|
||||
flash-max-microamp = <320000>;
|
||||
led-max-microamp = <60000>;
|
||||
ams,input-max-microamp = <1750000>;
|
||||
label = "as3645a:flash";
|
||||
};
|
||||
indicator {
|
||||
indicator@1 {
|
||||
reg = <0x1>;
|
||||
led-max-microamp = <10000>;
|
||||
label = "as3645a:indicator";
|
||||
};
|
||||
|
@ -41,6 +41,8 @@ Required properties:
|
||||
- "renesas,hscif-r8a7795" for R8A7795 (R-Car H3) HSCIF compatible UART.
|
||||
- "renesas,scif-r8a7796" for R8A7796 (R-Car M3-W) SCIF compatible UART.
|
||||
- "renesas,hscif-r8a7796" for R8A7796 (R-Car M3-W) HSCIF compatible UART.
|
||||
- "renesas,scif-r8a77970" for R8A77970 (R-Car V3M) SCIF compatible UART.
|
||||
- "renesas,hscif-r8a77970" for R8A77970 (R-Car V3M) HSCIF compatible UART.
|
||||
- "renesas,scif-r8a77995" for R8A77995 (R-Car D3) SCIF compatible UART.
|
||||
- "renesas,hscif-r8a77995" for R8A77995 (R-Car D3) HSCIF compatible UART.
|
||||
- "renesas,scifa-sh73a0" for SH73A0 (SH-Mobile AG5) SCIFA compatible UART.
|
||||
|
@ -196,12 +196,13 @@ struct driver_attribute {
|
||||
};
|
||||
|
||||
Device drivers can export attributes via their sysfs directories.
|
||||
Drivers can declare attributes using a DRIVER_ATTR macro that works
|
||||
identically to the DEVICE_ATTR macro.
|
||||
Drivers can declare attributes using a DRIVER_ATTR_RW and DRIVER_ATTR_RO
|
||||
macro that works identically to the DEVICE_ATTR_RW and DEVICE_ATTR_RO
|
||||
macros.
|
||||
|
||||
Example:
|
||||
|
||||
DRIVER_ATTR(debug,0644,show_debug,store_debug);
|
||||
DRIVER_ATTR_RW(debug);
|
||||
|
||||
This is equivalent to declaring:
|
||||
|
||||
|
@ -366,7 +366,8 @@ struct driver_attribute {
|
||||
|
||||
Declaring:
|
||||
|
||||
DRIVER_ATTR(_name, _mode, _show, _store)
|
||||
DRIVER_ATTR_RO(_name)
|
||||
DRIVER_ATTR_RW(_name)
|
||||
|
||||
Creation/Removal:
|
||||
|
||||
|
@ -8597,6 +8597,12 @@ M: Sean Wang <sean.wang@mediatek.com>
|
||||
S: Maintained
|
||||
F: drivers/media/rc/mtk-cir.c
|
||||
|
||||
MEDIATEK PMIC LED DRIVER
|
||||
M: Sean Wang <sean.wang@mediatek.com>
|
||||
S: Maintained
|
||||
F: drivers/leds/leds-mt6323.c
|
||||
F: Documentation/devicetree/bindings/leds/leds-mt6323.txt
|
||||
|
||||
MEDIATEK ETHERNET DRIVER
|
||||
M: Felix Fietkau <nbd@openwrt.org>
|
||||
M: John Crispin <john@phrozen.org>
|
||||
|
6
Makefile
6
Makefile
@ -1,7 +1,7 @@
|
||||
VERSION = 4
|
||||
PATCHLEVEL = 14
|
||||
SUBLEVEL = 0
|
||||
EXTRAVERSION = -rc2
|
||||
EXTRAVERSION = -rc3
|
||||
NAME = Fearless Coyote
|
||||
|
||||
# *DOCUMENTATION*
|
||||
@ -1172,11 +1172,11 @@ headers_check: headers_install
|
||||
|
||||
PHONY += kselftest
|
||||
kselftest:
|
||||
$(Q)$(MAKE) -C tools/testing/selftests run_tests
|
||||
$(Q)$(MAKE) -C $(srctree)/tools/testing/selftests run_tests
|
||||
|
||||
PHONY += kselftest-clean
|
||||
kselftest-clean:
|
||||
$(Q)$(MAKE) -C tools/testing/selftests clean
|
||||
$(Q)$(MAKE) -C $(srctree)/tools/testing/selftests clean
|
||||
|
||||
PHONY += kselftest-merge
|
||||
kselftest-merge:
|
||||
|
@ -267,15 +267,19 @@ &i2c2 {
|
||||
clock-frequency = <400000>;
|
||||
|
||||
as3645a@30 {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
reg = <0x30>;
|
||||
compatible = "ams,as3645a";
|
||||
flash {
|
||||
flash@0 {
|
||||
reg = <0x0>;
|
||||
flash-timeout-us = <150000>;
|
||||
flash-max-microamp = <320000>;
|
||||
led-max-microamp = <60000>;
|
||||
peak-current-limit = <1750000>;
|
||||
ams,input-max-microamp = <1750000>;
|
||||
};
|
||||
indicator {
|
||||
indicator@1 {
|
||||
reg = <0x1>;
|
||||
led-max-microamp = <10000>;
|
||||
};
|
||||
};
|
||||
|
@ -401,7 +401,7 @@ static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
|
||||
/* Find an entry in the third-level page table. */
|
||||
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
||||
|
||||
#define pte_offset_phys(dir,addr) (pmd_page_paddr(*(dir)) + pte_index(addr) * sizeof(pte_t))
|
||||
#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
|
||||
#define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr))))
|
||||
|
||||
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
|
||||
|
@ -384,6 +384,7 @@ ENTRY(kimage_vaddr)
|
||||
* booted in EL1 or EL2 respectively.
|
||||
*/
|
||||
ENTRY(el2_setup)
|
||||
msr SPsel, #1 // We want to use SP_EL{1,2}
|
||||
mrs x0, CurrentEL
|
||||
cmp x0, #CurrentEL_EL2
|
||||
b.eq 1f
|
||||
|
@ -651,7 +651,7 @@ static const struct fault_info fault_info[] = {
|
||||
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
|
||||
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
|
||||
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
|
||||
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
||||
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
||||
{ do_bad, SIGBUS, 0, "unknown 8" },
|
||||
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
|
||||
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
|
||||
|
@ -39,7 +39,7 @@ config MICROBLAZE
|
||||
# Endianness selection
|
||||
choice
|
||||
prompt "Endianness selection"
|
||||
default CPU_BIG_ENDIAN
|
||||
default CPU_LITTLE_ENDIAN
|
||||
help
|
||||
microblaze architectures can be configured for either little or
|
||||
big endian formats. Be sure to select the appropriate mode.
|
||||
|
@ -7,6 +7,7 @@ generic-y += fcntl.h
|
||||
generic-y += ioctl.h
|
||||
generic-y += ioctls.h
|
||||
generic-y += ipcbuf.h
|
||||
generic-y += kvm_para.h
|
||||
generic-y += mman.h
|
||||
generic-y += msgbuf.h
|
||||
generic-y += param.h
|
||||
|
@ -165,7 +165,7 @@ int dma_direct_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
|
||||
unsigned long attrs)
|
||||
{
|
||||
#ifdef CONFIG_MMU
|
||||
unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
||||
unsigned long user_count = vma_pages(vma);
|
||||
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
||||
unsigned long off = vma->vm_pgoff;
|
||||
unsigned long pfn;
|
||||
|
@ -1121,6 +1121,13 @@ END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
|
||||
BEGIN_FTR_SECTION
|
||||
mtspr SPRN_PPR, r0
|
||||
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
|
||||
|
||||
/* Move canary into DSISR to check for later */
|
||||
BEGIN_FTR_SECTION
|
||||
li r0, 0x7fff
|
||||
mtspr SPRN_HDSISR, r0
|
||||
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
|
||||
|
||||
ld r0, VCPU_GPR(R0)(r4)
|
||||
ld r4, VCPU_GPR(R4)(r4)
|
||||
|
||||
@ -1956,9 +1963,14 @@ END_MMU_FTR_SECTION_IFSET(MMU_FTR_TYPE_RADIX)
|
||||
kvmppc_hdsi:
|
||||
ld r3, VCPU_KVM(r9)
|
||||
lbz r0, KVM_RADIX(r3)
|
||||
cmpwi r0, 0
|
||||
mfspr r4, SPRN_HDAR
|
||||
mfspr r6, SPRN_HDSISR
|
||||
BEGIN_FTR_SECTION
|
||||
/* Look for DSISR canary. If we find it, retry instruction */
|
||||
cmpdi r6, 0x7fff
|
||||
beq 6f
|
||||
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
|
||||
cmpwi r0, 0
|
||||
bne .Lradix_hdsi /* on radix, just save DAR/DSISR/ASDR */
|
||||
/* HPTE not found fault or protection fault? */
|
||||
andis. r0, r6, (DSISR_NOHPTE | DSISR_PROTFAULT)@h
|
||||
|
@ -98,7 +98,7 @@ static struct clocksource timer_clocksource = {
|
||||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
};
|
||||
|
||||
static void __init timer_setup(void)
|
||||
static void __init um_timer_setup(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
@ -132,5 +132,5 @@ void read_persistent_clock(struct timespec *ts)
|
||||
void __init time_init(void)
|
||||
{
|
||||
timer_set_signal_handler();
|
||||
late_time_init = timer_setup;
|
||||
late_time_init = um_timer_setup;
|
||||
}
|
||||
|
@ -552,6 +552,7 @@ static const struct x86_cpu_id intel_cstates_match[] __initconst = {
|
||||
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_SKYLAKE_MOBILE, snb_cstates),
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_SKYLAKE_DESKTOP, snb_cstates),
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_SKYLAKE_X, snb_cstates),
|
||||
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_KABYLAKE_MOBILE, snb_cstates),
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_KABYLAKE_DESKTOP, snb_cstates),
|
||||
@ -560,6 +561,9 @@ static const struct x86_cpu_id intel_cstates_match[] __initconst = {
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_XEON_PHI_KNM, knl_cstates),
|
||||
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_ATOM_GOLDMONT, glm_cstates),
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_ATOM_DENVERTON, glm_cstates),
|
||||
|
||||
X86_CSTATES_MODEL(INTEL_FAM6_ATOM_GEMINI_LAKE, glm_cstates),
|
||||
{ },
|
||||
};
|
||||
MODULE_DEVICE_TABLE(x86cpu, intel_cstates_match);
|
||||
|
@ -775,6 +775,9 @@ static const struct x86_cpu_id rapl_cpu_match[] __initconst = {
|
||||
X86_RAPL_MODEL_MATCH(INTEL_FAM6_KABYLAKE_DESKTOP, skl_rapl_init),
|
||||
|
||||
X86_RAPL_MODEL_MATCH(INTEL_FAM6_ATOM_GOLDMONT, hsw_rapl_init),
|
||||
X86_RAPL_MODEL_MATCH(INTEL_FAM6_ATOM_DENVERTON, hsw_rapl_init),
|
||||
|
||||
X86_RAPL_MODEL_MATCH(INTEL_FAM6_ATOM_GEMINI_LAKE, hsw_rapl_init),
|
||||
{},
|
||||
};
|
||||
|
||||
|
@ -3462,7 +3462,7 @@ static struct intel_uncore_ops skx_uncore_iio_ops = {
|
||||
static struct intel_uncore_type skx_uncore_iio = {
|
||||
.name = "iio",
|
||||
.num_counters = 4,
|
||||
.num_boxes = 5,
|
||||
.num_boxes = 6,
|
||||
.perf_ctr_bits = 48,
|
||||
.event_ctl = SKX_IIO0_MSR_PMON_CTL0,
|
||||
.perf_ctr = SKX_IIO0_MSR_PMON_CTR0,
|
||||
@ -3492,7 +3492,7 @@ static const struct attribute_group skx_uncore_format_group = {
|
||||
static struct intel_uncore_type skx_uncore_irp = {
|
||||
.name = "irp",
|
||||
.num_counters = 2,
|
||||
.num_boxes = 5,
|
||||
.num_boxes = 6,
|
||||
.perf_ctr_bits = 48,
|
||||
.event_ctl = SKX_IRP0_MSR_PMON_CTL0,
|
||||
.perf_ctr = SKX_IRP0_MSR_PMON_CTR0,
|
||||
|
@ -63,6 +63,14 @@ static bool test_intel(int idx)
|
||||
case INTEL_FAM6_ATOM_SILVERMONT1:
|
||||
case INTEL_FAM6_ATOM_SILVERMONT2:
|
||||
case INTEL_FAM6_ATOM_AIRMONT:
|
||||
|
||||
case INTEL_FAM6_ATOM_GOLDMONT:
|
||||
case INTEL_FAM6_ATOM_DENVERTON:
|
||||
|
||||
case INTEL_FAM6_ATOM_GEMINI_LAKE:
|
||||
|
||||
case INTEL_FAM6_XEON_PHI_KNL:
|
||||
case INTEL_FAM6_XEON_PHI_KNM:
|
||||
if (idx == PERF_MSR_SMI)
|
||||
return true;
|
||||
break;
|
||||
|
@ -231,7 +231,7 @@ static void __user *get_sigframe(struct ksignal *ksig, struct pt_regs *regs,
|
||||
ksig->ka.sa.sa_restorer)
|
||||
sp = (unsigned long) ksig->ka.sa.sa_restorer;
|
||||
|
||||
if (fpu->fpstate_active) {
|
||||
if (fpu->initialized) {
|
||||
unsigned long fx_aligned, math_size;
|
||||
|
||||
sp = fpu__alloc_mathframe(sp, 1, &fx_aligned, &math_size);
|
||||
|
@ -11,10 +11,12 @@
|
||||
# define __ASM_FORM_COMMA(x) " " #x ","
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
#ifndef __x86_64__
|
||||
/* 32 bit */
|
||||
# define __ASM_SEL(a,b) __ASM_FORM(a)
|
||||
# define __ASM_SEL_RAW(a,b) __ASM_FORM_RAW(a)
|
||||
#else
|
||||
/* 64 bit */
|
||||
# define __ASM_SEL(a,b) __ASM_FORM(b)
|
||||
# define __ASM_SEL_RAW(a,b) __ASM_FORM_RAW(b)
|
||||
#endif
|
||||
@ -139,8 +141,8 @@
|
||||
* gets set up by the containing function. If you forget to do this, objtool
|
||||
* may print a "call without frame pointer save/setup" warning.
|
||||
*/
|
||||
register unsigned int __asm_call_sp asm("esp");
|
||||
#define ASM_CALL_CONSTRAINT "+r" (__asm_call_sp)
|
||||
register unsigned long current_stack_pointer asm(_ASM_SP);
|
||||
#define ASM_CALL_CONSTRAINT "+r" (current_stack_pointer)
|
||||
#endif
|
||||
|
||||
#endif /* _ASM_X86_ASM_H */
|
||||
|
@ -23,11 +23,9 @@
|
||||
/*
|
||||
* High level FPU state handling functions:
|
||||
*/
|
||||
extern void fpu__activate_curr(struct fpu *fpu);
|
||||
extern void fpu__activate_fpstate_read(struct fpu *fpu);
|
||||
extern void fpu__activate_fpstate_write(struct fpu *fpu);
|
||||
extern void fpu__current_fpstate_write_begin(void);
|
||||
extern void fpu__current_fpstate_write_end(void);
|
||||
extern void fpu__initialize(struct fpu *fpu);
|
||||
extern void fpu__prepare_read(struct fpu *fpu);
|
||||
extern void fpu__prepare_write(struct fpu *fpu);
|
||||
extern void fpu__save(struct fpu *fpu);
|
||||
extern void fpu__restore(struct fpu *fpu);
|
||||
extern int fpu__restore_sig(void __user *buf, int ia32_frame);
|
||||
@ -120,20 +118,11 @@ extern void fpstate_sanitize_xstate(struct fpu *fpu);
|
||||
err; \
|
||||
})
|
||||
|
||||
#define check_insn(insn, output, input...) \
|
||||
({ \
|
||||
int err; \
|
||||
#define kernel_insn(insn, output, input...) \
|
||||
asm volatile("1:" #insn "\n\t" \
|
||||
"2:\n" \
|
||||
".section .fixup,\"ax\"\n" \
|
||||
"3: movl $-1,%[err]\n" \
|
||||
" jmp 2b\n" \
|
||||
".previous\n" \
|
||||
_ASM_EXTABLE(1b, 3b) \
|
||||
: [err] "=r" (err), output \
|
||||
: "0"(0), input); \
|
||||
err; \
|
||||
})
|
||||
_ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \
|
||||
: output : input)
|
||||
|
||||
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
|
||||
{
|
||||
@ -153,20 +142,16 @@ static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
|
||||
|
||||
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
|
||||
{
|
||||
int err;
|
||||
|
||||
if (IS_ENABLED(CONFIG_X86_32)) {
|
||||
err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
||||
kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
||||
} else {
|
||||
if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
|
||||
err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
||||
kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
||||
} else {
|
||||
/* See comment in copy_fxregs_to_kernel() below. */
|
||||
err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
|
||||
kernel_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
|
||||
}
|
||||
}
|
||||
/* Copying from a kernel buffer to FPU registers should never fail: */
|
||||
WARN_ON_FPU(err);
|
||||
}
|
||||
|
||||
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
|
||||
@ -183,9 +168,7 @@ static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
|
||||
|
||||
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
|
||||
{
|
||||
int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
||||
|
||||
WARN_ON_FPU(err);
|
||||
kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
||||
}
|
||||
|
||||
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
|
||||
@ -281,18 +264,13 @@ static inline void copy_fxregs_to_kernel(struct fpu *fpu)
|
||||
* Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
|
||||
* XSAVE area format.
