mtd: add bcmring nand driver

Signed-off-by: Leo Hao Chen <leochen@broadcom.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This commit is contained in:
Leo (Hao) Chen 2009-10-09 19:13:08 -07:00 committed by David Woodhouse
parent 4b56ffcace
commit 266dead216
9 changed files with 1631 additions and 0 deletions

View File

@ -76,9 +76,19 @@ static struct ctl_table bcmring_sysctl_reboot[] = {
{}
};
static struct resource nand_resource[] = {
[0] = {
.start = MM_ADDR_IO_NAND,
.end = MM_ADDR_IO_NAND + 0x1000 - 1,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device nand_device = {
.name = "bcm-nand",
.id = -1,
.resource = nand_resource,
.num_resources = ARRAY_SIZE(nand_resource),
};
static struct platform_device *devices[] __initdata = {

View File

@ -0,0 +1,66 @@
/*****************************************************************************
* Copyright 2001 - 2008 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/*
*
*****************************************************************************
*
* REG_NAND.h
*
* PURPOSE:
*
* This file contains definitions for the nand registers:
*
* NOTES:
*
*****************************************************************************/
#if !defined(__ASM_ARCH_REG_NAND_H)
#define __ASM_ARCH_REG_NAND_H
/* ---- Include Files ---------------------------------------------------- */
#include <csp/reg.h>
#include <mach/reg_umi.h>
/* ---- Constants and Types ---------------------------------------------- */
#define HW_NAND_BASE MM_IO_BASE_NAND /* NAND Flash */
/* DMA accesses by the bootstrap need hard nonvirtual addresses */
#define REG_NAND_CMD __REG16(HW_NAND_BASE + 0)
#define REG_NAND_ADDR __REG16(HW_NAND_BASE + 4)
#define REG_NAND_PHYS_DATA16 (HW_NAND_BASE + 8)
#define REG_NAND_PHYS_DATA8 (HW_NAND_BASE + 8)
#define REG_NAND_DATA16 __REG16(REG_NAND_PHYS_DATA16)
#define REG_NAND_DATA8 __REG8(REG_NAND_PHYS_DATA8)
/* use appropriate offset to make sure it start at the 1K boundary */
#define REG_NAND_PHYS_DATA_DMA (HW_NAND_BASE + 0x400)
#define REG_NAND_DATA_DMA __REG32(REG_NAND_PHYS_DATA_DMA)
/* Linux DMA requires physical address of the data register */
#define REG_NAND_DATA16_PADDR HW_IO_VIRT_TO_PHYS(REG_NAND_PHYS_DATA16)
#define REG_NAND_DATA8_PADDR HW_IO_VIRT_TO_PHYS(REG_NAND_PHYS_DATA8)
#define REG_NAND_DATA_PADDR HW_IO_VIRT_TO_PHYS(REG_NAND_PHYS_DATA_DMA)
#define NAND_BUS_16BIT() (0)
#define NAND_BUS_8BIT() (!NAND_BUS_16BIT())
/* Register offsets */
#define REG_NAND_CMD_OFFSET (0)
#define REG_NAND_ADDR_OFFSET (4)
#define REG_NAND_DATA8_OFFSET (8)
#endif