|
||||
*/
|
||||
#define XSTATE_XRESTORE(st, lmask, hmask, err) \
|
||||
#define XSTATE_XRESTORE(st, lmask, hmask) \
|
||||
asm volatile(ALTERNATIVE(XRSTOR, \
|
||||
XRSTORS, X86_FEATURE_XSAVES) \
|
||||
"\n" \
|
||||
"xor %[err], %[err]\n" \
|
||||
"3:\n" \
|
||||
".pushsection .fixup,\"ax\"\n" \
|
||||
"4: movl $-2, %[err]\n" \
|
||||
"jmp 3b\n" \
|
||||
".popsection\n" \
|
||||
_ASM_EXTABLE(661b, 4b) \
|
||||
: [err] "=r" (err) \
|
||||
_ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\
|
||||
: \
|
||||
: "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
|
||||
: "memory")
|
||||
|
||||
@ -336,7 +314,10 @@ static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
|
||||
else
|
||||
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
|
||||
|
||||
/* We should never fault when copying from a kernel buffer: */
|
||||
/*
|
||||
* We should never fault when copying from a kernel buffer, and the FPU
|
||||
* state we set at boot time should be valid.
|
||||
*/
|
||||
WARN_ON_FPU(err);
|
||||
}
|
||||
|
||||
@ -350,7 +331,7 @@ static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
|
||||
u32 hmask = mask >> 32;
|
||||
int err;
|
||||
|
||||
WARN_ON(!alternatives_patched);
|
||||
WARN_ON_FPU(!alternatives_patched);
|
||||
|
||||
XSTATE_XSAVE(xstate, lmask, hmask, err);
|
||||
|
||||
@ -365,12 +346,8 @@ static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
|
||||
{
|
||||
u32 lmask = mask;
|
||||
u32 hmask = mask >> 32;
|
||||
int err;
|
||||
|
||||
XSTATE_XRESTORE(xstate, lmask, hmask, err);
|
||||
|
||||
/* We should never fault when copying from a kernel buffer: */
|
||||
WARN_ON_FPU(err);
|
||||
XSTATE_XRESTORE(xstate, lmask, hmask);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -526,37 +503,16 @@ static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
|
||||
*/
|
||||
static inline void fpregs_deactivate(struct fpu *fpu)
|
||||
{
|
||||
WARN_ON_FPU(!fpu->fpregs_active);
|
||||
|
||||
fpu->fpregs_active = 0;
|
||||
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
||||
trace_x86_fpu_regs_deactivated(fpu);
|
||||
}
|
||||
|
||||
static inline void fpregs_activate(struct fpu *fpu)
|
||||
{
|
||||
WARN_ON_FPU(fpu->fpregs_active);
|
||||
|
||||
fpu->fpregs_active = 1;
|
||||
this_cpu_write(fpu_fpregs_owner_ctx, fpu);
|
||||
trace_x86_fpu_regs_activated(fpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* The question "does this thread have fpu access?"
|
||||
* is slightly racy, since preemption could come in
|
||||
* and revoke it immediately after the test.
|
||||
*
|
||||
* However, even in that very unlikely scenario,
|
||||
* we can just assume we have FPU access - typically
|
||||
* to save the FP state - we'll just take a #NM
|
||||
* fault and get the FPU access back.
|
||||
*/
|
||||
static inline int fpregs_active(void)
|
||||
{
|
||||
return current->thread.fpu.fpregs_active;
|
||||
}
|
||||
|
||||
/*
|
||||
* FPU state switching for scheduling.
|
||||
*
|
||||
@ -571,14 +527,13 @@ static inline int fpregs_active(void)
|
||||
static inline void
|
||||
switch_fpu_prepare(struct fpu *old_fpu, int cpu)
|
||||
{
|
||||
if (old_fpu->fpregs_active) {
|
||||
if (old_fpu->initialized) {
|
||||
if (!copy_fpregs_to_fpstate(old_fpu))
|
||||
old_fpu->last_cpu = -1;
|
||||
else
|
||||
old_fpu->last_cpu = cpu;
|
||||
|
||||
/* But leave fpu_fpregs_owner_ctx! */
|
||||
old_fpu->fpregs_active = 0;
|
||||
trace_x86_fpu_regs_deactivated(old_fpu);
|
||||
} else
|
||||
old_fpu->last_cpu = -1;
|
||||
@ -595,7 +550,7 @@ switch_fpu_prepare(struct fpu *old_fpu, int cpu)
|
||||
static inline void switch_fpu_finish(struct fpu *new_fpu, int cpu)
|
||||
{
|
||||
bool preload = static_cpu_has(X86_FEATURE_FPU) &&
|
||||
new_fpu->fpstate_active;
|
||||
new_fpu->initialized;
|
||||
|
||||
if (preload) {
|
||||
if (!fpregs_state_valid(new_fpu, cpu))
|
||||
@ -617,7 +572,6 @@ static inline void user_fpu_begin(void)
|
||||
struct fpu *fpu = ¤t->thread.fpu;
|
||||
|
||||
preempt_disable();
|
||||
if (!fpregs_active())
|
||||
fpregs_activate(fpu);
|
||||
preempt_enable();
|
||||
}
|
||||
|
@ -68,6 +68,9 @@ struct fxregs_state {
|
||||
/* Default value for fxregs_state.mxcsr: */
|
||||
#define MXCSR_DEFAULT 0x1f80
|
||||
|
||||
/* Copy both mxcsr & mxcsr_flags with a single u64 memcpy: */
|
||||
#define MXCSR_AND_FLAGS_SIZE sizeof(u64)
|
||||
|
||||
/*
|
||||
* Software based FPU emulation state. This is arbitrary really,
|
||||
* it matches the x87 format to make it easier to understand:
|
||||
@ -290,36 +293,13 @@ struct fpu {
|
||||
unsigned int last_cpu;
|
||||
|
||||
/*
|
||||
* @fpstate_active:
|
||||
* @initialized:
|
||||
*
|
||||
* This flag indicates whether this context is active: if the task
|
||||
* This flag indicates whether this context is initialized: if the task
|
||||
* is not running then we can restore from this context, if the task
|
||||
* is running then we should save into this context.
|
||||
*/
|
||||
unsigned char fpstate_active;
|
||||
|
||||
/*
|
||||
* @fpregs_active:
|
||||
*
|
||||
* This flag determines whether a given context is actively
|
||||
* loaded into the FPU's registers and that those registers
|
||||
* represent the task's current FPU state.
|
||||
*
|
||||
* Note the interaction with fpstate_active:
|
||||
*
|
||||
* # task does not use the FPU:
|
||||
* fpstate_active == 0
|
||||
*
|
||||
* # task uses the FPU and regs are active:
|
||||
* fpstate_active == 1 && fpregs_active == 1
|
||||
*
|
||||
* # the regs are inactive but still match fpstate:
|
||||
* fpstate_active == 1 && fpregs_active == 0 && fpregs_owner == fpu
|
||||
*
|
||||
* The third state is what we use for the lazy restore optimization
|
||||
* on lazy-switching CPUs.
|
||||
*/
|
||||
unsigned char fpregs_active;
|
||||
unsigned char initialized;
|
||||
|
||||
/*
|
||||
* @state:
|
||||
|
@ -48,8 +48,12 @@ void fpu__xstate_clear_all_cpu_caps(void);
|
||||
void *get_xsave_addr(struct xregs_state *xsave, int xstate);
|
||||
const void *get_xsave_field_ptr(int xstate_field);
|
||||
int using_compacted_format(void);
|
||||
int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
|
||||
void __user *ubuf, struct xregs_state *xsave);
|
||||
int copyin_to_xsaves(const void *kbuf, const void __user *ubuf,
|
||||
struct xregs_state *xsave);
|
||||
int copy_xstate_to_kernel(void *kbuf, struct xregs_state *xsave, unsigned int offset, unsigned int size);
|
||||
int copy_xstate_to_user(void __user *ubuf, struct xregs_state *xsave, unsigned int offset, unsigned int size);
|
||||
int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf);
|
||||
int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf);
|
||||
|
||||
/* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
|
||||
extern int validate_xstate_header(const struct xstate_header *hdr);
|
||||
|
||||
#endif
|
||||
|
@ -158,17 +158,6 @@ struct thread_info {
|
||||
*/
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
static inline unsigned long current_stack_pointer(void)
|
||||
{
|
||||
unsigned long sp;
|
||||
#ifdef CONFIG_X86_64
|
||||
asm("mov %%rsp,%0" : "=g" (sp));
|
||||
#else
|
||||
asm("mov %%esp,%0" : "=g" (sp));
|
||||
#endif
|
||||
return sp;
|
||||
}
|
||||
|
||||
/*
|
||||
* Walks up the stack frames to make sure that the specified object is
|
||||
* entirely contained by a single stack frame.
|
||||
|
@ -12,25 +12,22 @@ DECLARE_EVENT_CLASS(x86_fpu,
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(struct fpu *, fpu)
|
||||
__field(bool, fpregs_active)
|
||||
__field(bool, fpstate_active)
|
||||
__field(bool, initialized)
|
||||
__field(u64, xfeatures)
|
||||
__field(u64, xcomp_bv)
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->fpu = fpu;
|
||||
__entry->fpregs_active = fpu->fpregs_active;
|
||||
__entry->fpstate_active = fpu->fpstate_active;
|
||||
__entry->initialized = fpu->initialized;
|
||||
if (boot_cpu_has(X86_FEATURE_OSXSAVE)) {
|
||||
__entry->xfeatures = fpu->state.xsave.header.xfeatures;
|
||||
__entry->xcomp_bv = fpu->state.xsave.header.xcomp_bv;
|
||||
}
|
||||
),
|
||||
TP_printk("x86/fpu: %p fpregs_active: %d fpstate_active: %d xfeatures: %llx xcomp_bv: %llx",
|
||||
TP_printk("x86/fpu: %p initialized: %d xfeatures: %llx xcomp_bv: %llx",
|
||||
__entry->fpu,
|
||||
__entry->fpregs_active,
|
||||
__entry->fpstate_active,
|
||||
__entry->initialized,
|
||||
__entry->xfeatures,
|
||||
__entry->xcomp_bv
|
||||
)
|
||||
|
@ -337,7 +337,7 @@ do { \
|
||||
_ASM_EXTABLE(1b, 4b) \
|
||||
_ASM_EXTABLE(2b, 4b) \
|
||||
: "=r" (retval), "=&A"(x) \
|
||||
: "m" (__m(__ptr)), "m" __m(((u32 *)(__ptr)) + 1), \
|
||||
: "m" (__m(__ptr)), "m" __m(((u32 __user *)(__ptr)) + 1), \
|
||||
"i" (errret), "0" (retval)); \
|
||||
})
|
||||
|
||||
|
@ -551,13 +551,13 @@ static inline void
|
||||
MULTI_update_descriptor(struct multicall_entry *mcl, u64 maddr,
|
||||
struct desc_struct desc)
|
||||
{
|
||||
u32 *p = (u32 *) &desc;
|
||||
|
||||
mcl->op = __HYPERVISOR_update_descriptor;
|
||||
if (sizeof(maddr) == sizeof(long)) {
|
||||
mcl->args[0] = maddr;
|
||||
mcl->args[1] = *(unsigned long *)&desc;
|
||||
} else {
|
||||
u32 *p = (u32 *)&desc;
|
||||
|
||||
mcl->args[0] = maddr;
|
||||
mcl->args[1] = maddr >> 32;
|
||||
mcl->args[2] = *p++;
|
||||
|
@ -100,7 +100,7 @@ void __kernel_fpu_begin(void)
|
||||
|
||||
kernel_fpu_disable();
|
||||
|
||||
if (fpu->fpregs_active) {
|
||||
if (fpu->initialized) {
|
||||
/*
|
||||
* Ignore return value -- we don't care if reg state
|
||||
* is clobbered.
|
||||
@ -116,7 +116,7 @@ void __kernel_fpu_end(void)
|
||||
{
|
||||
struct fpu *fpu = ¤t->thread.fpu;
|
||||
|
||||
if (fpu->fpregs_active)
|
||||
if (fpu->initialized)
|
||||
copy_kernel_to_fpregs(&fpu->state);
|
||||
|
||||
kernel_fpu_enable();
|
||||
@ -148,7 +148,7 @@ void fpu__save(struct fpu *fpu)
|
||||
|
||||
preempt_disable();
|
||||
trace_x86_fpu_before_save(fpu);
|
||||
if (fpu->fpregs_active) {
|
||||
if (fpu->initialized) {
|
||||
if (!copy_fpregs_to_fpstate(fpu)) {
|
||||
copy_kernel_to_fpregs(&fpu->state);
|
||||
}
|
||||
@ -189,10 +189,9 @@ EXPORT_SYMBOL_GPL(fpstate_init);
|
||||
|
||||
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
|
||||
{
|
||||
dst_fpu->fpregs_active = 0;
|
||||
dst_fpu->last_cpu = -1;
|
||||
|
||||
if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
|
||||
if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
|
||||
return 0;
|
||||
|
||||
WARN_ON_FPU(src_fpu != ¤t->thread.fpu);
|
||||
@ -206,26 +205,14 @@ int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
|
||||
/*
|
||||
* Save current FPU registers directly into the child
|
||||
* FPU context, without any memory-to-memory copying.
|
||||
* In lazy mode, if the FPU context isn't loaded into
|
||||
* fpregs, CR0.TS will be set and do_device_not_available
|
||||
* will load the FPU context.
|
||||
*
|
||||
* We have to do all this with preemption disabled,
|
||||
* mostly because of the FNSAVE case, because in that
|
||||
* case we must not allow preemption in the window
|
||||
* between the FNSAVE and us marking the context lazy.
|
||||
*
|
||||
* It shouldn't be an issue as even FNSAVE is plenty
|
||||
* fast in terms of critical section length.
|
||||
* ( The function 'fails' in the FNSAVE case, which destroys
|
||||
* register contents so we have to copy them back. )
|
||||
*/
|
||||
preempt_disable();
|
||||
if (!copy_fpregs_to_fpstate(dst_fpu)) {
|
||||
memcpy(&src_fpu->state, &dst_fpu->state,
|
||||
fpu_kernel_xstate_size);
|
||||
|
||||
memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
|
||||
copy_kernel_to_fpregs(&src_fpu->state);
|
||||
}
|
||||
preempt_enable();
|
||||
|
||||
trace_x86_fpu_copy_src(src_fpu);
|
||||
trace_x86_fpu_copy_dst(dst_fpu);
|
||||
@ -237,45 +224,48 @@ int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
|
||||
* Activate the current task's in-memory FPU context,
|
||||
* if it has not been used before:
|
||||
*/
|
||||
void fpu__activate_curr(struct fpu *fpu)
|
||||
void fpu__initialize(struct fpu *fpu)
|
||||
{
|
||||
WARN_ON_FPU(fpu != ¤t->thread.fpu);
|
||||
|
||||
if (!fpu->fpstate_active) {
|
||||
if (!fpu->initialized) {
|
||||
fpstate_init(&fpu->state);
|
||||
trace_x86_fpu_init_state(fpu);
|
||||
|
||||
trace_x86_fpu_activate_state(fpu);
|
||||
/* Safe to do for the current task: */
|
||||
fpu->fpstate_active = 1;
|
||||
fpu->initialized = 1;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fpu__activate_curr);
|
||||
EXPORT_SYMBOL_GPL(fpu__initialize);
|
||||
|
||||
/*
|
||||
* This function must be called before we read a task's fpstate.
|
||||
*
|
||||
* If the task has not used the FPU before then initialize its
|
||||
* fpstate.
|
||||
* There's two cases where this gets called:
|
||||
*
|
||||
* - for the current task (when coredumping), in which case we have
|
||||
* to save the latest FPU registers into the fpstate,
|
||||
*
|
||||
* - or it's called for stopped tasks (ptrace), in which case the
|
||||
* registers were already saved by the context-switch code when
|
||||
* the task scheduled out - we only have to initialize the registers
|
||||
* if they've never been initialized.
|
||||
*
|
||||
* If the task has used the FPU before then save it.
|
||||
*/
|
||||
void fpu__activate_fpstate_read(struct fpu *fpu)
|
||||
void fpu__prepare_read(struct fpu *fpu)
|
||||
{
|
||||
/*
|
||||
* If fpregs are active (in the current CPU), then
|
||||
* copy them to the fpstate:
|
||||
*/
|
||||
if (fpu->fpregs_active) {
|
||||
if (fpu == ¤t->thread.fpu) {
|
||||
fpu__save(fpu);
|
||||
} else {
|
||||
if (!fpu->fpstate_active) {
|
||||
if (!fpu->initialized) {
|
||||
fpstate_init(&fpu->state);
|
||||
trace_x86_fpu_init_state(fpu);
|
||||
|
||||
trace_x86_fpu_activate_state(fpu);
|
||||
/* Safe to do for current and for stopped child tasks: */
|
||||
fpu->fpstate_active = 1;
|
||||
fpu->initialized = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -283,17 +273,17 @@ void fpu__activate_fpstate_read(struct fpu *fpu)
|
||||
/*
|
||||
* This function must be called before we write a task's fpstate.
|
||||
*
|
||||
* If the task has used the FPU before then unlazy it.
|
||||
* If the task has used the FPU before then invalidate any cached FPU registers.
|
||||
* If the task has not used the FPU before then initialize its fpstate.
|
||||
*
|
||||
* After this function call, after registers in the fpstate are
|
||||
* modified and the child task has woken up, the child task will
|
||||
* restore the modified FPU state from the modified context. If we
|
||||
* didn't clear its lazy status here then the lazy in-registers
|
||||
* didn't clear its cached status here then the cached in-registers
|
||||
* state pending on its former CPU could be restored, corrupting
|
||||
* the modifications.
|
||||
*/
|
||||
void fpu__activate_fpstate_write(struct fpu *fpu)
|
||||
void fpu__prepare_write(struct fpu *fpu)
|
||||
{
|
||||
/*
|
||||
* Only stopped child tasks can be used to modify the FPU
|
||||
@ -301,8 +291,8 @@ void fpu__activate_fpstate_write(struct fpu *fpu)
|
||||
*/
|
||||
WARN_ON_FPU(fpu == ¤t->thread.fpu);
|
||||
|
||||
if (fpu->fpstate_active) {
|
||||
/* Invalidate any lazy state: */
|
||||
if (fpu->initialized) {
|
||||
/* Invalidate any cached state: */
|
||||
__fpu_invalidate_fpregs_state(fpu);
|
||||
} else {
|
||||
fpstate_init(&fpu->state);
|
||||
@ -310,73 +300,10 @@ void fpu__activate_fpstate_write(struct fpu *fpu)
|
||||
|
||||
trace_x86_fpu_activate_state(fpu);
|
||||
/* Safe to do for stopped child tasks: */
|
||||
fpu->fpstate_active = 1;
|
||||
fpu->initialized = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This function must be called before we write the current
|
||||
* task's fpstate.