View File

@ -0,0 +1,237 @@
/*****************************************************************************
* Copyright 2005 - 2008 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/*
*
*****************************************************************************
*
* REG_UMI.h
*
* PURPOSE:
*
* This file contains definitions for the nand registers:
*
* NOTES:
*
*****************************************************************************/
#if !defined(__ASM_ARCH_REG_UMI_H)
#define __ASM_ARCH_REG_UMI_H
/* ---- Include Files ---------------------------------------------------- */
#include <csp/reg.h>
#include <mach/csp/mm_io.h>
/* ---- Constants and Types ---------------------------------------------- */
/* Unified Memory Interface Ctrl Register */
#define HW_UMI_BASE MM_IO_BASE_UMI
/* Flash bank 0 timing and control register */
#define REG_UMI_FLASH0_TCR __REG32(HW_UMI_BASE + 0x00)
/* Flash bank 1 timing and control register */
#define REG_UMI_FLASH1_TCR __REG32(HW_UMI_BASE + 0x04)
/* Flash bank 2 timing and control register */
#define REG_UMI_FLASH2_TCR __REG32(HW_UMI_BASE + 0x08)
/* MMD interface and control register */
#define REG_UMI_MMD_ICR __REG32(HW_UMI_BASE + 0x0c)
/* NAND timing and control register */
#define REG_UMI_NAND_TCR __REG32(HW_UMI_BASE + 0x18)
/* NAND ready/chip select register */
#define REG_UMI_NAND_RCSR __REG32(HW_UMI_BASE + 0x1c)
/* NAND ECC control & status register */
#define REG_UMI_NAND_ECC_CSR __REG32(HW_UMI_BASE + 0x20)
/* NAND ECC data register XXB2B1B0 */
#define REG_UMI_NAND_ECC_DATA __REG32(HW_UMI_BASE + 0x24)
/* BCH ECC Parameter N */
#define REG_UMI_BCH_N __REG32(HW_UMI_BASE + 0x40)
/* BCH ECC Parameter T */
#define REG_UMI_BCH_K __REG32(HW_UMI_BASE + 0x44)
/* BCH ECC Parameter K */
#define REG_UMI_BCH_T __REG32(HW_UMI_BASE + 0x48)
/* BCH ECC Contro Status */
#define REG_UMI_BCH_CTRL_STATUS __REG32(HW_UMI_BASE + 0x4C)
/* BCH WR ECC 31:0 */
#define REG_UMI_BCH_WR_ECC_0 __REG32(HW_UMI_BASE + 0x50)
/* BCH WR ECC 63:32 */
#define REG_UMI_BCH_WR_ECC_1 __REG32(HW_UMI_BASE + 0x54)
/* BCH WR ECC 95:64 */
#define REG_UMI_BCH_WR_ECC_2 __REG32(HW_UMI_BASE + 0x58)
/* BCH WR ECC 127:96 */
#define REG_UMI_BCH_WR_ECC_3 __REG32(HW_UMI_BASE + 0x5c)
/* BCH WR ECC 155:128 */
#define REG_UMI_BCH_WR_ECC_4 __REG32(HW_UMI_BASE + 0x60)
/* BCH Read Error Location 1,0 */
#define REG_UMI_BCH_RD_ERR_LOC_1_0 __REG32(HW_UMI_BASE + 0x64)
/* BCH Read Error Location 3,2 */
#define REG_UMI_BCH_RD_ERR_LOC_3_2 __REG32(HW_UMI_BASE + 0x68)
/* BCH Read Error Location 5,4 */
#define REG_UMI_BCH_RD_ERR_LOC_5_4 __REG32(HW_UMI_BASE + 0x6c)
/* BCH Read Error Location 7,6 */
#define REG_UMI_BCH_RD_ERR_LOC_7_6 __REG32(HW_UMI_BASE + 0x70)
/* BCH Read Error Location 9,8 */
#define REG_UMI_BCH_RD_ERR_LOC_9_8 __REG32(HW_UMI_BASE + 0x74)
/* BCH Read Error Location 11,10 */
#define REG_UMI_BCH_RD_ERR_LOC_B_A __REG32(HW_UMI_BASE + 0x78)
/* REG_UMI_FLASH0/1/2_TCR, REG_UMI_SRAM0/1_TCR bits */
/* Enable wait pin during burst write or read */
#define REG_UMI_TCR_WAITEN 0x80000000
/* Enable mem ctrlr to work iwth ext mem of lower freq than AHB clk */
#define REG_UMI_TCR_LOWFREQ 0x40000000
/* 1=synch write, 0=async write */
#define REG_UMI_TCR_MEMTYPE_SYNCWRITE 0x20000000
/* 1=synch read, 0=async read */
#define REG_UMI_TCR_MEMTYPE_SYNCREAD 0x10000000
/* 1=page mode read, 0=normal mode read */
#define REG_UMI_TCR_MEMTYPE_PAGEREAD 0x08000000
/* page size/burst size (wrap only) */
#define REG_UMI_TCR_MEMTYPE_PGSZ_MASK 0x07000000
/* 4 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_4 0x00000000
/* 8 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_8 0x01000000
/* 16 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_16 0x02000000
/* 32 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_32 0x03000000
/* 64 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_64 0x04000000
/* 128 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_128 0x05000000
/* 256 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_256 0x06000000
/* 512 word */
#define REG_UMI_TCR_MEMTYPE_PGSZ_512 0x07000000
/* Page read access cycle / Burst write latency (n+2 / n+1) */
#define REG_UMI_TCR_TPRC_TWLC_MASK 0x00f80000
/* Bus turnaround cycle (n) */
#define REG_UMI_TCR_TBTA_MASK 0x00070000
/* Write pulse width cycle (n+1) */
#define REG_UMI_TCR_TWP_MASK 0x0000f800
/* Write recovery cycle (n+1) */
#define REG_UMI_TCR_TWR_MASK 0x00000600
/* Write address setup cycle (n+1) */
#define REG_UMI_TCR_TAS_MASK 0x00000180
/* Output enable delay cycle (n) */
#define REG_UMI_TCR_TOE_MASK 0x00000060
/* Read access cycle / Burst read latency (n+2 / n+1) */
#define REG_UMI_TCR_TRC_TLC_MASK 0x0000001f
/* REG_UMI_MMD_ICR bits */
/* Flash write protection pin control */
#define REG_UMI_MMD_ICR_FLASH_WP 0x8000
/* Extend hold time for sram0, sram1 csn (39 MHz operation) */
#define REG_UMI_MMD_ICR_XHCS 0x4000
/* Enable SDRAM 2 interface control */
#define REG_UMI_MMD_ICR_SDRAM2EN 0x2000
/* Enable merge of flash banks 0/1 to 512 MBit bank */
#define REG_UMI_MMD_ICR_INST512 0x1000
/* Enable merge of flash banks 1/2 to 512 MBit bank */
#define REG_UMI_MMD_ICR_DATA512 0x0800
/* Enable SDRAM interface control */
#define REG_UMI_MMD_ICR_SDRAMEN 0x0400
/* Polarity of busy state of Burst Wait Signal */
#define REG_UMI_MMD_ICR_WAITPOL 0x0200
/* Enable burst clock stopped when not accessing external burst flash/sram */
#define REG_UMI_MMD_ICR_BCLKSTOP 0x0100
/* Enable the peri1_csn to replace flash1_csn in 512 Mb flash mode */
#define REG_UMI_MMD_ICR_PERI1EN 0x0080
/* Enable the peri2_csn to replace sdram_csn */
#define REG_UMI_MMD_ICR_PERI2EN 0x0040
/* Enable the peri3_csn to replace sdram2_csn */
#define REG_UMI_MMD_ICR_PERI3EN 0x0020
/* Enable sram bank1 for H/W controlled MRS */
#define REG_UMI_MMD_ICR_MRSB1 0x0010
/* Enable sram bank0 for H/W controlled MRS */
#define REG_UMI_MMD_ICR_MRSB0 0x0008
/* Polarity for assert3ed state of H/W controlled MRS */
#define REG_UMI_MMD_ICR_MRSPOL 0x0004
/* 0: S/W controllable ZZ/MRS/CRE/P-Mode pin */
/* 1: H/W controlled ZZ/MRS/CRE/P-Mode, same timing as CS */
#define REG_UMI_MMD_ICR_MRSMODE 0x0002
/* MRS state for S/W controlled mode */
#define REG_UMI_MMD_ICR_MRSSTATE 0x0001
/* REG_UMI_NAND_TCR bits */
/* Enable software to control CS */