|
||||
*
|
||||
* This call gets the current FPU register state and moves
|
||||
* it in to the 'fpstate'. Preemption is disabled so that
|
||||
* no writes to the 'fpstate' can occur from context
|
||||
* swiches.
|
||||
*
|
||||
* Must be followed by a fpu__current_fpstate_write_end().
|
||||
*/
|
||||
void fpu__current_fpstate_write_begin(void)
|
||||
{
|
||||
struct fpu *fpu = ¤t->thread.fpu;
|
||||
|
||||
/*
|
||||
* Ensure that the context-switching code does not write
|
||||
* over the fpstate while we are doing our update.
|
||||
*/
|
||||
preempt_disable();
|
||||
|
||||
/*
|
||||
* Move the fpregs in to the fpu's 'fpstate'.
|
||||
*/
|
||||
fpu__activate_fpstate_read(fpu);
|
||||
|
||||
/*
|
||||
* The caller is about to write to 'fpu'. Ensure that no
|
||||
* CPU thinks that its fpregs match the fpstate. This
|
||||
* ensures we will not be lazy and skip a XRSTOR in the
|
||||
* future.
|
||||
*/
|
||||
__fpu_invalidate_fpregs_state(fpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function must be paired with fpu__current_fpstate_write_begin()
|
||||
*
|
||||
* This will ensure that the modified fpstate gets placed back in
|
||||
* the fpregs if necessary.
|
||||
*
|
||||
* Note: This function may be called whether or not an _actual_
|
||||
* write to the fpstate occurred.
|
||||
*/
|
||||
void fpu__current_fpstate_write_end(void)
|
||||
{
|
||||
struct fpu *fpu = ¤t->thread.fpu;
|
||||
|
||||
/*
|
||||
* 'fpu' now has an updated copy of the state, but the
|
||||
* registers may still be out of date. Update them with
|
||||
* an XRSTOR if they are active.
|
||||
*/
|
||||
if (fpregs_active())
|
||||
copy_kernel_to_fpregs(&fpu->state);
|
||||
|
||||
/*
|
||||
* Our update is done and the fpregs/fpstate are in sync
|
||||
* if necessary. Context switches can happen again.
|
||||
*/
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
/*
|
||||
* 'fpu__restore()' is called to copy FPU registers from
|
||||
* the FPU fpstate to the live hw registers and to activate
|
||||
@ -389,7 +316,7 @@ void fpu__current_fpstate_write_end(void)
|
||||
*/
|
||||
void fpu__restore(struct fpu *fpu)
|
||||
{
|
||||
fpu__activate_curr(fpu);
|
||||
fpu__initialize(fpu);
|
||||
|
||||
/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
|
||||
kernel_fpu_disable();
|
||||
@ -414,15 +341,17 @@ void fpu__drop(struct fpu *fpu)
|
||||
{
|
||||
preempt_disable();
|
||||
|
||||
if (fpu->fpregs_active) {
|
||||
if (fpu == ¤t->thread.fpu) {
|
||||
if (fpu->initialized) {
|
||||
/* Ignore delayed exceptions from user space */
|
||||
asm volatile("1: fwait\n"
|
||||
"2:\n"
|
||||
_ASM_EXTABLE(1b, 2b));
|
||||
fpregs_deactivate(fpu);
|
||||
}
|
||||
}
|
||||
|
||||
fpu->fpstate_active = 0;
|
||||
fpu->initialized = 0;
|
||||
|
||||
trace_x86_fpu_dropped(fpu);
|
||||
|
||||
@ -462,9 +391,11 @@ void fpu__clear(struct fpu *fpu)
|
||||
* Make sure fpstate is cleared and initialized.
|
||||
*/
|
||||
if (static_cpu_has(X86_FEATURE_FPU)) {
|
||||
fpu__activate_curr(fpu);
|
||||
preempt_disable();
|
||||
fpu__initialize(fpu);
|
||||
user_fpu_begin();
|
||||
copy_init_fpstate_to_fpregs();
|
||||
preempt_enable();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -240,7 +240,7 @@ static void __init fpu__init_system_ctx_switch(void)
|
||||
WARN_ON_FPU(!on_boot_cpu);
|
||||
on_boot_cpu = 0;
|
||||
|
||||
WARN_ON_FPU(current->thread.fpu.fpstate_active);
|
||||
WARN_ON_FPU(current->thread.fpu.initialized);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -16,14 +16,14 @@ int regset_fpregs_active(struct task_struct *target, const struct user_regset *r
|
||||
{
|
||||
struct fpu *target_fpu = &target->thread.fpu;
|
||||
|
||||
return target_fpu->fpstate_active ? regset->n : 0;
|
||||
return target_fpu->initialized ? regset->n : 0;
|
||||
}
|
||||
|
||||
int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
||||
{
|
||||
struct fpu *target_fpu = &target->thread.fpu;
|
||||
|
||||
if (boot_cpu_has(X86_FEATURE_FXSR) && target_fpu->fpstate_active)
|
||||
if (boot_cpu_has(X86_FEATURE_FXSR) && target_fpu->initialized)
|
||||
return regset->n;
|
||||
else
|
||||
return 0;
|
||||
@ -38,7 +38,7 @@ int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
||||
if (!boot_cpu_has(X86_FEATURE_FXSR))
|
||||
return -ENODEV;
|
||||
|
||||
fpu__activate_fpstate_read(fpu);
|
||||
fpu__prepare_read(fpu);
|
||||
fpstate_sanitize_xstate(fpu);
|
||||
|
||||
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
||||
@ -55,7 +55,7 @@ int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
||||
if (!boot_cpu_has(X86_FEATURE_FXSR))
|
||||
return -ENODEV;
|
||||
|
||||
fpu__activate_fpstate_write(fpu);
|
||||
fpu__prepare_write(fpu);
|
||||
fpstate_sanitize_xstate(fpu);
|
||||
|
||||
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||||
@ -89,10 +89,13 @@ int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
||||
|
||||
xsave = &fpu->state.xsave;
|
||||
|
||||
fpu__activate_fpstate_read(fpu);
|
||||
fpu__prepare_read(fpu);
|
||||
|
||||
if (using_compacted_format()) {
|
||||
ret = copyout_from_xsaves(pos, count, kbuf, ubuf, xsave);
|
||||
if (kbuf)
|
||||
ret = copy_xstate_to_kernel(kbuf, xsave, pos, count);
|
||||
else
|
||||
ret = copy_xstate_to_user(ubuf, xsave, pos, count);
|
||||
} else {
|
||||
fpstate_sanitize_xstate(fpu);
|
||||
/*
|
||||
@ -129,12 +132,23 @@ int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
||||
|
||||
xsave = &fpu->state.xsave;
|
||||
|
||||
fpu__activate_fpstate_write(fpu);
|
||||
fpu__prepare_write(fpu);
|
||||
|
||||
if (boot_cpu_has(X86_FEATURE_XSAVES))
|
||||
ret = copyin_to_xsaves(kbuf, ubuf, xsave);
|
||||
if (using_compacted_format()) {
|
||||
if (kbuf)
|
||||
ret = copy_kernel_to_xstate(xsave, kbuf);
|
||||
else
|
||||
ret = copy_user_to_xstate(xsave, ubuf);
|
||||
} else {
|
||||
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
||||
if (!ret)
|
||||
ret = validate_xstate_header(&xsave->header);
|
||||
}
|
||||
|
||||
/*
|
||||
* mxcsr reserved bits must be masked to zero for security reasons.
|
||||
*/
|
||||
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
||||
|
||||
/*
|
||||
* In case of failure, mark all states as init:
|
||||
@ -142,16 +156,6 @@ int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
||||
if (ret)
|
||||
fpstate_init(&fpu->state);
|
||||
|
||||
/*
|
||||
* mxcsr reserved bits must be masked to zero for security reasons.
|
||||
*/
|
||||
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
||||
xsave->header.xfeatures &= xfeatures_mask;
|
||||
/*
|
||||
* These bits must be zero.
|
||||
*/
|
||||
memset(&xsave->header.reserved, 0, 48);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -299,7 +303,7 @@ int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
||||
struct fpu *fpu = &target->thread.fpu;
|
||||
struct user_i387_ia32_struct env;
|
||||
|
||||
fpu__activate_fpstate_read(fpu);
|
||||
fpu__prepare_read(fpu);
|
||||
|
||||
if (!boot_cpu_has(X86_FEATURE_FPU))
|
||||
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
|
||||
@ -329,7 +333,7 @@ int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
||||
struct user_i387_ia32_struct env;
|
||||
int ret;
|
||||
|
||||
fpu__activate_fpstate_write(fpu);
|
||||
fpu__prepare_write(fpu);
|
||||
fpstate_sanitize_xstate(fpu);
|
||||
|
||||
if (!boot_cpu_has(X86_FEATURE_FPU))
|
||||
@ -369,7 +373,7 @@ int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu)
|
||||
struct fpu *fpu = &tsk->thread.fpu;
|
||||
int fpvalid;
|
||||
|
||||
fpvalid = fpu->fpstate_active;
|
||||
fpvalid = fpu->initialized;
|
||||
if (fpvalid)
|
||||
fpvalid = !fpregs_get(tsk, NULL,
|
||||
0, sizeof(struct user_i387_ia32_struct),
|
||||
|
@ -155,7 +155,8 @@ static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf)
|
||||
*/
|
||||
int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
|
||||
{
|
||||
struct xregs_state *xsave = ¤t->thread.fpu.state.xsave;
|
||||
struct fpu *fpu = ¤t->thread.fpu;
|
||||
struct xregs_state *xsave = &fpu->state.xsave;
|
||||
struct task_struct *tsk = current;
|
||||
int ia32_fxstate = (buf != buf_fx);
|
||||
|
||||
@ -170,13 +171,13 @@ int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
|
||||
sizeof(struct user_i387_ia32_struct), NULL,
|
||||
(struct _fpstate_32 __user *) buf) ? -1 : 1;
|
||||
|
||||
if (fpregs_active() || using_compacted_format()) {
|
||||
if (fpu->initialized || using_compacted_format()) {
|
||||
/* Save the live register state to the user directly. */
|
||||
if (copy_fpregs_to_sigframe(buf_fx))
|
||||
return -1;
|
||||
/* Update the thread's fxstate to save the fsave header. */
|
||||
if (ia32_fxstate)
|
||||
copy_fxregs_to_kernel(&tsk->thread.fpu);
|
||||
copy_fxregs_to_kernel(fpu);
|
||||
} else {
|
||||
/*
|
||||
* It is a *bug* if kernel uses compacted-format for xsave
|
||||
@ -189,7 +190,7 @@ int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
|
||||
return -1;
|
||||
}
|
||||
|
||||
fpstate_sanitize_xstate(&tsk->thread.fpu);
|
||||
fpstate_sanitize_xstate(fpu);
|
||||
if (__copy_to_user(buf_fx, xsave, fpu_user_xstate_size))
|
||||
return -1;
|
||||
}
|
||||
@ -213,8 +214,11 @@ sanitize_restored_xstate(struct task_struct *tsk,
|
||||
struct xstate_header *header = &xsave->header;
|
||||
|
||||
if (use_xsave()) {
|
||||
/* These bits must be zero. */
|
||||
memset(header->reserved, 0, 48);
|
||||
/*
|
||||
* Note: we don't need to zero the reserved bits in the
|
||||
* xstate_header here because we either didn't copy them at all,
|
||||
* or we checked earlier that they aren't set.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Init the state that is not present in the memory
|
||||
@ -223,7 +227,7 @@ sanitize_restored_xstate(struct task_struct *tsk,
|
||||
if (fx_only)
|
||||
header->xfeatures = XFEATURE_MASK_FPSSE;
|
||||
else
|
||||
header->xfeatures &= (xfeatures_mask & xfeatures);
|
||||
header->xfeatures &= xfeatures;
|
||||
}
|
||||
|
||||
if (use_fxsr()) {
|
||||
@ -279,7 +283,7 @@ static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size)
|
||||
if (!access_ok(VERIFY_READ, buf, size))
|
||||
return -EACCES;
|
||||
|
||||
fpu__activate_curr(fpu);
|
||||
fpu__initialize(fpu);
|
||||
|
||||
if (!static_cpu_has(X86_FEATURE_FPU))
|
||||
return fpregs_soft_set(current, NULL,
|
||||
@ -307,28 +311,29 @@ static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size)
|
||||
/*
|
||||
* For 32-bit frames with fxstate, copy the user state to the
|
||||
* thread's fpu state, reconstruct fxstate from the fsave
|
||||
* header. Sanitize the copied state etc.
|
||||
* header. Validate and sanitize the copied state.
|
||||
*/
|
||||
struct fpu *fpu = &tsk->thread.fpu;
|
||||
struct user_i387_ia32_struct env;
|
||||
int err = 0;
|
||||
|
||||
/*
|
||||
* Drop the current fpu which clears fpu->fpstate_active. This ensures
|
||||
* Drop the current fpu which clears fpu->initialized. This ensures
|
||||
* that any context-switch during the copy of the new state,
|
||||
* avoids the intermediate state from getting restored/saved.
|
||||
* Thus avoiding the new restored state from getting corrupted.
|
||||
* We will be ready to restore/save the state only after
|
||||
* fpu->fpstate_active is again set.
|
||||
* fpu->initialized is again set.
|
||||
*/
|
||||
fpu__drop(fpu);
|
||||
|
||||
if (using_compacted_format()) {
|
||||
err = copyin_to_xsaves(NULL, buf_fx,
|
||||
&fpu->state.xsave);
|
||||
err = copy_user_to_xstate(&fpu->state.xsave, buf_fx);
|
||||
} else {
|
||||
err = __copy_from_user(&fpu->state.xsave,
|
||||
buf_fx, state_size);
|
||||
err = __copy_from_user(&fpu->state.xsave, buf_fx, state_size);
|
||||
|
||||
if (!err && state_size > offsetof(struct xregs_state, header))
|
||||
err = validate_xstate_header(&fpu->state.xsave.header);
|
||||
}
|
||||
|
||||
if (err || __copy_from_user(&env, buf, sizeof(env))) {
|
||||
@ -339,7 +344,7 @@ static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size)
|
||||
sanitize_restored_xstate(tsk, &env, xfeatures, fx_only);
|
||||
}
|
||||
|
||||
fpu->fpstate_active = 1;
|
||||
fpu->initialized = 1;
|
||||
preempt_disable();
|
||||
fpu__restore(fpu);
|
||||
preempt_enable();
|
||||
|
@ -483,6 +483,30 @@ int using_compacted_format(void)
|
||||
return boot_cpu_has(X86_FEATURE_XSAVES);
|
||||
}
|
||||
|
||||
/* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
|
||||
int validate_xstate_header(const struct xstate_header *hdr)
|
||||
{
|
||||
/* No unknown or supervisor features may be set */
|
||||
if (hdr->xfeatures & (~xfeatures_mask | XFEATURE_MASK_SUPERVISOR))
|
||||
return -EINVAL;
|
||||
|
||||
/* Userspace must use the uncompacted format */
|
||||
if (hdr->xcomp_bv)
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* If 'reserved' is shrunken to add a new field, make sure to validate
|
||||
* that new field here!
|
||||
*/
|
||||
BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
|
||||
|
||||
/* No reserved bits may be set */
|
||||
if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
|
||||
return -EINVAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __xstate_dump_leaves(void)
|
||||
{
|
||||
int i;
|
||||
@ -867,7 +891,7 @@ const void *get_xsave_field_ptr(int xsave_state)
|
||||
{
|
||||
struct fpu *fpu = ¤t->thread.fpu;
|
||||
|
||||
if (!fpu->fpstate_active)
|
||||
if (!fpu->initialized)
|
||||
return NULL;
|
||||
/*
|
||||
* fpu__save() takes the CPU's xstate registers
|
||||
@ -920,48 +944,55 @@ int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
||||
}
|
||||
#endif /* ! CONFIG_ARCH_HAS_PKEYS */
|
||||
|
||||
/*
|
||||
* Weird legacy quirk: SSE and YMM states store information in the
|
||||
* MXCSR and MXCSR_FLAGS fields of the FP area. That means if the FP
|
||||
* area is marked as unused in the xfeatures header, we need to copy
|
||||
* MXCSR and MXCSR_FLAGS if either SSE or YMM are in use.
|
||||
*/
|
||||
static inline bool xfeatures_mxcsr_quirk(u64 xfeatures)
|
||||
{
|
||||
if (!(xfeatures & (XFEATURE_MASK_SSE|XFEATURE_MASK_YMM)))
|
||||
return false;
|
||||
|
||||
if (xfeatures & XFEATURE_MASK_FP)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is similar to user_regset_copyout(), but will not add offset to
|
||||
* the source data pointer or increment pos, count, kbuf, and ubuf.
|
||||
*/
|
||||
static inline int xstate_copyout(unsigned int pos, unsigned int count,
|
||||
void *kbuf, void __user *ubuf,
|
||||
const void *data, const int start_pos,
|
||||
const int end_pos)
|
||||
static inline void
|
||||
__copy_xstate_to_kernel(void *kbuf, const void *data,
|
||||
unsigned int offset, unsigned int size, unsigned int size_total)
|
||||
{
|
||||
if ((count == 0) || (pos < start_pos))
|
||||
return 0;
|
||||
if (offset < size_total) {
|
||||
unsigned int copy = min(size, size_total - offset);
|
||||
|
||||
if (end_pos < 0 || pos < end_pos) {
|
||||
unsigned int copy = (end_pos < 0 ? count : min(count, end_pos - pos));
|
||||
|
||||
if (kbuf) {
|
||||
memcpy(kbuf + pos, data, copy);
|
||||
} else {
|
||||
if (__copy_to_user(ubuf + pos, data, copy))
|
||||
return -EFAULT;
|
||||
memcpy(kbuf + offset, data, copy);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert from kernel XSAVES compacted format to standard format and copy
|
||||
* to a ptrace buffer. It supports partial copy but pos always starts from
|
||||
* zero. This is called from xstateregs_get() and there we check the CPU
|
||||
* has XSAVES.