#define REG_UMI_NAND_TCR_CS_SWCTRL 0x80000000
/* 16-bit nand wordsize if set */
#define REG_UMI_NAND_TCR_WORD16 0x40000000
/* Bus turnaround cycle (n) */
#define REG_UMI_NAND_TCR_TBTA_MASK 0x00070000
/* Write pulse width cycle (n+1) */
#define REG_UMI_NAND_TCR_TWP_MASK 0x0000f800
/* Write recovery cycle (n+1) */
#define REG_UMI_NAND_TCR_TWR_MASK 0x00000600
/* Write address setup cycle (n+1) */
#define REG_UMI_NAND_TCR_TAS_MASK 0x00000180
/* Output enable delay cycle (n) */
#define REG_UMI_NAND_TCR_TOE_MASK 0x00000060
/* Read access cycle (n+2) */
#define REG_UMI_NAND_TCR_TRC_TLC_MASK 0x0000001f
/* REG_UMI_NAND_RCSR bits */
/* Status: Ready=1, Busy=0 */
#define REG_UMI_NAND_RCSR_RDY 0x02
/* Keep CS asserted during operation */
#define REG_UMI_NAND_RCSR_CS_ASSERTED 0x01
/* REG_UMI_NAND_ECC_CSR bits */
/* Interrupt status - read-only */
#define REG_UMI_NAND_ECC_CSR_NANDINT 0x80000000
/* Read: Status of ECC done, Write: clear ECC interrupt */
#define REG_UMI_NAND_ECC_CSR_ECCINT_RAW 0x00800000
/* Read: Status of R/B, Write: clear R/B interrupt */
#define REG_UMI_NAND_ECC_CSR_RBINT_RAW 0x00400000
/* 1 = Enable ECC Interrupt */
#define REG_UMI_NAND_ECC_CSR_ECCINT_ENABLE 0x00008000
/* 1 = Assert interrupt at rising edge of R/B_ */
#define REG_UMI_NAND_ECC_CSR_RBINT_ENABLE 0x00004000
/* Calculate ECC by 0=512 bytes, 1=256 bytes */
#define REG_UMI_NAND_ECC_CSR_256BYTE 0x00000080
/* Enable ECC in hardware */
#define REG_UMI_NAND_ECC_CSR_ECC_ENABLE 0x00000001
/* REG_UMI_BCH_CTRL_STATUS bits */
/* Shift to Indicate Number of correctable errors detected */
#define REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR_SHIFT 20
/* Indicate Number of correctable errors detected */
#define REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR 0x00F00000
/* Indicate Errors detected during read but uncorrectable */
#define REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR 0x00080000
/* Indicate Errors detected during read and are correctable */
#define REG_UMI_BCH_CTRL_STATUS_CORR_ERR 0x00040000
/* Flag indicates BCH's ECC status of read process are valid */
#define REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID 0x00020000
/* Flag indicates BCH's ECC status of write process are valid */
#define REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID 0x00010000
/* Pause ECC calculation */
#define REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC 0x00000010
/* Enable Interrupt */
#define REG_UMI_BCH_CTRL_STATUS_INT_EN 0x00000004
/* Enable ECC during read */
#define REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN 0x00000002
/* Enable ECC during write */
#define REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN 0x00000001
/* Mask for location */
#define REG_UMI_BCH_ERR_LOC_MASK 0x00001FFF
/* location within a byte */
#define REG_UMI_BCH_ERR_LOC_BYTE 0x00000007
/* location within a word */
#define REG_UMI_BCH_ERR_LOC_WORD 0x00000018
/* location within a page (512 byte) */
#define REG_UMI_BCH_ERR_LOC_PAGE 0x00001FE0
#define REG_UMI_BCH_ERR_LOC_ADDR(index) (__REG32(HW_UMI_BASE + 0x64 + (index / 2)*4) >> ((index % 2) * 16))
#endif

View File

@ -203,6 +203,22 @@ config MTD_NAND_S3C2410_CLKSTOP
when the is NAND chip selected or released, but will save
approximately 5mA of power when there is nothing happening.
config MTD_NAND_BCM_UMI
tristate "NAND Flash support for BCM Reference Boards"
depends on ARCH_BCMRING && MTD_NAND
help
This enables the NAND flash controller on the BCM UMI block.
No board specfic support is done by this driver, each board
must advertise a platform_device for the driver to attach.
config MTD_NAND_BCM_UMI_HWCS
bool "BCM UMI NAND Hardware CS"
depends on MTD_NAND_BCM_UMI
help
Enable the use of the BCM UMI block's internal CS using NAND.
This should only be used if you know the external NAND CS can toggle.
config MTD_NAND_DISKONCHIP
tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)"
depends on EXPERIMENTAL

View File

@ -42,5 +42,6 @@ obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
obj-$(CONFIG_MTD_NAND_W90P910) += w90p910_nand.o
obj-$(CONFIG_MTD_NAND_NOMADIK) += nomadik_nand.o
obj-$(CONFIG_MTD_NAND_BCM_UMI) += bcm_umi_nand.o nand_bcm_umi.o
nand-objs := nand_base.o nand_bbt.o

View File

@ -0,0 +1,213 @@
/*****************************************************************************
* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/* ---- Include Files ---------------------------------------------------- */
#include "nand_bcm_umi.h"
/* ---- External Variable Declarations ----------------------------------- */
/* ---- External Function Prototypes ------------------------------------- */
/* ---- Public Variables ------------------------------------------------- */
/* ---- Private Constants and Types -------------------------------------- */
/* ---- Private Function Prototypes -------------------------------------- */
static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int page);
static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf);
/* ---- Private Variables ------------------------------------------------ */
/*
** nand_hw_eccoob
** New oob placement block for use with hardware ecc generation.
*/
static struct nand_ecclayout nand_hw_eccoob_512 = {
/* Reserve 5 for BI indicator */
.oobfree = {
#if (NAND_ECC_NUM_BYTES > 3)
{.offset = 0, .length = 2}
#else
{.offset = 0, .length = 5},
{.offset = 6, .length = 7}
#endif
}
};
/*
** We treat the OOB for a 2K page as if it were 4 512 byte oobs,
** except the BI is at byte 0.
*/
static struct nand_ecclayout nand_hw_eccoob_2048 = {
/* Reserve 0 as BI indicator */
.oobfree = {
#if (NAND_ECC_NUM_BYTES > 10)
{.offset = 1, .length = 2},
#elif (NAND_ECC_NUM_BYTES > 7)
{.offset = 1, .length = 5},
{.offset = 16, .length = 6},
{.offset = 32, .length = 6},
{.offset = 48, .length = 6}
#else
{.offset = 1, .length = 8},
{.offset = 16, .length = 9},
{.offset = 32, .length = 9},
{.offset = 48, .length = 9}
#endif
}
};
/* We treat the OOB for a 4K page as if it were 8 512 byte oobs,
* except the BI is at byte 0. */
static struct nand_ecclayout nand_hw_eccoob_4096 = {
/* Reserve 0 as BI indicator */
.oobfree = {
#if (NAND_ECC_NUM_BYTES > 10)
{.offset = 1, .length = 2},
{.offset = 16, .length = 3},
{.offset = 32, .length = 3},
{.offset = 48, .length = 3},
{.offset = 64, .length = 3},
{.offset = 80, .length = 3},
{.offset = 96, .length = 3},
{.offset = 112, .length = 3}
#else
{.offset = 1, .length = 5},
{.offset = 16, .length = 6},
{.offset = 32, .length = 6},