|
||||
* to a kernel-space ptrace buffer.
|
||||
*
|
||||
* It supports partial copy but pos always starts from zero. This is called
|
||||
* from xstateregs_get() and there we check the CPU has XSAVES.
|
||||
*/
|
||||
int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
|
||||
void __user *ubuf, struct xregs_state *xsave)
|
||||
int copy_xstate_to_kernel(void *kbuf, struct xregs_state *xsave, unsigned int offset_start, unsigned int size_total)
|
||||
{
|
||||
unsigned int offset, size;
|
||||
int ret, i;
|
||||
struct xstate_header header;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* Currently copy_regset_to_user() starts from pos 0:
|
||||
*/
|
||||
if (unlikely(pos != 0))
|
||||
if (unlikely(offset_start != 0))
|
||||
return -EFAULT;
|
||||
|
||||
/*
|
||||
@ -977,8 +1008,91 @@ int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
|
||||
offset = offsetof(struct xregs_state, header);
|
||||
size = sizeof(header);
|
||||
|
||||
ret = xstate_copyout(offset, size, kbuf, ubuf, &header, 0, count);
|
||||
__copy_xstate_to_kernel(kbuf, &header, offset, size, size_total);
|
||||
|
||||
for (i = 0; i < XFEATURE_MAX; i++) {
|
||||
/*
|
||||
* Copy only in-use xstates:
|
||||
*/
|
||||
if ((header.xfeatures >> i) & 1) {
|
||||
void *src = __raw_xsave_addr(xsave, 1 << i);
|
||||
|
||||
offset = xstate_offsets[i];
|
||||
size = xstate_sizes[i];
|
||||
|
||||
/* The next component has to fit fully into the output buffer: */
|
||||
if (offset + size > size_total)
|
||||
break;
|
||||
|
||||
__copy_xstate_to_kernel(kbuf, src, offset, size, size_total);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (xfeatures_mxcsr_quirk(header.xfeatures)) {
|
||||
offset = offsetof(struct fxregs_state, mxcsr);
|
||||
size = MXCSR_AND_FLAGS_SIZE;
|
||||
__copy_xstate_to_kernel(kbuf, &xsave->i387.mxcsr, offset, size, size_total);
|
||||
}
|
||||
|
||||
/*
|
||||
* Fill xsave->i387.sw_reserved value for ptrace frame:
|
||||
*/
|
||||
offset = offsetof(struct fxregs_state, sw_reserved);
|
||||
size = sizeof(xstate_fx_sw_bytes);
|
||||
|
||||
__copy_xstate_to_kernel(kbuf, xstate_fx_sw_bytes, offset, size, size_total);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int
|
||||
__copy_xstate_to_user(void __user *ubuf, const void *data, unsigned int offset, unsigned int size, unsigned int size_total)
|
||||
{
|
||||
if (!size)
|
||||
return 0;
|
||||
|
||||
if (offset < size_total) {
|
||||
unsigned int copy = min(size, size_total - offset);
|
||||
|
||||
if (__copy_to_user(ubuf + offset, data, copy))
|
||||
return -EFAULT;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert from kernel XSAVES compacted format to standard format and copy
|
||||
* to a user-space buffer. It supports partial copy but pos always starts from
|
||||
* zero. This is called from xstateregs_get() and there we check the CPU
|
||||
* has XSAVES.
|
||||
*/
|
||||
int copy_xstate_to_user(void __user *ubuf, struct xregs_state *xsave, unsigned int offset_start, unsigned int size_total)
|
||||
{
|
||||
unsigned int offset, size;
|
||||
int ret, i;
|
||||
struct xstate_header header;
|
||||
|
||||
/*
|
||||
* Currently copy_regset_to_user() starts from pos 0:
|
||||
*/
|
||||
if (unlikely(offset_start != 0))
|
||||
return -EFAULT;
|
||||
|
||||
/*
|
||||
* The destination is a ptrace buffer; we put in only user xstates:
|
||||
*/
|
||||
memset(&header, 0, sizeof(header));
|
||||
header.xfeatures = xsave->header.xfeatures;
|
||||
header.xfeatures &= ~XFEATURE_MASK_SUPERVISOR;
|
||||
|
||||
/*
|
||||
* Copy xregs_state->header:
|
||||
*/
|
||||
offset = offsetof(struct xregs_state, header);
|
||||
size = sizeof(header);
|
||||
|
||||
ret = __copy_xstate_to_user(ubuf, &header, offset, size, size_total);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
@ -992,25 +1106,30 @@ int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
|
||||
offset = xstate_offsets[i];
|
||||
size = xstate_sizes[i];
|
||||
|
||||
ret = xstate_copyout(offset, size, kbuf, ubuf, src, 0, count);
|
||||
/* The next component has to fit fully into the output buffer: */
|
||||
if (offset + size > size_total)
|
||||
break;
|
||||
|
||||
ret = __copy_xstate_to_user(ubuf, src, offset, size, size_total);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (offset + size >= count)
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (xfeatures_mxcsr_quirk(header.xfeatures)) {
|
||||
offset = offsetof(struct fxregs_state, mxcsr);
|
||||
size = MXCSR_AND_FLAGS_SIZE;
|
||||
__copy_xstate_to_user(ubuf, &xsave->i387.mxcsr, offset, size, size_total);
|
||||
}
|
||||
|
||||
/*
|
||||
* Fill xsave->i387.sw_reserved value for ptrace frame:
|
||||
*/
|
||||
offset = offsetof(struct fxregs_state, sw_reserved);
|
||||
size = sizeof(xstate_fx_sw_bytes);
|
||||
|
||||
ret = xstate_copyout(offset, size, kbuf, ubuf, xstate_fx_sw_bytes, 0, count);
|
||||
|
||||
ret = __copy_xstate_to_user(ubuf, xstate_fx_sw_bytes, offset, size, size_total);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
@ -1018,53 +1137,40 @@ int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert from a ptrace standard-format buffer to kernel XSAVES format
|
||||
* and copy to the target thread. This is called from xstateregs_set() and
|
||||
* there we check the CPU has XSAVES and a whole standard-sized buffer
|
||||
* exists.
|
||||
* Convert from a ptrace standard-format kernel buffer to kernel XSAVES format
|
||||
* and copy to the target thread. This is called from xstateregs_set().
|
||||
*/
|
||||
int copyin_to_xsaves(const void *kbuf, const void __user *ubuf,
|
||||
struct xregs_state *xsave)
|
||||
int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf)
|
||||
{
|
||||
unsigned int offset, size;
|
||||
int i;
|
||||
u64 xfeatures;
|
||||
u64 allowed_features;
|
||||
struct xstate_header hdr;
|
||||
|
||||
offset = offsetof(struct xregs_state, header);
|
||||
size = sizeof(xfeatures);
|
||||
size = sizeof(hdr);
|
||||
|
||||
if (kbuf) {
|
||||
memcpy(&xfeatures, kbuf + offset, size);
|
||||
} else {
|
||||
if (__copy_from_user(&xfeatures, ubuf + offset, size))
|
||||
return -EFAULT;
|
||||
}
|
||||
memcpy(&hdr, kbuf + offset, size);
|
||||
|
||||
/*
|
||||
* Reject if the user sets any disabled or supervisor features:
|
||||
*/
|
||||
allowed_features = xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR;
|
||||
|
||||
if (xfeatures & ~allowed_features)
|
||||
if (validate_xstate_header(&hdr))
|
||||
return -EINVAL;
|
||||
|
||||
for (i = 0; i < XFEATURE_MAX; i++) {
|
||||
u64 mask = ((u64)1 << i);
|
||||
|
||||
if (xfeatures & mask) {
|
||||
if (hdr.xfeatures & mask) {
|
||||
void *dst = __raw_xsave_addr(xsave, 1 << i);
|
||||
|
||||
offset = xstate_offsets[i];
|
||||
size = xstate_sizes[i];
|
||||
|
||||
if (kbuf) {
|
||||
memcpy(dst, kbuf + offset, size);
|
||||
} else {
|
||||
if (__copy_from_user(dst, ubuf + offset, size))
|
||||
return -EFAULT;
|
||||
}
|
||||
}
|
||||
|
||||
if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
|
||||
offset = offsetof(struct fxregs_state, mxcsr);
|
||||
size = MXCSR_AND_FLAGS_SIZE;
|
||||
memcpy(&xsave->i387.mxcsr, kbuf + offset, size);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1076,7 +1182,63 @@ int copyin_to_xsaves(const void *kbuf, const void __user *ubuf,
|
||||
/*
|
||||
* Add back in the features that came in from userspace:
|
||||
*/
|
||||
xsave->header.xfeatures |= xfeatures;
|
||||
xsave->header.xfeatures |= hdr.xfeatures;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert from a ptrace or sigreturn standard-format user-space buffer to
|
||||
* kernel XSAVES format and copy to the target thread. This is called from
|
||||
* xstateregs_set(), as well as potentially from the sigreturn() and
|
||||
* rt_sigreturn() system calls.
|
||||
*/
|
||||
int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf)
|
||||
{
|
||||
unsigned int offset, size;
|
||||
int i;
|
||||
struct xstate_header hdr;
|
||||
|
||||
offset = offsetof(struct xregs_state, header);
|
||||
size = sizeof(hdr);
|
||||
|
||||
if (__copy_from_user(&hdr, ubuf + offset, size))
|
||||
return -EFAULT;
|
||||
|
||||
if (validate_xstate_header(&hdr))
|
||||
return -EINVAL;
|
||||
|
||||
for (i = 0; i < XFEATURE_MAX; i++) {
|
||||
u64 mask = ((u64)1 << i);
|
||||
|
||||
if (hdr.xfeatures & mask) {
|
||||
void *dst = __raw_xsave_addr(xsave, 1 << i);
|
||||
|
||||
offset = xstate_offsets[i];
|
||||
size = xstate_sizes[i];
|
||||
|
||||
if (__copy_from_user(dst, ubuf + offset, size))
|
||||
return -EFAULT;
|
||||
}
|
||||
}
|
||||
|
||||
if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
|
||||
offset = offsetof(struct fxregs_state, mxcsr);
|
||||
size = MXCSR_AND_FLAGS_SIZE;
|
||||
if (__copy_from_user(&xsave->i387.mxcsr, ubuf + offset, size))
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
/*
|
||||
* The state that came in from userspace was user-state only.
|
||||
* Mask all the user states out of 'xfeatures':
|
||||
*/
|
||||
xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR;
|
||||
|
||||
/*
|
||||
* Add back in the features that came in from userspace:
|
||||
*/
|
||||
xsave->header.xfeatures |= hdr.xfeatures;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -64,7 +64,7 @@ static void call_on_stack(void *func, void *stack)
|
||||
|
||||
static inline void *current_stack(void)
|
||||
{
|
||||
return (void *)(current_stack_pointer() & ~(THREAD_SIZE - 1));
|
||||
return (void *)(current_stack_pointer & ~(THREAD_SIZE - 1));
|
||||
}
|
||||
|
||||
static inline int execute_on_irq_stack(int overflow, struct irq_desc *desc)
|
||||
@ -88,7 +88,7 @@ static inline int execute_on_irq_stack(int overflow, struct irq_desc *desc)
|
||||
|
||||
/* Save the next esp at the bottom of the stack */
|
||||
prev_esp = (u32 *)irqstk;
|
||||
*prev_esp = current_stack_pointer();
|
||||
*prev_esp = current_stack_pointer;
|
||||
|
||||
if (unlikely(overflow))
|
||||
call_on_stack(print_stack_overflow, isp);
|
||||
@ -139,7 +139,7 @@ void do_softirq_own_stack(void)
|
||||
|
||||
/* Push the previous esp onto the stack */
|
||||
prev_esp = (u32 *)irqstk;
|
||||
*prev_esp = current_stack_pointer();
|
||||
*prev_esp = current_stack_pointer;
|
||||
|
||||
call_on_stack(__do_softirq, isp);
|
||||
}
|
||||
|
@ -299,7 +299,7 @@ static int __init create_setup_data_nodes(struct kobject *parent)
|
||||
return 0;
|
||||
|
||||
out_clean_nodes:
|
||||
for (j = i - 1; j > 0; j--)
|
||||
for (j = i - 1; j >= 0; j--)
|
||||
cleanup_setup_data_node(*(kobjp + j));
|
||||
kfree(kobjp);
|
||||
out_setup_data_kobj:
|
||||
|
@ -140,7 +140,8 @@ void kvm_async_pf_task_wait(u32 token)
|
||||
|
||||
n.token = token;
|
||||
n.cpu = smp_processor_id();
|
||||
n.halted = is_idle_task(current) || preempt_count() > 1;
|
||||
n.halted = is_idle_task(current) || preempt_count() > 1 ||
|
||||
rcu_preempt_depth();
|
||||
init_swait_queue_head(&n.wq);
|
||||
hlist_add_head(&n.link, &b->list);
|
||||
raw_spin_unlock(&b->lock);
|
||||
|
@ -263,7 +263,7 @@ get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size,
|
||||
sp = (unsigned long) ka->sa.sa_restorer;
|
||||
}
|
||||
|
||||
if (fpu->fpstate_active) {
|
||||
if (fpu->initialized) {
|
||||
sp = fpu__alloc_mathframe(sp, IS_ENABLED(CONFIG_X86_32),
|
||||
&buf_fx, &math_size);
|
||||
*fpstate = (void __user *)sp;
|
||||
@ -279,7 +279,7 @@ get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size,
|
||||
return (void __user *)-1L;
|
||||
|
||||
/* save i387 and extended state */
|
||||
if (fpu->fpstate_active &&
|
||||
if (fpu->initialized &&
|
||||
copy_fpstate_to_sigframe(*fpstate, (void __user *)buf_fx, math_size) < 0)
|
||||
return (void __user *)-1L;
|
||||
|
||||
@ -755,7 +755,7 @@ handle_signal(struct ksignal *ksig, struct pt_regs *regs)
|
||||
/*
|
||||
* Ensure the signal handler starts with the new fpu state.
|
||||
*/
|
||||
if (fpu->fpstate_active)
|
||||
if (fpu->initialized)
|
||||
fpu__clear(fpu);
|
||||
}
|
||||
signal_setup_done(failed, ksig, stepping);
|
||||
|
@ -142,7 +142,7 @@ void ist_begin_non_atomic(struct pt_regs *regs)
|
||||
* from double_fault.
|
||||
*/
|
||||
BUG_ON((unsigned long)(current_top_of_stack() -
|
||||
current_stack_pointer()) >= THREAD_SIZE);
|
||||
current_stack_pointer) >= THREAD_SIZE);
|
||||
|
||||
preempt_enable_no_resched();
|
||||
}
|
||||
|
@ -200,6 +200,8 @@ struct loaded_vmcs {
|
||||
int cpu;
|
||||
bool launched;
|
||||
bool nmi_known_unmasked;
|
||||
unsigned long vmcs_host_cr3; /* May not match real cr3 */
|
||||
unsigned long vmcs_host_cr4; /* May not match real cr4 */
|
||||
struct list_head loaded_vmcss_on_cpu_link;
|
||||
};
|
||||
|
||||
@ -600,8 +602,6 @@ struct vcpu_vmx {
|
||||
int gs_ldt_reload_needed;
|
||||
int fs_reload_needed;
|
||||
u64 msr_host_bndcfgs;
|
||||
unsigned long vmcs_host_cr3; /* May not match real cr3 */
|
||||
unsigned long vmcs_host_cr4; /* May not match real cr4 */
|
||||
} host_state;
|
||||
struct {
|
||||
int vm86_active;
|
||||
@ -2202,45 +2202,43 @@ static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
|
||||
struct pi_desc old, new;
|
||||
unsigned int dest;
|
||||
|
||||
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
|
||||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
|
||||
!kvm_vcpu_apicv_active(vcpu))
|
||||
/*
|
||||
* In case of hot-plug or hot-unplug, we may have to undo
|
||||
* vmx_vcpu_pi_put even if there is no assigned device. And we
|
||||
* always keep PI.NDST up to date for simplicity: it makes the
|
||||
* code easier, and CPU migration is not a fast path.
|
||||
*/
|
||||
if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
|
||||
return;
|
||||
|
||||
/*
|
||||
* First handle the simple case where no cmpxchg is necessary; just
|
||||
* allow posting non-urgent interrupts.
|
||||
*
|
||||
* If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
|
||||
* PI.NDST: pi_post_block will do it for us and the wakeup_handler
|
||||
* expects the VCPU to be on the blocked_vcpu_list that matches
|
||||
* PI.NDST.
|
||||
*/
|
||||
if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
|
||||
vcpu->cpu == cpu) {
|
||||
pi_clear_sn(pi_desc);
|
||||
return;
|
||||
}
|
||||
|
||||
/* The full case. */
|
||||
do {
|
||||
old.control = new.control = pi_desc->control;
|
||||
|
||||
/*
|
||||
* If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
|
||||
* are two possible cases:
|
||||
* 1. After running 'pre_block', context switch
|
||||
* happened. For this case, 'sn' was set in
|
||||
* vmx_vcpu_put(), so we need to clear it here.
|
||||
* 2. After running 'pre_block', we were blocked,
|
||||
* and woken up by some other guy. For this case,
|
||||
* we don't need to do anything, 'pi_post_block'
|
||||
* will do everything for us. However, we cannot
|
||||
* check whether it is case #1 or case #2 here
|
||||
* (maybe, not needed), so we also clear sn here,
|
||||
* I think it is not a big deal.