{.offset = 48, .length = 6},
{.offset = 64, .length = 6},
{.offset = 80, .length = 6},
{.offset = 96, .length = 6},
{.offset = 112, .length = 6}
#endif
}
};
/* ---- Private Functions ------------------------------------------------ */
/* ==== Public Functions ================================================= */
/****************************************************************************
*
* bcm_umi_bch_read_page_hwecc - hardware ecc based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
*
***************************************************************************/
static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t * buf,
int page)
{
int sectorIdx = 0;
int eccsize = chip->ecc.size;
int eccsteps = chip->ecc.steps;
uint8_t *datap = buf;
uint8_t eccCalc[NAND_ECC_NUM_BYTES];
int sectorOobSize = mtd->oobsize / eccsteps;
int stat;
for (sectorIdx = 0; sectorIdx < eccsteps;
sectorIdx++, datap += eccsize) {
if (sectorIdx > 0) {
/* Seek to page location within sector */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, sectorIdx * eccsize,
-1);
}
/* Enable hardware ECC before reading the buf */
nand_bcm_umi_bch_enable_read_hwecc();
/* Read in data */
bcm_umi_nand_read_buf(mtd, datap, eccsize);
/* Pause hardware ECC after reading the buf */
nand_bcm_umi_bch_pause_read_ecc_calc();
/* Read the OOB ECC */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
mtd->writesize + sectorIdx * sectorOobSize, -1);
nand_bcm_umi_bch_read_oobEcc(mtd->writesize, eccCalc,
NAND_ECC_NUM_BYTES,
chip->oob_poi +
sectorIdx * sectorOobSize);
/* Correct any ECC detected errors */
stat =
nand_bcm_umi_bch_correct_page(datap, eccCalc,
NAND_ECC_NUM_BYTES);
/* Update Stats */
if (stat < 0) {
#if defined(NAND_BCM_UMI_DEBUG)
printk(KERN_WARNING "%s uncorr_err sectorIdx=%d\n",
__func__, sectorIdx);
printk(KERN_WARNING
"%s data %02x %02x %02x %02x "
"%02x %02x %02x %02x\n",
__func__, datap[0], datap[1], datap[2], datap[3],
datap[4], datap[5], datap[6], datap[7]);
printk(KERN_WARNING
"%s ecc %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x "
"%02x %02x %02x\n",
__func__, eccCalc[0], eccCalc[1], eccCalc[2],
eccCalc[3], eccCalc[4], eccCalc[5], eccCalc[6],
eccCalc[7], eccCalc[8], eccCalc[9], eccCalc[10],
eccCalc[11], eccCalc[12]);
BUG();
#endif
mtd->ecc_stats.failed++;
} else {
#if defined(NAND_BCM_UMI_DEBUG)
if (stat > 0) {
printk(KERN_INFO
"%s %d correctable_errors detected\n",
__func__, stat);
}
#endif
mtd->ecc_stats.corrected += stat;
}
}
return 0;
}
/****************************************************************************
*
* bcm_umi_bch_write_page_hwecc - hardware ecc based page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
*
***************************************************************************/
static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf)
{
int sectorIdx = 0;
int eccsize = chip->ecc.size;
int eccsteps = chip->ecc.steps;
const uint8_t *datap = buf;
uint8_t *oobp = chip->oob_poi;
int sectorOobSize = mtd->oobsize / eccsteps;
for (sectorIdx = 0; sectorIdx < eccsteps;
sectorIdx++, datap += eccsize, oobp += sectorOobSize) {
/* Enable hardware ECC before writing the buf */
nand_bcm_umi_bch_enable_write_hwecc();
bcm_umi_nand_write_buf(mtd, datap, eccsize);
nand_bcm_umi_bch_write_oobEcc(mtd->writesize, oobp,
NAND_ECC_NUM_BYTES);
}
bcm_umi_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
}