|
||||
*/
|
||||
if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
|
||||
if (vcpu->cpu != cpu) {
|
||||
dest = cpu_physical_id(cpu);
|
||||
|
||||
if (x2apic_enabled())
|
||||
new.ndst = dest;
|
||||
else
|
||||
new.ndst = (dest << 8) & 0xFF00;
|
||||
}
|
||||
|
||||
/* set 'NV' to 'notification vector' */
|
||||
new.nv = POSTED_INTR_VECTOR;
|
||||
}
|
||||
|
||||
/* Allow posting non-urgent interrupts */
|
||||
new.sn = 0;
|
||||
} while (cmpxchg(&pi_desc->control, old.control,
|
||||
} while (cmpxchg64(&pi_desc->control, old.control,
|
||||
new.control) != old.control);
|
||||
}
|
||||
|
||||
@ -5178,12 +5176,12 @@ static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
|
||||
*/
|
||||
cr3 = __read_cr3();
|
||||
vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
|
||||
vmx->host_state.vmcs_host_cr3 = cr3;
|
||||
vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
|
||||
|
||||
/* Save the most likely value for this task's CR4 in the VMCS. */
|
||||
cr4 = cr4_read_shadow();
|
||||
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
|
||||
vmx->host_state.vmcs_host_cr4 = cr4;
|
||||
vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
|
||||
|
||||
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
|
||||
#ifdef CONFIG_X86_64
|
||||
@ -9273,15 +9271,15 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
|
||||
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
|
||||
|
||||
cr3 = __get_current_cr3_fast();
|
||||
if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
|
||||
if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
|
||||
vmcs_writel(HOST_CR3, cr3);
|
||||
vmx->host_state.vmcs_host_cr3 = cr3;
|
||||
vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
|
||||
}
|
||||
|
||||
cr4 = cr4_read_shadow();
|
||||
if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
|
||||
if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
|
||||
vmcs_writel(HOST_CR4, cr4);
|
||||
vmx->host_state.vmcs_host_cr4 = cr4;
|
||||
vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
|
||||
}
|
||||
|
||||
/* When single-stepping over STI and MOV SS, we must clear the
|
||||
@ -9591,6 +9589,13 @@ static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
|
||||
|
||||
vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
|
||||
|
||||
/*
|
||||
* Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
|
||||
* or POSTED_INTR_WAKEUP_VECTOR.
|
||||
*/
|
||||
vmx->pi_desc.nv = POSTED_INTR_VECTOR;
|
||||
vmx->pi_desc.sn = 1;
|
||||
|
||||
return &vmx->vcpu;
|
||||
|
||||
free_vmcs:
|
||||
@ -9839,7 +9844,8 @@ static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
|
||||
|
||||
WARN_ON(!is_guest_mode(vcpu));
|
||||
|
||||
if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
|
||||
if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
|
||||
!to_vmx(vcpu)->nested.nested_run_pending) {
|
||||
vmcs12->vm_exit_intr_error_code = fault->error_code;
|
||||
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
|
||||
PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
|
||||
@ -11704,6 +11710,37 @@ static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
|
||||
kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
|
||||
}
|
||||
|
||||
static void __pi_post_block(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
|
||||
struct pi_desc old, new;
|
||||
unsigned int dest;
|
||||
|
||||
do {
|
||||
old.control = new.control = pi_desc->control;
|
||||
WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
|
||||
"Wakeup handler not enabled while the VCPU is blocked\n");
|
||||
|
||||
dest = cpu_physical_id(vcpu->cpu);
|
||||
|
||||
if (x2apic_enabled())
|
||||
new.ndst = dest;
|
||||
else
|
||||
new.ndst = (dest << 8) & 0xFF00;
|
||||
|
||||
/* set 'NV' to 'notification vector' */
|
||||
new.nv = POSTED_INTR_VECTOR;
|
||||
} while (cmpxchg64(&pi_desc->control, old.control,
|
||||
new.control) != old.control);
|
||||
|
||||
if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
|
||||
spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
|
||||
list_del(&vcpu->blocked_vcpu_list);
|
||||
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
|
||||
vcpu->pre_pcpu = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This routine does the following things for vCPU which is going
|
||||
* to be blocked if VT-d PI is enabled.
|
||||
@ -11719,7 +11756,6 @@ static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
|
||||
*/
|
||||
static int pi_pre_block(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
unsigned long flags;
|
||||
unsigned int dest;
|
||||
struct pi_desc old, new;
|
||||
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
|
||||
@ -11729,34 +11765,20 @@ static int pi_pre_block(struct kvm_vcpu *vcpu)
|
||||
!kvm_vcpu_apicv_active(vcpu))
|
||||
return 0;
|
||||
|
||||
WARN_ON(irqs_disabled());
|
||||
local_irq_disable();
|
||||
if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
|
||||
vcpu->pre_pcpu = vcpu->cpu;
|
||||
spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
|
||||
vcpu->pre_pcpu), flags);
|
||||
spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
|
||||
list_add_tail(&vcpu->blocked_vcpu_list,
|
||||
&per_cpu(blocked_vcpu_on_cpu,
|
||||
vcpu->pre_pcpu));
|
||||
spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
|
||||
vcpu->pre_pcpu), flags);
|
||||
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
|
||||
}
|
||||
|
||||
do {
|
||||
old.control = new.control = pi_desc->control;
|
||||
|
||||
/*
|
||||
* We should not block the vCPU if
|
||||
* an interrupt is posted for it.
|
||||
*/
|
||||
if (pi_test_on(pi_desc) == 1) {
|
||||
spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
|
||||
vcpu->pre_pcpu), flags);
|
||||
list_del(&vcpu->blocked_vcpu_list);
|
||||
spin_unlock_irqrestore(
|
||||
&per_cpu(blocked_vcpu_on_cpu_lock,
|
||||
vcpu->pre_pcpu), flags);
|
||||
vcpu->pre_pcpu = -1;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
WARN((pi_desc->sn == 1),
|
||||
"Warning: SN field of posted-interrupts "
|
||||
"is set before blocking\n");
|
||||
@ -11778,10 +11800,15 @@ static int pi_pre_block(struct kvm_vcpu *vcpu)
|
||||
|
||||
/* set 'NV' to 'wakeup vector' */
|
||||
new.nv = POSTED_INTR_WAKEUP_VECTOR;
|
||||
} while (cmpxchg(&pi_desc->control, old.control,
|
||||
} while (cmpxchg64(&pi_desc->control, old.control,
|
||||
new.control) != old.control);
|
||||
|
||||
return 0;
|
||||
/* We should not block the vCPU if an interrupt is posted for it. */
|
||||
if (pi_test_on(pi_desc) == 1)
|
||||
__pi_post_block(vcpu);
|
||||
|
||||
local_irq_enable();
|
||||
return (vcpu->pre_pcpu == -1);
|
||||
}
|
||||
|
||||
static int vmx_pre_block(struct kvm_vcpu *vcpu)
|
||||
@ -11797,44 +11824,13 @@ static int vmx_pre_block(struct kvm_vcpu *vcpu)
|
||||
|
||||
static void pi_post_block(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
|
||||
struct pi_desc old, new;
|
||||
unsigned int dest;
|
||||
unsigned long flags;
|
||||
|
||||
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
|
||||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
|
||||
!kvm_vcpu_apicv_active(vcpu))
|
||||
if (vcpu->pre_pcpu == -1)
|
||||
return;
|
||||
|
||||
do {
|
||||
old.control = new.control = pi_desc->control;
|
||||
|
||||
dest = cpu_physical_id(vcpu->cpu);
|
||||
|
||||
if (x2apic_enabled())
|
||||
new.ndst = dest;
|
||||
else
|
||||
new.ndst = (dest << 8) & 0xFF00;
|
||||
|
||||
/* Allow posting non-urgent interrupts */
|
||||
new.sn = 0;
|
||||
|
||||
/* set 'NV' to 'notification vector' */
|
||||
new.nv = POSTED_INTR_VECTOR;
|
||||
} while (cmpxchg(&pi_desc->control, old.control,
|
||||
new.control) != old.control);
|
||||
|
||||
if(vcpu->pre_pcpu != -1) {
|
||||
spin_lock_irqsave(
|
||||
&per_cpu(blocked_vcpu_on_cpu_lock,
|
||||
vcpu->pre_pcpu), flags);
|
||||
list_del(&vcpu->blocked_vcpu_list);
|
||||
spin_unlock_irqrestore(
|
||||
&per_cpu(blocked_vcpu_on_cpu_lock,
|
||||
vcpu->pre_pcpu), flags);
|
||||
vcpu->pre_pcpu = -1;
|
||||
}
|
||||
WARN_ON(irqs_disabled());
|
||||
local_irq_disable();
|
||||
__pi_post_block(vcpu);
|
||||
local_irq_enable();
|
||||
}
|
||||
|
||||
static void vmx_post_block(struct kvm_vcpu *vcpu)
|
||||
|
@ -7225,7 +7225,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
||||
int r;
|
||||
sigset_t sigsaved;
|
||||
|
||||
fpu__activate_curr(fpu);
|
||||
fpu__initialize(fpu);
|
||||
|
||||
if (vcpu->sigset_active)
|
||||
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
||||
|
@ -114,7 +114,7 @@ void math_emulate(struct math_emu_info *info)
|
||||
struct desc_struct code_descriptor;
|
||||
struct fpu *fpu = ¤t->thread.fpu;
|
||||
|
||||
fpu__activate_curr(fpu);
|
||||
fpu__initialize(fpu);
|
||||
|
||||
#ifdef RE_ENTRANT_CHECKING
|
||||
if (emulating) {
|
||||
|
@ -2,6 +2,7 @@
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/sched/debug.h>
|
||||
|
||||
#include <asm/fpu/internal.h>
|
||||
#include <asm/traps.h>
|
||||
#include <asm/kdebug.h>
|
||||
|
||||
@ -78,6 +79,29 @@ bool ex_handler_refcount(const struct exception_table_entry *fixup,
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ex_handler_refcount);
|
||||
|
||||
/*
|
||||
* Handler for when we fail to restore a task's FPU state. We should never get
|
||||
* here because the FPU state of a task using the FPU (task->thread.fpu.state)
|
||||
* should always be valid. However, past bugs have allowed userspace to set
|
||||
* reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
|
||||
* These caused XRSTOR to fail when switching to the task, leaking the FPU
|
||||
* registers of the task previously executing on the CPU. Mitigate this class
|
||||
* of vulnerability by restoring from the initial state (essentially, zeroing
|
||||
* out all the FPU registers) if we can't restore from the task's FPU state.
|
||||
*/
|
||||
bool ex_handler_fprestore(const struct exception_table_entry *fixup,
|
||||
struct pt_regs *regs, int trapnr)
|
||||
{
|
||||
regs->ip = ex_fixup_addr(fixup);
|
||||
|
||||
WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
|
||||
(void *)instruction_pointer(regs));
|
||||
|
||||
__copy_kernel_to_fpregs(&init_fpstate, -1);
|
||||
return true;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ex_handler_fprestore);
|
||||
|
||||
bool ex_handler_ext(const struct exception_table_entry *fixup,
|
||||
struct pt_regs *regs, int trapnr)
|
||||
{
|
||||
|
@ -192,8 +192,7 @@ is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
|
||||
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
|
||||
* faulted on a pte with its pkey=4.
|
||||
*/
|
||||
static void fill_sig_info_pkey(int si_code, siginfo_t *info,
|
||||
struct vm_area_struct *vma)
|
||||
static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
|
||||
{
|
||||
/* This is effectively an #ifdef */
|
||||
if (!boot_cpu_has(X86_FEATURE_OSPKE))
|
||||
@ -209,7 +208,7 @@ static void fill_sig_info_pkey(int si_code, siginfo_t *info,
|
||||
* valid VMA, so we should never reach this without a
|
||||
* valid VMA.
|
||||
*/
|
||||
if (!vma) {
|
||||
if (!pkey) {
|
||||
WARN_ONCE(1, "PKU fault with no VMA passed in");
|
||||
info->si_pkey = 0;
|
||||
return;
|
||||
@ -219,13 +218,12 @@ static void fill_sig_info_pkey(int si_code, siginfo_t *info,
|
||||
* absolutely guranteed to be 100% accurate because of
|
||||
* the race explained above.
|
||||
*/
|
||||
info->si_pkey = vma_pkey(vma);
|
||||
info->si_pkey = *pkey;
|
||||
}
|
||||
|
||||
static void
|
||||
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
|
||||
struct task_struct *tsk, struct vm_area_struct *vma,
|
||||
int fault)
|
||||
struct task_struct *tsk, u32 *pkey, int fault)
|
||||
{
|
||||
unsigned lsb = 0;
|
||||
siginfo_t info;
|
||||
@ -240,7 +238,7 @@ force_sig_info_fault(int si_signo, int si_code, unsigned long address,
|
||||
lsb = PAGE_SHIFT;
|
||||
info.si_addr_lsb = lsb;
|
||||
|
||||
fill_sig_info_pkey(si_code, &info, vma);
|
||||
fill_sig_info_pkey(si_code, &info, pkey);
|
||||
|
||||
force_sig_info(si_signo, &info, tsk);
|
||||
}
|
||||
@ -762,8 +760,6 @@ no_context(struct pt_regs *regs, unsigned long error_code,
|
||||
struct task_struct *tsk = current;
|
||||
unsigned long flags;
|
||||
int sig;
|
||||
/* No context means no VMA to pass down */
|
||||
struct vm_area_struct *vma = NULL;
|
||||
|
||||
/* Are we prepared to handle this kernel fault? */
|
||||
if (fixup_exception(regs, X86_TRAP_PF)) {
|
||||
@ -788,7 +784,7 @@ no_context(struct pt_regs *regs, unsigned long error_code,
|
||||
|
||||
/* XXX: hwpoison faults will set the wrong code. */
|
||||
force_sig_info_fault(signal, si_code, address,
|
||||
tsk, vma, 0);
|
||||
tsk, NULL, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -896,8 +892,7 @@ show_signal_msg(struct pt_regs *regs, unsigned long error_code,
|
||||
|
||||
static void
|
||||
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
||||
unsigned long address, struct vm_area_struct *vma,
|
||||
int si_code)
|
||||
unsigned long address, u32 *pkey, int si_code)
|
||||
{
|
||||
struct task_struct *tsk = current;
|
||||
|
||||
@ -945,7 +940,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
||||
tsk->thread.error_code = error_code;
|
||||
tsk->thread.trap_nr = X86_TRAP_PF;
|
||||
|
||||
force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
|
||||
force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
|
||||
|
||||
return;
|
||||
}
|
||||
@ -958,9 +953,9 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
||||
|
||||
static noinline void
|
||||
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
||||
unsigned long address, struct vm_area_struct *vma)
|
||||
unsigned long address, u32 *pkey)
|
||||
{
|
||||
__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
|
||||
__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
|
||||
}
|
||||
|
||||
static void
|
||||
@ -968,6 +963,10 @@ __bad_area(struct pt_regs *regs, unsigned long error_code,
|
||||
unsigned long address, struct vm_area_struct *vma, int si_code)
|
||||
{
|
||||
struct mm_struct *mm = current->mm;
|
||||
u32 pkey;
|
||||
|
||||
if (vma)
|
||||
pkey = vma_pkey(vma);
|
||||
|
||||
/*
|
||||
* Something tried to access memory that isn't in our memory map..
|
||||
@ -975,7 +974,8 @@ __bad_area(struct pt_regs *regs, unsigned long error_code,
|
||||
*/
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
|
||||
__bad_area_nosemaphore(regs, error_code, address,
|
||||
(vma) ? &pkey : NULL, si_code);
|
||||
}
|
||||
|
||||
static noinline void
|
||||
@ -1018,7 +1018,7 @@ bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
|
||||
|
||||
static void
|
||||
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
|
||||
struct vm_area_struct *vma, unsigned int fault)
|
||||
u32 *pkey, unsigned int fault)
|
||||
{
|
||||
struct task_struct *tsk = current;
|
||||
int code = BUS_ADRERR;
|
||||
@ -1045,13 +1045,12 @@ do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
|
||||
code = BUS_MCEERR_AR;
|
||||
}
|
||||
#endif
|
||||
force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
|
||||
force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
|
||||
}
|
||||
|
||||
static noinline void
|
||||
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
|
||||
unsigned long address, struct vm_area_struct *vma,
|
||||
unsigned int fault)
|
||||
unsigned long address, u32 *pkey, unsigned int fault)
|
||||
{
|
||||
if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
|
||||
no_context(regs, error_code, address, 0, 0);
|
||||
@ -1075,9 +1074,9 @@ mm_fault_error(struct pt_regs *regs, unsigned long error_code,
|
||||
} else {
|
||||
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
|
||||
VM_FAULT_HWPOISON_LARGE))
|
||||
do_sigbus(regs, error_code, address, vma, fault);
|
||||
do_sigbus(regs, error_code, address, pkey, fault);
|
||||
else if (fault & VM_FAULT_SIGSEGV)
|
||||
bad_area_nosemaphore(regs, error_code, address, vma);
|
||||
bad_area_nosemaphore(regs, error_code, address, pkey);
|
||||
else
|
||||
BUG();
|
||||
}
|
||||
@ -1267,6 +1266,7 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code,
|
||||
struct mm_struct *mm;
|
||||
int fault, major = 0;
|
||||
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
||||
u32 pkey;
|
||||
|
||||
tsk = current;
|
||||
mm = tsk->mm;
|
||||
@ -1467,9 +1467,10 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code,
|
||||
return;
|
||||
}
|
||||
|
||||
pkey = vma_pkey(vma);
|
||||
up_read(&mm->mmap_sem);
|
||||
if (unlikely(fault & VM_FAULT_ERROR)) {
|
||||
mm_fault_error(regs, error_code, address, vma, fault);
|
||||
mm_fault_error(regs, error_code, address, &pkey, fault);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,8 @@
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#define DISABLE_BRANCH_PROFILING
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/mm.h>
|
||||
|
@ -18,7 +18,6 @@
|
||||
|
||||
#include <asm/cpufeature.h> /* boot_cpu_has, ... */
|
||||
#include <asm/mmu_context.h> /* vma_pkey() */
|
||||
#include <asm/fpu/internal.h> /* fpregs_active() */
|
||||
|
||||
int __execute_only_pkey(struct mm_struct *mm)
|
||||
{
|
||||
@ -45,7 +44,7 @@ int __execute_only_pkey(struct mm_struct *mm)
|
||||
*/
|
||||
preempt_disable();
|
||||
if (!need_to_set_mm_pkey &&
|
||||
fpregs_active() &&
|
||||
current->thread.fpu.initialized &&
|
||||
!__pkru_allows_read(read_pkru(), execute_only_pkey)) {
|
||||
preempt_enable();
|
||||
return execute_only_pkey;
|
||||
|
@ -191,7 +191,7 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
||||
* mapped in the new pgd, we'll double-fault. Forcibly
|
||||
* map it.
|
||||
*/
|
||||
unsigned int index = pgd_index(current_stack_pointer());
|
||||
unsigned int index = pgd_index(current_stack_pointer);
|
||||
pgd_t *pgd = next->pgd + index;
|
||||
|
||||
if (unlikely(pgd_none(*pgd)))
|
||||
|
@ -1238,21 +1238,16 @@ static void __init xen_pagetable_cleanhighmap(void)
|
||||
* from _brk_limit way up to the max_pfn_mapped (which is the end of
|
||||
* the ramdisk). We continue on, erasing PMD entries that point to page
|
||||
* tables - do note that they are accessible at this stage via __va.
|
||||
* For good measure we also round up to the PMD - which means that if
|
||||
* As Xen is aligning the memory end to a 4MB boundary, for good
|
||||
* measure we also round up to PMD_SIZE * 2 - which means that if
|
||||
* anybody is using __ka address to the initial boot-stack - and try
|
||||
* to use it - they are going to crash. The xen_start_info has been
|
||||
* taken care of already in xen_setup_kernel_pagetable. */
|
||||
addr = xen_start_info->pt_base;
|
||||
size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
|
||||
size = xen_start_info->nr_pt_frames * PAGE_SIZE;
|
||||
|
||||
xen_cleanhighmap(addr, addr + size);
|
||||
xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
|
||||
xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
|
||||
#ifdef DEBUG
|
||||
/* This is superfluous and is not necessary, but you know what
|
||||
* lets do it. The MODULES_VADDR -> MODULES_END should be clear of
|
||||
* anything at this stage. */
|
||||
xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -854,6 +854,9 @@ struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
|
||||
|
||||
kobject_init(&q->kobj, &blk_queue_ktype);
|
||||
|
||||
#ifdef CONFIG_BLK_DEV_IO_TRACE
|
||||
mutex_init(&q->blk_trace_mutex);
|
||||
#endif
|
||||
mutex_init(&q->sysfs_lock);
|
||||
spin_lock_init(&q->__queue_lock);
|
||||
|
||||
|
@ -154,7 +154,6 @@ static int bsg_prepare_job(struct device *dev, struct request *req)
|
||||
failjob_rls_rqst_payload:
|
||||
kfree(job->request_payload.sg_list);
|
||||
failjob_rls_job:
|
||||
kfree(job);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
|
@ -112,7 +112,7 @@ ssize_t part_stat_show(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
struct hd_struct *p = dev_to_part(dev);
|
||||
struct request_queue *q = dev_to_disk(dev)->queue;
|
||||
struct request_queue *q = part_to_disk(p)->queue;
|
||||
unsigned int inflight[2];
|
||||
int cpu;
|
||||
|
||||
|
@ -743,17 +743,19 @@ static int ghes_proc(struct ghes *ghes)
|
||||
}
|
||||
ghes_do_proc(ghes, ghes->estatus);
|
||||
|
||||
out:
|
||||
ghes_clear_estatus(ghes);
|
||||
|
||||
if (rc == -ENOENT)
|
||||
return rc;
|
||||
|
||||
/*
|
||||
* GHESv2 type HEST entries introduce support for error acknowledgment,
|
||||
* so only acknowledge the error if this support is present.
|
||||
*/
|
||||
if (is_hest_type_generic_v2(ghes)) {
|
||||
rc = ghes_ack_error(ghes->generic_v2);
|
||||
if (rc)
|
||||
return rc;
|
||||
}
|
||||
out:
|
||||
ghes_clear_estatus(ghes);
|
||||
if (is_hest_type_generic_v2(ghes))
|
||||
return ghes_ack_error(ghes->generic_v2);
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
@ -2217,7 +2217,7 @@ static void binder_transaction_buffer_release(struct binder_proc *proc,
|
||||
debug_id, (u64)fda->num_fds);
|
||||
continue;
|
||||
}
|
||||
fd_array = (u32 *)(parent_buffer + fda->parent_offset);
|
||||
fd_array = (u32 *)(parent_buffer + (uintptr_t)fda->parent_offset);
|
||||
for (fd_index = 0; fd_index < fda->num_fds; fd_index++)
|
||||
task_close_fd(proc, fd_array[fd_index]);
|
||||
} break;
|
||||
@ -2326,7 +2326,6 @@ static int binder_translate_handle(struct flat_binder_object *fp,
|
||||
(u64)node->ptr);
|
||||
binder_node_unlock(node);
|
||||
} else {
|
||||
int ret;
|
||||
struct binder_ref_data dest_rdata;
|
||||
|
||||
binder_node_unlock(node);
|
||||
@ -2442,7 +2441,7 @@ static int binder_translate_fd_array(struct binder_fd_array_object *fda,
|
||||
*/
|
||||
parent_buffer = parent->buffer -
|
||||
binder_alloc_get_user_buffer_offset(&target_proc->alloc);
|
||||
fd_array = (u32 *)(parent_buffer + fda->parent_offset);
|
||||
fd_array = (u32 *)(parent_buffer + (uintptr_t)fda->parent_offset);
|
||||
if (!IS_ALIGNED((unsigned long)fd_array, sizeof(u32))) {
|
||||
binder_user_error("%d:%d parent offset not aligned correctly.\n",
|
||||
proc->pid, thread->pid);
|
||||
@ -2508,7 +2507,7 @@ static int binder_fixup_parent(struct binder_transaction *t,
|
||||
proc->pid, thread->pid);
|
||||
return -EINVAL;
|
||||
}
|
||||
parent_buffer = (u8 *)(parent->buffer -
|
||||
parent_buffer = (u8 *)((uintptr_t)parent->buffer -
|
||||
binder_alloc_get_user_buffer_offset(
|
||||
&target_proc->alloc));
|
||||
*(binder_uintptr_t *)(parent_buffer + bp->parent_offset) = bp->buffer;
|
||||
@ -3083,6 +3082,7 @@ static void binder_transaction(struct binder_proc *proc,
|
||||
err_dead_proc_or_thread:
|
||||
return_error = BR_DEAD_REPLY;
|
||||
return_error_line = __LINE__;
|
||||
binder_dequeue_work(proc, tcomplete);
|
||||
err_translate_failed:
|
||||
err_bad_object_type:
|
||||
err_bad_offset:
|
||||
|
@ -621,8 +621,11 @@ static void ahci_pci_save_initial_config(struct pci_dev *pdev,
|
||||
static int ahci_pci_reset_controller(struct ata_host *host)
|
||||
{
|
||||
struct pci_dev *pdev = to_pci_dev(host->dev);
|
||||
int rc;
|
||||
|
||||
ahci_reset_controller(host);
|
||||
rc = ahci_reset_controller(host);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
||||
if (pdev->vendor == PCI_VENDOR_ID_INTEL) {
|
||||
struct ahci_host_priv *hpriv = host->private_data;
|
||||
|
@ -492,6 +492,7 @@ static const struct ich_laptop ich_laptop[] = {
|
||||
{ 0x27DF, 0x152D, 0x0778 }, /* ICH7 on unknown Intel */
|
||||
{ 0x24CA, 0x1025, 0x0061 }, /* ICH4 on ACER Aspire 2023WLMi */
|
||||
{ 0x24CA, 0x1025, 0x003d }, /* ICH4 on ACER TM290 */
|
||||
{ 0x24CA, 0x10CF, 0x11AB }, /* ICH4M on Fujitsu-Siemens Lifebook S6120 */
|
||||
{ 0x266F, 0x1025, 0x0066 }, /* ICH6 on ACER Aspire 1694WLMi */
|
||||
{ 0x2653, 0x1043, 0x82D8 }, /* ICH6M on Asus Eee 701 */
|
||||
{ 0x27df, 0x104d, 0x900e }, /* ICH7 on Sony TZ-90 */
|
||||
|
@ -3234,19 +3234,19 @@ static const struct ata_timing ata_timing[] = {
|
||||
};
|
||||
|
||||
#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
|
||||
#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
|
||||
#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
|
||||
|
||||
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
|
||||
{
|
||||
q->setup = EZ(t->setup * 1000, T);
|
||||
q->act8b = EZ(t->act8b * 1000, T);
|
||||
q->rec8b = EZ(t->rec8b * 1000, T);
|
||||
q->cyc8b = EZ(t->cyc8b * 1000, T);
|
||||
q->active = EZ(t->active * 1000, T);
|
||||
q->recover = EZ(t->recover * 1000, T);
|
||||
q->dmack_hold = EZ(t->dmack_hold * 1000, T);
|
||||
q->cycle = EZ(t->cycle * 1000, T);
|
||||
q->udma = EZ(t->udma * 1000, UT);
|
||||
q->setup = EZ(t->setup, T);
|
||||
q->act8b = EZ(t->act8b, T);
|
||||
q->rec8b = EZ(t->rec8b, T);
|
||||
q->cyc8b = EZ(t->cyc8b, T);
|
||||
q->active = EZ(t->active, T);
|
||||
q->recover = EZ(t->recover, T);
|
||||
q->dmack_hold = EZ(t->dmack_hold, T);
|
||||
q->cycle = EZ(t->cycle, T);
|
||||
q->udma = EZ(t->udma, UT);
|
||||
}
|
||||
|
||||
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
|
||||
|
@ -647,18 +647,25 @@ static ssize_t charlcd_write(struct file *file, const char __user *buf,
|
||||
static int charlcd_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
struct charlcd_priv *priv = to_priv(the_charlcd);
|
||||
int ret;
|
||||
|
||||
ret = -EBUSY;
|
||||
if (!atomic_dec_and_test(&charlcd_available))
|
||||
return -EBUSY; /* open only once at a time */
|
||||
goto fail; /* open only once at a time */
|
||||
|
||||
ret = -EPERM;
|
||||
if (file->f_mode & FMODE_READ) /* device is write-only */
|
||||
return -EPERM;
|
||||
goto fail;
|
||||
|
||||
if (priv->must_clear) {
|
||||
charlcd_clear_display(&priv->lcd);
|
||||
priv->must_clear = false;
|
||||
}
|
||||
return nonseekable_open(inode, file);
|
||||
|
||||
fail:
|
||||
atomic_inc(&charlcd_available);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int charlcd_release(struct inode *inode, struct file *file)
|
||||
|
@ -1105,14 +1105,21 @@ static ssize_t keypad_read(struct file *file,
|
||||
|
||||
static int keypad_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
if (!atomic_dec_and_test(&keypad_available))
|
||||
return -EBUSY; /* open only once at a time */
|
||||
int ret;
|
||||
|
||||
ret = -EBUSY;
|
||||
if (!atomic_dec_and_test(&keypad_available))
|
||||
goto fail; /* open only once at a time */
|
||||
|
||||
ret = -EPERM;
|
||||
if (file->f_mode & FMODE_WRITE) /* device is read-only */
|
||||
return -EPERM;
|
||||
goto fail;
|
||||
|
||||
keypad_buflen = 0; /* flush the buffer on opening */
|
||||
return 0;
|
||||
fail:
|
||||
atomic_inc(&keypad_available);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int keypad_release(struct inode *inode, struct file *file)
|
||||
|
@ -166,11 +166,11 @@ bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
static cpumask_var_t cpus_to_visit;
|
||||
static void parsing_done_workfn(struct work_struct *work);
|
||||
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
|
||||
static cpumask_var_t cpus_to_visit __initdata;
|
||||
static void __init parsing_done_workfn(struct work_struct *work);
|
||||
static __initdata DECLARE_WORK(parsing_done_work, parsing_done_workfn);
|
||||
|
||||
static int
|
||||
static int __init
|
||||
init_cpu_capacity_callback(struct notifier_block *nb,
|
||||
unsigned long val,
|
||||
void *data)
|
||||
@ -206,7 +206,7 @@ init_cpu_capacity_callback(struct notifier_block *nb,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block init_cpu_capacity_notifier = {
|
||||
static struct notifier_block init_cpu_capacity_notifier __initdata = {
|
||||
.notifier_call = init_cpu_capacity_callback,
|
||||
};
|
||||
|
||||
@ -232,7 +232,7 @@ static int __init register_cpufreq_notifier(void)
|
||||
}
|
||||
core_initcall(register_cpufreq_notifier);
|
||||
|
||||
static void parsing_done_workfn(struct work_struct *work)
|
||||
static void __init parsing_done_workfn(struct work_struct *work)
|
||||
{
|
||||
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
|
||||
CPUFREQ_POLICY_NOTIFIER);
|
||||
|
@ -868,7 +868,8 @@ static ssize_t driver_override_store(struct device *dev,
|
||||
struct platform_device *pdev = to_platform_device(dev);
|
||||
char *driver_override, *old, *cp;
|
||||
|
||||
if (count > PATH_MAX)
|
||||
/* We need to keep extra room for a newline */
|
||||
if (count >= (PAGE_SIZE - 1))
|
||||
return -EINVAL;
|
||||
|
||||
driver_override = kstrndup(buf, count, GFP_KERNEL);
|
||||
|
@ -1581,6 +1581,9 @@ static int _opp_set_availability(struct device *dev, unsigned long freq,
|
||||
|
||||
opp->available = availability_req;
|
||||
|
||||
dev_pm_opp_get(opp);
|
||||
mutex_unlock(&opp_table->lock);
|
||||
|
||||
/* Notify the change of the OPP availability */
|
||||
if (availability_req)
|
||||
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
|
||||
@ -1589,8 +1592,12 @@ static int _opp_set_availability(struct device *dev, unsigned long freq,
|
||||
blocking_notifier_call_chain(&opp_table->head,
|
||||
OPP_EVENT_DISABLE, opp);
|
||||
|
||||
dev_pm_opp_put(opp);
|
||||
goto put_table;
|
||||
|
||||
unlock:
|
||||
mutex_unlock(&opp_table->lock);
|
||||
put_table:
|
||||
dev_pm_opp_put_opp_table(opp_table);
|
||||
return r;
|
||||
}
|
||||
|
@ -342,7 +342,7 @@ static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
|
||||
|
||||
if (!brd)
|
||||
return -ENODEV;
|
||||
page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
|
||||
page = brd_insert_page(brd, (sector_t)pgoff << PAGE_SECTORS_SHIFT);
|
||||
if (!page)
|
||||
return -ENOSPC;
|
||||
*kaddr = page_address(page);
|
||||
|
@ -67,10 +67,8 @@ struct loop_device {
|
||||
struct loop_cmd {
|
||||
struct kthread_work work;
|
||||
struct request *rq;
|
||||
union {
|
||||
bool use_aio; /* use AIO interface to handle I/O */
|
||||
atomic_t ref; /* only for aio */
|
||||
};
|
||||
long ret;
|
||||
struct kiocb iocb;
|
||||
struct bio_vec *bvec;
|
||||
|
@ -1194,6 +1194,12 @@ static int nbd_ioctl(struct block_device *bdev, fmode_t mode,
|
||||
if (!capable(CAP_SYS_ADMIN))
|
||||
return -EPERM;
|
||||
|
||||
/* The block layer will pass back some non-nbd ioctls in case we have
|
||||
* special handling for them, but we don't so just return an error.
|
||||
*/
|
||||
if (_IOC_TYPE(cmd) != 0xab)
|
||||
return -EINVAL;
|
||||
|
||||
mutex_lock(&nbd->config_lock);
|
||||
|
||||
/* Don't allow ioctl operations on a nbd device that was created with
|
||||
|
@ -43,7 +43,7 @@ static int numachip2_set_next_event(unsigned long delta, struct clock_event_devi
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct clock_event_device numachip2_clockevent = {
|
||||
static const struct clock_event_device numachip2_clockevent __initconst = {
|
||||
.name = "numachip2",
|
||||
.rating = 400,
|
||||
.set_next_event = numachip2_set_next_event,
|
||||
|
@ -118,6 +118,10 @@ static const struct of_device_id blacklist[] __initconst = {
|
||||
|
||||
{ .compatible = "sigma,tango4", },
|
||||
|
||||
{ .compatible = "ti,am33xx", },
|
||||
{ .compatible = "ti,am43", },
|
||||
{ .compatible = "ti,dra7", },
|
||||
|
||||
{ }
|
||||
};
|
||||
|
||||
|
@ -361,12 +361,12 @@ static const struct fpga_manager_ops altera_cvp_ops = {
|
||||
.write_complete = altera_cvp_write_complete,
|
||||
};
|
||||
|
||||
static ssize_t show_chkcfg(struct device_driver *dev, char *buf)
|
||||
static ssize_t chkcfg_show(struct device_driver *dev, char *buf)
|
||||
{
|
||||
return snprintf(buf, 3, "%d\n", altera_cvp_chkcfg);
|
||||
}
|
||||
|
||||
static ssize_t store_chkcfg(struct device_driver *drv, const char *buf,
|
||||
static ssize_t chkcfg_store(struct device_driver *drv, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
int ret;
|
||||
@ -378,7 +378,7 @@ static ssize_t store_chkcfg(struct device_driver *drv, const char *buf,
|
||||
return count;
|
||||
}
|
||||
|
||||
static DRIVER_ATTR(chkcfg, 0600, show_chkcfg, store_chkcfg);
|
||||
static DRIVER_ATTR_RW(chkcfg);
|
||||
|
||||
static int altera_cvp_probe(struct pci_dev *pdev,
|
||||
const struct pci_device_id *dev_id);
|
||||
|
@ -636,7 +636,194 @@ static void gfx_v6_0_tiling_mode_table_init(struct amdgpu_device *adev)
|
||||
NUM_BANKS(ADDR_SURF_2_BANK);
|
||||
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
|
||||
WREG32(mmGB_TILE_MODE0 + reg_offset, tilemode[reg_offset]);
|
||||
} else if (adev->asic_type == CHIP_OLAND || adev->asic_type == CHIP_HAINAN) {
|
||||
} else if (adev->asic_type == CHIP_OLAND) {
|
||||
tilemode[0] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4);
|
||||
tilemode[1] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4);
|
||||
tilemode[2] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4);
|
||||
tilemode[3] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4);
|
||||
tilemode[4] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[5] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(split_equal_to_row_size) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[6] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(split_equal_to_row_size) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[7] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(split_equal_to_row_size) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4);
|
||||
tilemode[8] = MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[9] = MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[10] = MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4);
|
||||
tilemode[11] = MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[12] = MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[13] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[14] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[15] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[16] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[17] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
|
||||
TILE_SPLIT(split_equal_to_row_size) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[21] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[22] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4);
|
||||
tilemode[23] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[24] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
|
||||
NUM_BANKS(ADDR_SURF_16_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2);
|
||||
tilemode[25] = MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
|
||||
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) |
|
||||
NUM_BANKS(ADDR_SURF_8_BANK) |
|
||||
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
|
||||
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
|
||||
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1);
|
||||
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
|
||||
WREG32(mmGB_TILE_MODE0 + reg_offset, tilemode[reg_offset]);
|
||||
} else if (adev->asic_type == CHIP_HAINAN) {
|
||||
tilemode[0] = MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
|
||||
ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
|
||||
PIPE_CONFIG(ADDR_SURF_P2) |
|
||||
|
@ -892,6 +892,8 @@ static int kfd_ioctl_get_tile_config(struct file *filep,
|
||||
int err = 0;
|
||||
|
||||
dev = kfd_device_by_id(args->gpu_id);
|
||||
if (!dev)
|
||||
return -EINVAL;
|
||||
|
||||
dev->kfd2kgd->get_tile_config(dev->kgd, &config);
|
||||
|
||||
|
@ -292,7 +292,10 @@ static int create_signal_event(struct file *devkfd,
|
||||
struct kfd_event *ev)
|
||||
{
|
||||
if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) {
|
||||
if (!p->signal_event_limit_reached) {
|
||||
pr_warn("Signal event wasn't created because limit was reached\n");
|
||||
p->signal_event_limit_reached = true;
|
||||
}
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
|
@ -184,7 +184,7 @@ static void uninitialize(struct kernel_queue *kq)
|
||||
if (kq->queue->properties.type == KFD_QUEUE_TYPE_HIQ)
|
||||
kq->mqd->destroy_mqd(kq->mqd,
|
||||
kq->queue->mqd,
|
||||
false,
|
||||
KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
|
||||
QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
|
||||
kq->queue->pipe,
|
||||
kq->queue->queue);
|
||||
@ -210,6 +210,11 @@ static int acquire_packet_buffer(struct kernel_queue *kq,
|
||||
uint32_t wptr, rptr;
|
||||
unsigned int *queue_address;
|
||||
|
||||
/* When rptr == wptr, the buffer is empty.
|
||||
* When rptr == wptr + 1, the buffer is full.
|
||||
* It is always rptr that advances to the position of wptr, rather than
|
||||
* the opposite. So we can only use up to queue_size_dwords - 1 dwords.
|
||||
*/
|
||||
rptr = *kq->rptr_kernel;
|
||||
wptr = *kq->wptr_kernel;
|
||||
queue_address = (unsigned int *)kq->pq_kernel_addr;
|
||||
@ -219,11 +224,10 @@ static int acquire_packet_buffer(struct kernel_queue *kq,
|
||||
pr_debug("wptr: %d\n", wptr);
|
||||
pr_debug("queue_address 0x%p\n", queue_address);
|
||||
|
||||
available_size = (rptr - 1 - wptr + queue_size_dwords) %
|
||||
available_size = (rptr + queue_size_dwords - 1 - wptr) %
|
||||
queue_size_dwords;
|
||||
|
||||
if (packet_size_in_dwords >= queue_size_dwords ||
|
||||
packet_size_in_dwords >= available_size) {
|
||||
if (packet_size_in_dwords > available_size) {
|
||||
/*
|
||||
* make sure calling functions know
|
||||
* acquire_packet_buffer() failed
|
||||
@ -233,6 +237,14 @@ static int acquire_packet_buffer(struct kernel_queue *kq,
|
||||
}
|
||||
|
||||
if (wptr + packet_size_in_dwords >= queue_size_dwords) {
|
||||
/* make sure after rolling back to position 0, there is
|
||||
* still enough space.
|
||||
*/
|
||||
if (packet_size_in_dwords >= rptr) {
|
||||
*buffer_ptr = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
/* fill nops, roll back and start at position 0 */
|
||||
while (wptr > 0) {
|
||||
queue_address[wptr] = kq->nop_packet;
|
||||
wptr = (wptr + 1) % queue_size_dwords;
|
||||
|
@ -521,6 +521,7 @@ struct kfd_process {
|
||||
struct list_head signal_event_pages;
|
||||
u32 next_nonsignal_event_id;
|
||||
size_t signal_event_count;
|
||||
bool signal_event_limit_reached;
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -551,12 +551,15 @@ static const struct etnaviv_gem_ops etnaviv_gem_shmem_ops = {
|
||||
void etnaviv_gem_free_object(struct drm_gem_object *obj)
|
||||
{
|
||||
struct etnaviv_gem_object *etnaviv_obj = to_etnaviv_bo(obj);
|
||||
struct etnaviv_drm_private *priv = obj->dev->dev_private;
|
||||
struct etnaviv_vram_mapping *mapping, *tmp;
|
||||
|
||||
/* object should not be active */
|
||||
WARN_ON(is_active(etnaviv_obj));
|
||||
|
||||
mutex_lock(&priv->gem_lock);
|
||||
list_del(&etnaviv_obj->gem_node);
|
||||
mutex_unlock(&priv->gem_lock);
|
||||
|
||||
list_for_each_entry_safe(mapping, tmp, &etnaviv_obj->vram_list,
|
||||
obj_node) {
|
||||
|
@ -445,7 +445,9 @@ int etnaviv_ioctl_gem_submit(struct drm_device *dev, void *data,
|
||||
cmdbuf->user_size = ALIGN(args->stream_size, 8);
|
||||
|
||||
ret = etnaviv_gpu_submit(gpu, submit, cmdbuf);
|
||||
if (ret == 0)
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
cmdbuf = NULL;
|
||||
|
||||
if (args->flags & ETNA_SUBMIT_FENCE_FD_OUT) {
|
||||
|
@ -509,23 +509,25 @@ static void qxl_primary_atomic_update(struct drm_plane *plane,
|
||||
.y2 = qfb->base.height
|
||||
};
|
||||
|
||||
if (!old_state->fb) {
|
||||
qxl_io_log(qdev,
|
||||
"create primary fb: %dx%d,%d,%d\n",
|
||||
bo->surf.width, bo->surf.height,
|
||||
bo->surf.stride, bo->surf.format);
|
||||
|
||||
qxl_io_create_primary(qdev, 0, bo);
|
||||
bo->is_primary = true;
|
||||
return;
|
||||
|
||||
} else {
|
||||
if (old_state->fb) {
|
||||
qfb_old = to_qxl_framebuffer(old_state->fb);
|
||||
bo_old = gem_to_qxl_bo(qfb_old->obj);
|
||||
} else {
|
||||
bo_old = NULL;
|
||||
}
|
||||
|
||||
if (bo == bo_old)
|
||||
return;
|
||||
|
||||
if (bo_old && bo_old->is_primary) {
|
||||
qxl_io_destroy_primary(qdev);
|
||||
bo_old->is_primary = false;
|
||||
}
|
||||
|
||||
if (!bo->is_primary) {
|
||||
qxl_io_create_primary(qdev, 0, bo);
|
||||
bo->is_primary = true;
|
||||
}
|
||||
qxl_draw_dirty_fb(qdev, qfb, bo, 0, 0, &norect, 1, 1);
|
||||
}
|
||||
|
||||
@ -534,15 +536,17 @@ static void qxl_primary_atomic_disable(struct drm_plane *plane,
|
||||
{
|
||||
struct qxl_device *qdev = plane->dev->dev_private;
|
||||
|
||||
if (old_state->fb)
|
||||
{ struct qxl_framebuffer *qfb =
|
||||
if (old_state->fb) {
|
||||
struct qxl_framebuffer *qfb =
|
||||
to_qxl_framebuffer(old_state->fb);
|
||||
struct qxl_bo *bo = gem_to_qxl_bo(qfb->obj);
|
||||
|
||||
if (bo->is_primary) {
|
||||
qxl_io_destroy_primary(qdev);
|
||||
bo->is_primary = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int qxl_plane_atomic_check(struct drm_plane *plane,
|
||||
struct drm_plane_state *state)
|
||||
@ -698,14 +702,15 @@ static void qxl_plane_cleanup_fb(struct drm_plane *plane,
|
||||
struct drm_gem_object *obj;
|
||||
struct qxl_bo *user_bo;
|
||||
|
||||
if (!plane->state->fb) {
|
||||
/* we never executed prepare_fb, so there's nothing to
|
||||
if (!old_state->fb) {
|
||||
/*
|
||||
* we never executed prepare_fb, so there's nothing to
|
||||
* unpin.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
obj = to_qxl_framebuffer(plane->state->fb)->obj;
|
||||
obj = to_qxl_framebuffer(old_state->fb)->obj;
|
||||
user_bo = gem_to_qxl_bo(obj);
|
||||
qxl_bo_unpin(user_bo);
|
||||
}
|
||||
|
@ -1663,7 +1663,7 @@ int radeon_suspend_kms(struct drm_device *dev, bool suspend,
|
||||
radeon_agp_suspend(rdev);
|
||||
|
||||
pci_save_state(dev->pdev);
|
||||
if (freeze && rdev->family >= CHIP_CEDAR) {
|
||||
if (freeze && rdev->family >= CHIP_CEDAR && !(rdev->flags & RADEON_IS_IGP)) {
|
||||
rdev->asic->asic_reset(rdev, true);
|
||||
pci_restore_state(dev->pdev);
|
||||
} else if (suspend) {
|
||||
|
@ -26,7 +26,7 @@ config DRM_SUN4I_HDMI_CEC
|
||||
bool "Allwinner A10 HDMI CEC Support"
|
||||
depends on DRM_SUN4I_HDMI
|
||||
select CEC_CORE
|
||||
depends on CEC_PIN
|
||||
select CEC_PIN
|
||||
help
|
||||
Choose this option if you have an Allwinner SoC with an HDMI
|
||||
controller and want to use CEC.
|
||||
|
@ -15,7 +15,7 @@
|
||||
#include <drm/drm_connector.h>
|
||||
#include <drm/drm_encoder.h>
|
||||
|
||||
#include <media/cec.h>
|
||||
#include <media/cec-pin.h>
|
||||
|
||||
#define SUN4I_HDMI_CTRL_REG 0x004
|
||||
#define SUN4I_HDMI_CTRL_ENABLE BIT(31)
|
||||
|
@ -63,6 +63,6 @@ DEFINE_EVENT(register_access, sor_readl,
|
||||
|
||||
/* This part must be outside protection */
|
||||
#undef TRACE_INCLUDE_PATH
|
||||
#define TRACE_INCLUDE_PATH .
|
||||
#define TRACE_INCLUDE_PATH ../../drivers/gpu/drm/tegra
|
||||
#define TRACE_INCLUDE_FILE trace
|
||||
#include <trace/define_trace.h>
|
||||
|
@ -936,14 +936,10 @@ static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr)
|
||||
|
||||
void vmbus_hvsock_device_unregister(struct vmbus_channel *channel)
|
||||
{
|
||||
mutex_lock(&vmbus_connection.channel_mutex);
|
||||
|
||||
BUG_ON(!is_hvsock_channel(channel));
|
||||
|
||||
channel->rescind = true;
|
||||
vmbus_device_unregister(channel->device_obj);
|
||||
|
||||
mutex_unlock(&vmbus_connection.channel_mutex);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister);
|
||||
|
||||
|
@ -170,6 +170,10 @@ static void fcopy_send_data(struct work_struct *dummy)
|
||||
out_src = smsg_out;
|
||||
break;
|
||||
|
||||
case WRITE_TO_FILE:
|
||||
out_src = fcopy_transaction.fcopy_msg;
|
||||
out_len = sizeof(struct hv_do_fcopy);
|
||||
break;
|
||||
default:
|
||||
out_src = fcopy_transaction.fcopy_msg;
|
||||
out_len = fcopy_transaction.recv_len;
|
||||
|
@ -143,6 +143,11 @@ static const struct pci_device_id intel_th_pci_id_table[] = {
|
||||
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x19e1),
|
||||
.driver_data = (kernel_ulong_t)0,
|
||||
},
|
||||
{
|
||||
/* Lewisburg PCH */
|
||||
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa1a6),
|
||||
.driver_data = (kernel_ulong_t)0,
|
||||
},
|
||||
{
|
||||
/* Gemini Lake */
|
||||
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x318e),
|
||||
@ -158,6 +163,11 @@ static const struct pci_device_id intel_th_pci_id_table[] = {
|
||||
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x9da6),
|
||||
.driver_data = (kernel_ulong_t)&intel_th_2x,
|
||||
},
|
||||
{
|
||||
/* Cedar Fork PCH */
|
||||
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x18e1),
|
||||
.driver_data = (kernel_ulong_t)&intel_th_2x,
|
||||
},
|
||||
{ 0 },
|
||||
};
|
||||
|
||||
|
@ -1119,7 +1119,7 @@ void stm_source_unregister_device(struct stm_source_data *data)
|
||||
|
||||
stm_source_link_drop(src);
|
||||
|
||||
device_destroy(&stm_source_class, src->dev.devt);
|
||||
device_unregister(&src->dev);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(stm_source_unregister_device);
|
||||
|
||||
|
@ -257,7 +257,7 @@ static int ad7793_setup(struct iio_dev *indio_dev,
|
||||
unsigned int vref_mv)
|
||||
{
|
||||
struct ad7793_state *st = iio_priv(indio_dev);
|
||||
int i, ret = -1;
|
||||
int i, ret;
|
||||
unsigned long long scale_uv;
|
||||
u32 id;
|
||||
|
||||
@ -266,7 +266,7 @@ static int ad7793_setup(struct iio_dev *indio_dev,
|
||||
return ret;
|
||||
|
||||
/* reset the serial interface */
|
||||
ret = spi_write(st->sd.spi, (u8 *)&ret, sizeof(ret));
|
||||
ret = ad_sd_reset(&st->sd, 32);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
usleep_range(500, 2000); /* Wait for at least 500us */
|
||||
|
@ -177,6 +177,34 @@ int ad_sd_read_reg(struct ad_sigma_delta *sigma_delta,
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ad_sd_read_reg);
|
||||
|
||||
/**
|
||||
* ad_sd_reset() - Reset the serial interface
|
||||
*
|
||||
* @sigma_delta: The sigma delta device
|
||||
* @reset_length: Number of SCLKs with DIN = 1
|
||||
*
|
||||
* Returns 0 on success, an error code otherwise.
|
||||
**/
|
||||
int ad_sd_reset(struct ad_sigma_delta *sigma_delta,
|
||||
unsigned int reset_length)
|
||||
{
|
||||
uint8_t *buf;
|
||||
unsigned int size;
|
||||
int ret;
|
||||
|
||||
size = DIV_ROUND_UP(reset_length, 8);
|
||||
buf = kcalloc(size, sizeof(*buf), GFP_KERNEL);
|
||||
if (!buf)
|
||||
return -ENOMEM;
|
||||
|
||||
memset(buf, 0xff, size);
|
||||
ret = spi_write(sigma_delta->spi, buf, size);
|
||||
kfree(buf);
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ad_sd_reset);
|
||||
|
||||
static int ad_sd_calibrate(struct ad_sigma_delta *sigma_delta,
|
||||
unsigned int mode, unsigned int channel)
|
||||
{
|
||||
|
@ -17,6 +17,8 @@
|
||||
* MCP3204
|
||||
* MCP3208
|
||||
* ------------
|
||||
* 13 bit converter
|
||||
* MCP3301
|
||||
*
|
||||
* Datasheet can be found here:
|
||||
* http://ww1.microchip.com/downloads/en/DeviceDoc/21293C.pdf mcp3001
|
||||
@ -96,7 +98,7 @@ static int mcp320x_channel_to_tx_data(int device_index,
|
||||
}
|
||||
|
||||
static int mcp320x_adc_conversion(struct mcp320x *adc, u8 channel,
|
||||
bool differential, int device_index)
|
||||
bool differential, int device_index, int *val)
|
||||
{
|
||||
int ret;
|
||||
|
||||
@ -117,19 +119,25 @@ static int mcp320x_adc_conversion(struct mcp320x *adc, u8 channel,
|
||||
|
||||
switch (device_index) {
|
||||
case mcp3001:
|
||||
return (adc->rx_buf[0] << 5 | adc->rx_buf[1] >> 3);
|
||||
*val = (adc->rx_buf[0] << 5 | adc->rx_buf[1] >> 3);
|
||||
return 0;
|
||||
case mcp3002:
|
||||
case mcp3004:
|
||||
case mcp3008:
|
||||
return (adc->rx_buf[0] << 2 | adc->rx_buf[1] >> 6);
|
||||
*val = (adc->rx_buf[0] << 2 | adc->rx_buf[1] >> 6);
|
||||
return 0;
|
||||
case mcp3201:
|
||||
return (adc->rx_buf[0] << 7 | adc->rx_buf[1] >> 1);
|
||||
*val = (adc->rx_buf[0] << 7 | adc->rx_buf[1] >> 1);
|
||||
return 0;
|
||||
case mcp3202:
|
||||
case mcp3204:
|
||||
case mcp3208:
|
||||
return (adc->rx_buf[0] << 4 | adc->rx_buf[1] >> 4);
|
||||
*val = (adc->rx_buf[0] << 4 | adc->rx_buf[1] >> 4);
|
||||
return 0;
|
||||
case mcp3301:
|
||||
return sign_extend32((adc->rx_buf[0] & 0x1f) << 8 | adc->rx_buf[1], 12);
|
||||
*val = sign_extend32((adc->rx_buf[0] & 0x1f) << 8
|
||||
| adc->rx_buf[1], 12);
|
||||
return 0;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
@ -150,12 +158,10 @@ static int mcp320x_read_raw(struct iio_dev *indio_dev,
|
||||
switch (mask) {
|
||||
case IIO_CHAN_INFO_RAW:
|
||||
ret = mcp320x_adc_conversion(adc, channel->address,
|
||||
channel->differential, device_index);
|
||||
|
||||
channel->differential, device_index, val);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
*val = ret;
|
||||
ret = IIO_VAL_INT;
|
||||
break;
|
||||
|
||||
@ -312,6 +318,7 @@ static int mcp320x_probe(struct spi_device *spi)
|
||||
indio_dev->name = spi_get_device_id(spi)->name;
|
||||
indio_dev->modes = INDIO_DIRECT_MODE;
|
||||
indio_dev->info = &mcp320x_info;
|
||||
spi_set_drvdata(spi, indio_dev);
|
||||
|
||||
chip_info = &mcp320x_chip_infos[spi_get_device_id(spi)->driver_data];
|
||||
indio_dev->channels = chip_info->channels;
|
||||
|
@ -1666,7 +1666,7 @@ static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
|
||||
|
||||
num_channels = of_property_count_u32_elems(node, "st,adc-channels");
|
||||
if (num_channels < 0 ||
|
||||
num_channels >= adc_info->max_channels) {
|
||||
num_channels > adc_info->max_channels) {
|
||||
dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
|
||||
return num_channels < 0 ? num_channels : -EINVAL;
|
||||
}
|
||||
|
@ -52,7 +52,7 @@
|
||||
|
||||
#define ADS1015_CFG_COMP_QUE_MASK GENMASK(1, 0)
|
||||
#define ADS1015_CFG_COMP_LAT_MASK BIT(2)
|
||||
#define ADS1015_CFG_COMP_POL_MASK BIT(2)
|
||||
#define ADS1015_CFG_COMP_POL_MASK BIT(3)
|
||||
#define ADS1015_CFG_COMP_MODE_MASK BIT(4)
|
||||
#define ADS1015_CFG_DR_MASK GENMASK(7, 5)
|
||||
#define ADS1015_CFG_MOD_MASK BIT(8)
|
||||
@ -1017,10 +1017,12 @@ static int ads1015_probe(struct i2c_client *client,
|
||||
|
||||
switch (irq_trig) {
|
||||
case IRQF_TRIGGER_LOW:
|
||||
cfg_comp |= ADS1015_CFG_COMP_POL_LOW;
|
||||
cfg_comp |= ADS1015_CFG_COMP_POL_LOW <<
|
||||
ADS1015_CFG_COMP_POL_SHIFT;
|
||||
break;
|
||||
case IRQF_TRIGGER_HIGH:
|
||||
cfg_comp |= ADS1015_CFG_COMP_POL_HIGH;
|
||||
cfg_comp |= ADS1015_CFG_COMP_POL_HIGH <<
|
||||
ADS1015_CFG_COMP_POL_SHIFT;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
|
@ -887,21 +887,27 @@ static int twl4030_madc_probe(struct platform_device *pdev)
|
||||
|
||||
/* Enable 3v1 bias regulator for MADC[3:6] */
|
||||
madc->usb3v1 = devm_regulator_get(madc->dev, "vusb3v1");
|
||||
if (IS_ERR(madc->usb3v1))
|
||||
return -ENODEV;
|
||||
if (IS_ERR(madc->usb3v1)) {
|
||||
ret = -ENODEV;
|
||||
goto err_i2c;
|
||||
}
|
||||
|
||||
ret = regulator_enable(madc->usb3v1);
|
||||
if (ret)
|
||||
if (ret) {
|
||||
dev_err(madc->dev, "could not enable 3v1 bias regulator\n");
|
||||
goto err_i2c;
|
||||
}
|
||||
|
||||
ret = iio_device_register(iio_dev);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "could not register iio device\n");
|
||||
goto err_i2c;
|
||||
goto err_usb3v1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
err_usb3v1:
|
||||
regulator_disable(madc->usb3v1);
|
||||
err_i2c:
|
||||
twl4030_madc_set_current_generator(madc, 0, 0);
|
||||
err_current_generator:
|
||||
|
@ -463,8 +463,17 @@ int st_sensors_set_dataready_irq(struct iio_dev *indio_dev, bool enable)
|
||||
u8 drdy_mask;
|
||||
struct st_sensor_data *sdata = iio_priv(indio_dev);
|
||||
|
||||
if (!sdata->sensor_settings->drdy_irq.addr)
|
||||
if (!sdata->sensor_settings->drdy_irq.addr) {
|
||||
/*
|
||||
* there are some devices (e.g. LIS3MDL) where drdy line is
|
||||
* routed to a given pin and it is not possible to select a
|
||||
* different one. Take into account irq status register
|
||||
* to understand if irq trigger can be properly supported
|
||||
*/
|
||||
if (sdata->sensor_settings->drdy_irq.addr_stat_drdy)
|
||||
sdata->hw_irq_trigger = enable;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Enable/Disable the interrupt generator 1. */
|
||||
if (sdata->sensor_settings->drdy_irq.ig1.en_addr > 0) {
|
||||
|
@ -310,8 +310,10 @@ static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
|
||||
ret = indio_dev->info->debugfs_reg_access(indio_dev,
|
||||
indio_dev->cached_reg_addr,
|
||||
0, &val);
|
||||
if (ret)
|
||||
if (ret) {
|
||||
dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
|
||||
return ret;
|
||||
}
|
||||
|
||||
len = snprintf(buf, sizeof(buf), "0x%X\n", val);
|
||||
|
||||
|
@ -315,6 +315,10 @@ static const struct st_sensor_settings st_magn_sensors_settings[] = {
|
||||
},
|
||||
},
|
||||
},
|
||||
.drdy_irq = {
|
||||
/* drdy line is routed drdy pin */
|
||||
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
|
||||
},
|
||||
.multi_read_bit = true,
|
||||
.bootime = 2,
|
||||
},
|
||||
|
@ -573,7 +573,7 @@ static int bmp280_chip_config(struct bmp280_data *data)
|
||||
u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
|
||||
BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
|
||||
|
||||
ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_MEAS,
|
||||
ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
|
||||
BMP280_OSRS_TEMP_MASK |
|
||||
BMP280_OSRS_PRESS_MASK |
|
||||
BMP280_MODE_MASK,
|
||||
|
@ -174,6 +174,7 @@ static void stm32_timer_stop(struct stm32_timer_trigger *priv)
|
||||
clk_disable(priv->clk);
|
||||
|
||||
/* Stop timer */
|
||||
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
|
||||
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
|
||||
regmap_write(priv->regmap, TIM_PSC, 0);
|
||||
regmap_write(priv->regmap, TIM_ARR, 0);
|
||||
@ -715,8 +716,9 @@ static ssize_t stm32_count_set_preset(struct iio_dev *indio_dev,
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
|
||||
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
|
||||
regmap_write(priv->regmap, TIM_ARR, preset);
|
||||
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
|
||||
|
||||
return len;
|
||||
}
|
||||
|
@ -432,8 +432,10 @@ int ib_create_qp_security(struct ib_qp *qp, struct ib_device *dev)
|
||||
atomic_set(&qp->qp_sec->error_list_count, 0);
|
||||
init_completion(&qp->qp_sec->error_complete);
|
||||
ret = security_ib_alloc_security(&qp->qp_sec->security);
|
||||
if (ret)
|
||||
if (ret) {
|
||||
kfree(qp->qp_sec);
|
||||
qp->qp_sec = NULL;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -3869,15 +3869,15 @@ int ib_uverbs_ex_query_device(struct ib_uverbs_file *file,
|
||||
resp.raw_packet_caps = attr.raw_packet_caps;
|
||||
resp.response_length += sizeof(resp.raw_packet_caps);
|
||||
|
||||
if (ucore->outlen < resp.response_length + sizeof(resp.xrq_caps))
|
||||
if (ucore->outlen < resp.response_length + sizeof(resp.tm_caps))
|
||||
goto end;
|
||||
|
||||
resp.xrq_caps.max_rndv_hdr_size = attr.xrq_caps.max_rndv_hdr_size;
|
||||
resp.xrq_caps.max_num_tags = attr.xrq_caps.max_num_tags;
|
||||
resp.xrq_caps.max_ops = attr.xrq_caps.max_ops;
|
||||
resp.xrq_caps.max_sge = attr.xrq_caps.max_sge;
|
||||
resp.xrq_caps.flags = attr.xrq_caps.flags;
|
||||
resp.response_length += sizeof(resp.xrq_caps);
|
||||
resp.tm_caps.max_rndv_hdr_size = attr.tm_caps.max_rndv_hdr_size;
|
||||
resp.tm_caps.max_num_tags = attr.tm_caps.max_num_tags;
|
||||
resp.tm_caps.max_ops = attr.tm_caps.max_ops;
|
||||
resp.tm_caps.max_sge = attr.tm_caps.max_sge;
|
||||
resp.tm_caps.flags = attr.tm_caps.flags;
|
||||
resp.response_length += sizeof(resp.tm_caps);
|
||||
end:
|
||||
err = ib_copy_to_udata(ucore, &resp, resp.response_length);
|
||||
return err;
|
||||
|
@ -1066,6 +1066,8 @@ static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
|
||||
static int thermal_init(struct hfi1_devdata *dd);
|
||||
|
||||
static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
|
||||
static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
|
||||
int msecs);
|
||||
static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
|
||||
int msecs);
|
||||
static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
|
||||
@ -8238,6 +8240,7 @@ static irqreturn_t general_interrupt(int irq, void *data)
|
||||
u64 regs[CCE_NUM_INT_CSRS];
|
||||
u32 bit;
|
||||
int i;
|
||||
irqreturn_t handled = IRQ_NONE;
|
||||
|
||||
this_cpu_inc(*dd->int_counter);
|
||||
|
||||
@ -8258,9 +8261,10 @@ static irqreturn_t general_interrupt(int irq, void *data)
|
||||
for_each_set_bit(bit, (unsigned long *)®s[0],
|
||||
CCE_NUM_INT_CSRS * 64) {
|
||||
is_interrupt(dd, bit);
|
||||
handled = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
return IRQ_HANDLED;
|
||||
return handled;
|
||||
}
|
||||
|
||||
static irqreturn_t sdma_interrupt(int irq, void *data)
|
||||
@ -9413,7 +9417,7 @@ static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
|
||||
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
|
||||
}
|
||||
|
||||
void reset_qsfp(struct hfi1_pportdata *ppd)
|
||||
int reset_qsfp(struct hfi1_pportdata *ppd)
|
||||
{
|
||||
struct hfi1_devdata *dd = ppd->dd;
|
||||
u64 mask, qsfp_mask;
|
||||
@ -9443,6 +9447,13 @@ void reset_qsfp(struct hfi1_pportdata *ppd)
|
||||
* for alarms and warnings
|
||||
*/
|
||||
set_qsfp_int_n(ppd, 1);
|
||||
|
||||
/*
|
||||
* After the reset, AOC transmitters are enabled by default. They need
|
||||
* to be turned off to complete the QSFP setup before they can be
|
||||
* enabled again.
|
||||
*/
|
||||
return set_qsfp_tx(ppd, 0);
|
||||
}
|
||||
|
||||
static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
|
||||
@ -10305,6 +10316,7 @@ static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
|
||||
{
|
||||
struct hfi1_devdata *dd = ppd->dd;
|
||||
u32 previous_state;
|
||||
int offline_state_ret;
|
||||
int ret;
|
||||
|
||||
update_lcb_cache(dd);
|
||||
@ -10326,28 +10338,11 @@ static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
|
||||
ppd->offline_disabled_reason =
|
||||
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
|
||||
|
||||
/*
|
||||
* Wait for offline transition. It can take a while for
|
||||
* the link to go down.
|
||||
*/
|
||||
ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 10000);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* Now in charge of LCB - must be after the physical state is
|
||||
* offline.quiet and before host_link_state is changed.
|
||||
*/
|
||||
set_host_lcb_access(dd);
|
||||
write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
|
||||
|
||||
/* make sure the logical state is also down */
|
||||
ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
|
||||
if (ret)
|
||||
force_logical_link_state_down(ppd);
|
||||
|
||||
ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
|
||||
offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
|
||||
if (offline_state_ret < 0)
|
||||
return offline_state_ret;
|
||||
|
||||
/* Disabling AOC transmitters */
|
||||
if (ppd->port_type == PORT_TYPE_QSFP &&
|
||||
ppd->qsfp_info.limiting_active &&
|
||||
qsfp_mod_present(ppd)) {
|
||||
@ -10364,6 +10359,30 @@ static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Wait for the offline.Quiet transition if it hasn't happened yet. It
|
||||
* can take a while for the link to go down.
|
||||
*/
|
||||
if (offline_state_ret != PLS_OFFLINE_QUIET) {
|
||||
ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now in charge of LCB - must be after the physical state is
|
||||
* offline.quiet and before host_link_state is changed.
|
||||
*/
|
||||
set_host_lcb_access(dd);
|
||||
write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
|
||||
|
||||
/* make sure the logical state is also down */
|
||||
ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
|
||||
if (ret)
|
||||
force_logical_link_state_down(ppd);
|
||||
|
||||
ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
|
||||
|
||||
/*
|
||||
* The LNI has a mandatory wait time after the physical state
|
||||
* moves to Offline.Quiet. The wait time may be different
|
||||
@ -10396,6 +10415,9 @@ static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
|
||||
& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
|
||||
/* went down while attempting link up */
|
||||
check_lni_states(ppd);
|
||||
|
||||
/* The QSFP doesn't need to be reset on LNI failure */
|
||||
ppd->qsfp_info.reset_needed = 0;
|
||||
}
|
||||
|
||||
/* the active link width (downgrade) is 0 on link down */
|
||||
@ -12804,6 +12826,39 @@ static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* wait_phys_link_offline_quiet_substates - wait for any offline substate
|
||||
* @ppd: port device
|
||||
* @msecs: the number of milliseconds to wait
|
||||
*
|
||||
* Wait up to msecs milliseconds for any offline physical link
|
||||
* state change to occur.
|
||||
* Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
|
||||
*/
|
||||
static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
|
||||
int msecs)
|
||||
{
|
||||
u32 read_state;
|
||||
unsigned long timeout;
|
||||
|
||||
timeout = jiffies + msecs_to_jiffies(msecs);
|
||||
while (1) {
|
||||
read_state = read_physical_state(ppd->dd);
|
||||
if ((read_state & 0xF0) == PLS_OFFLINE)
|
||||
break;
|
||||
if (time_after(jiffies, timeout)) {
|
||||
dd_dev_err(ppd->dd,
|
||||
"timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
|
||||
read_state, msecs);
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
usleep_range(1950, 2050); /* sleep 2ms-ish */
|
||||
}
|
||||
|
||||
log_state_transition(ppd, read_state);
|
||||
return read_state;
|
||||
}
|
||||
|
||||
#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
|
||||
(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
|
||||
|
||||
|
@ -204,6 +204,7 @@
|
||||
#define PLS_OFFLINE_READY_TO_QUIET_LT 0x92
|
||||
#define PLS_OFFLINE_REPORT_FAILURE 0x93
|
||||
#define PLS_OFFLINE_READY_TO_QUIET_BCC 0x94
|
||||
#define PLS_OFFLINE_QUIET_DURATION 0x95
|
||||
#define PLS_POLLING 0x20
|
||||
#define PLS_POLLING_QUIET 0x20
|
||||
#define PLS_POLLING_ACTIVE 0x21
|
||||
@ -722,7 +723,7 @@ void handle_link_downgrade(struct work_struct *work);
|
||||
void handle_link_bounce(struct work_struct *work);
|
||||
void handle_start_link(struct work_struct *work);
|
||||
void handle_sma_message(struct work_struct *work);
|
||||
void reset_qsfp(struct hfi1_pportdata *ppd);
|
||||
int reset_qsfp(struct hfi1_pportdata *ppd);
|
||||
void qsfp_event(struct work_struct *work);
|
||||
void start_freeze_handling(struct hfi1_pportdata *ppd, int flags);
|
||||
int send_idle_sma(struct hfi1_devdata *dd, u64 message);
|
||||
|
@ -204,7 +204,10 @@ int eprom_init(struct hfi1_devdata *dd)
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* magic character sequence that trails an image */
|
||||
/* magic character sequence that begins an image */
|
||||
#define IMAGE_START_MAGIC "APO="
|
||||
|
||||
/* magic character sequence that might trail an image */
|
||||
#define IMAGE_TRAIL_MAGIC "egamiAPO"
|
||||
|
||||
/* EPROM file types */
|
||||
@ -250,6 +253,7 @@ static int read_partition_platform_config(struct hfi1_devdata *dd, void **data,
|
||||
{
|
||||
void *buffer;
|
||||
void *p;
|
||||
u32 length;
|
||||
int ret;
|
||||
|
||||
buffer = kmalloc(P1_SIZE, GFP_KERNEL);
|
||||
@ -262,15 +266,21 @@ static int read_partition_platform_config(struct hfi1_devdata *dd, void **data,
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* scan for image magic that may trail the actual data */
|
||||
p = strnstr(buffer, IMAGE_TRAIL_MAGIC, P1_SIZE);
|
||||
if (!p) {
|
||||
/* config partition is valid only if it starts with IMAGE_START_MAGIC */
|
||||
if (memcmp(buffer, IMAGE_START_MAGIC, strlen(IMAGE_START_MAGIC))) {
|
||||
kfree(buffer);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
/* scan for image magic that may trail the actual data */
|
||||
p = strnstr(buffer, IMAGE_TRAIL_MAGIC, P1_SIZE);
|
||||
if (p)
|
||||
length = p - buffer;
|
||||
else
|
||||
length = P1_SIZE;
|
||||
|
||||
*data = buffer;
|
||||
*size = p - buffer;
|
||||
*size = length;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user