View File

@ -0,0 +1,581 @@
/*****************************************************************************
* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/* ---- Include Files ---------------------------------------------------- */
#include <linux/version.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <asm/mach-types.h>
#include <asm/system.h>
#include <mach/reg_nand.h>
#include <mach/reg_umi.h>
#include "nand_bcm_umi.h"
#include <mach/memory_settings.h>
#define USE_DMA 1
#include <mach/dma.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
/* ---- External Variable Declarations ----------------------------------- */
/* ---- External Function Prototypes ------------------------------------- */
/* ---- Public Variables ------------------------------------------------- */
/* ---- Private Constants and Types -------------------------------------- */
static const __devinitconst char gBanner[] = KERN_INFO \
"BCM UMI MTD NAND Driver: 1.00\n";
#ifdef CONFIG_MTD_PARTITIONS
const char *part_probes[] = { "cmdlinepart", NULL };
#endif
#if NAND_ECC_BCH
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr largepage_bbt = {
.options = 0,
.offs = 0,
.len = 1,
.pattern = scan_ff_pattern
};
#endif
/*
** Preallocate a buffer to avoid having to do this every dma operation.
** This is the size of the preallocated coherent DMA buffer.
*/
#if USE_DMA
#define DMA_MIN_BUFLEN 512
#define DMA_MAX_BUFLEN PAGE_SIZE
#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \
((len) > DMA_MAX_BUFLEN))
/*
* The current NAND data space goes from 0x80001900 to 0x80001FFF,
* which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
* size NAND flash. Need to break the DMA down to multiple 1Ks.
*
* Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
*/
#define DMA_MAX_LEN 1024
#else /* !USE_DMA */
#define DMA_MIN_BUFLEN 0
#define DMA_MAX_BUFLEN 0
#define USE_DIRECT_IO(len) 1
#endif
/* ---- Private Function Prototypes -------------------------------------- */
static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
int len);
/* ---- Private Variables ------------------------------------------------ */
static struct mtd_info *board_mtd;
static void __iomem *bcm_umi_io_base;
static void *virtPtr;
static dma_addr_t physPtr;
static struct completion nand_comp;
/* ---- Private Functions ------------------------------------------------ */
#if NAND_ECC_BCH
#include "bcm_umi_bch.c"
#else
#include "bcm_umi_hamming.c"
#endif
#if USE_DMA
/* Handler called when the DMA finishes. */
static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
{
complete(&nand_comp);
}
static int nand_dma_init(void)
{
int rc;
rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
nand_dma_handler, NULL);
if (rc != 0) {
printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
return rc;
}
virtPtr =
dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
if (virtPtr == NULL) {
printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
return -ENOMEM;
}
return 0;
}
static void nand_dma_term(void)
{
if (virtPtr != NULL)
dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
}
static void nand_dma_read(void *buf, int len)
{
int offset = 0;
int tmp_len = 0;
int len_left = len;
DMA_Handle_t hndl;
if (virtPtr == NULL)
panic("nand_dma_read: virtPtr == NULL\n");
if ((void *)physPtr == NULL)
panic("nand_dma_read: physPtr == NULL\n");
hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
if (hndl < 0) {
printk(KERN_ERR
"nand_dma_read: unable to allocate dma channel: %d\n",
(int)hndl);
panic("\n");
}
while (len_left > 0) {
if (len_left > DMA_MAX_LEN) {
tmp_len = DMA_MAX_LEN;
len_left -= DMA_MAX_LEN;
} else {
tmp_len = len_left;
len_left = 0;
}
init_completion(&nand_comp);
dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
physPtr + offset, tmp_len);
wait_for_completion(&nand_comp);
offset += tmp_len;
}
dma_free_channel(hndl);
if (buf != NULL)
memcpy(buf, virtPtr, len);
}
static void nand_dma_write(const void *buf, int len)
{
int offset = 0;
int tmp_len = 0;
int len_left = len;
DMA_Handle_t hndl;
if (buf == NULL)
panic("nand_dma_write: buf == NULL\n");
if (virtPtr == NULL)
panic("nand_dma_write: virtPtr == NULL\n");
if ((void *)physPtr == NULL)
panic("nand_dma_write: physPtr == NULL\n");
memcpy(virtPtr, buf, len);
hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
if (hndl < 0) {
printk(KERN_ERR
"nand_dma_write: unable to allocate dma channel: %d\n",
(int)hndl);
panic("\n");
}
while (len_left > 0) {
if (len_left > DMA_MAX_LEN) {
tmp_len = DMA_MAX_LEN;
len_left -= DMA_MAX_LEN;
} else {
tmp_len = len_left;
len_left = 0;
}
init_completion(&nand_comp);
dma_transfer_mem_to_mem(hndl, physPtr + offset,
REG_NAND_DATA_PADDR, tmp_len);
wait_for_completion(&nand_comp);
offset += tmp_len;
}
dma_free_channel(hndl);
}
#endif
static int nand_dev_ready(struct mtd_info *mtd)
{
return nand_bcm_umi_dev_ready();
}
/****************************************************************************
*
* bcm_umi_nand_inithw
*
* This routine does the necessary hardware (board-specific)
* initializations. This includes setting up the timings, etc.
*
***************************************************************************/
int bcm_umi_nand_inithw(void)
{
/* Configure nand timing parameters */
REG_UMI_NAND_TCR &= ~0x7ffff;
REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
/* enable software control of CS */
REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
#endif
/* keep NAND chip select asserted */
REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
/* enable writes to flash */
REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
nand_bcm_umi_wait_till_ready();
#if NAND_ECC_BCH
nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
#endif
return 0;
}
/* Used to turn latch the proper register for access. */
static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
/* send command to hardware */
struct nand_chip *chip = mtd->priv;
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_CLE) {
chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
goto CMD;
}
if (ctrl & NAND_ALE) {
chip->IO_ADDR_W =
bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
goto CMD;
}
chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
}
CMD:
/* Send command to chip directly */
if (cmd != NAND_CMD_NONE)
writeb(cmd, chip->IO_ADDR_W);
}
static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
int len)
{
if (USE_DIRECT_IO(len)) {
/* Do it the old way if the buffer is small or too large.
* Probably quicker than starting and checking dma. */
int i;
struct nand_chip *this = mtd->priv;
for (i = 0; i < len; i++)
writeb(buf[i], this->IO_ADDR_W);
}
#if USE_DMA
else
nand_dma_write(buf, len);
#endif
}
static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
{
if (USE_DIRECT_IO(len)) {
int i;
struct nand_chip *this = mtd->priv;
for (i = 0; i < len; i++)
buf[i] = readb(this->IO_ADDR_R);
}
#if USE_DMA
else
nand_dma_read(buf, len);
#endif
}
static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
int len)
{
/*
* Try to readback page with ECC correction. This is necessary
* for MLC parts which may have permanently stuck bits.
*/
struct nand_chip *chip = mtd->priv;
int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0);
if (ret < 0)
return -EFAULT;
else {
if (memcmp(readbackbuf, buf, len) == 0)
return 0;
return -EFAULT;
}
return 0;
}
static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
{
struct nand_chip *this;
struct resource *r;
int err = 0;
printk(gBanner);
/* Allocate memory for MTD device structure and private data */
board_mtd =
kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
GFP_KERNEL);
if (!board_mtd) {
printk(KERN_WARNING
"Unable to allocate NAND MTD device structure.\n");
return -ENOMEM;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r)
return -ENXIO;
/* map physical adress */
bcm_umi_io_base = ioremap(r->start, r->end - r->start + 1);
if (!bcm_umi_io_base) {
printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
kfree(board_mtd);
return -EIO;
}
/* Get pointer to private data */
this = (struct nand_chip *)(&board_mtd[1]);
/* Initialize structures */
memset((char *)board_mtd, 0, sizeof(struct mtd_info));
memset((char *)this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
board_mtd->priv = this;
/* Initialize the NAND hardware. */
if (bcm_umi_nand_inithw() < 0) {
printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
iounmap(bcm_umi_io_base);
kfree(board_mtd);
return -EIO;
}
/* Set address of NAND IO lines */
this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
/* Set command delay time, see datasheet for correct value */
this->chip_delay = 0;
/* Assign the device ready function, if available */
this->dev_ready = nand_dev_ready;
this->options = 0;
this->write_buf = bcm_umi_nand_write_buf;
this->read_buf = bcm_umi_nand_read_buf;
this->verify_buf = bcm_umi_nand_verify_buf;
this->cmd_ctrl = bcm_umi_nand_hwcontrol;
this->ecc.mode = NAND_ECC_HW;
this->ecc.size = 512;
this->ecc.bytes = NAND_ECC_NUM_BYTES;
#if NAND_ECC_BCH
this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
#else
this->ecc.correct = nand_correct_data512;
this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
#endif
#if USE_DMA
err = nand_dma_init();
if (err != 0)
return err;
#endif
/* Figure out the size of the device that we have.
* We need to do this to figure out which ECC
* layout we'll be using.
*/
err = nand_scan_ident(board_mtd, 1);
if (err) {
printk(KERN_ERR "nand_scan failed: %d\n", err);
iounmap(bcm_umi_io_base);
kfree(board_mtd);
return err;
}
/* Now that we know the nand size, we can setup the ECC layout */
switch (board_mtd->writesize) { /* writesize is the pagesize */
case 4096:
this->ecc.layout = &nand_hw_eccoob_4096;
break;
case 2048:
this->ecc.layout = &nand_hw_eccoob_2048;
break;
case 512:
this->ecc.layout = &nand_hw_eccoob_512;
break;
default:
{
printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
board_mtd->writesize);
return -EINVAL;
}
}
#if NAND_ECC_BCH
if (board_mtd->writesize > 512) {
if (this->options & NAND_USE_FLASH_BBT)
largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
this->badblock_pattern = &largepage_bbt;
}
#endif
/* Now finish off the scan, now that ecc.layout has been initialized. */
err = nand_scan_tail(board_mtd);
if (err) {
printk(KERN_ERR "nand_scan failed: %d\n", err);
iounmap(bcm_umi_io_base);
kfree(board_mtd);
return err;
}
/* Register the partitions */
{
int nr_partitions;
struct mtd_partition *partition_info;
board_mtd->name = "bcm_umi-nand";
nr_partitions =
parse_mtd_partitions(board_mtd, part_probes,
&partition_info, 0);
if (nr_partitions <= 0) {
printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n",
nr_partitions);
iounmap(bcm_umi_io_base);
kfree(board_mtd);
return -EIO;
}
add_mtd_partitions(board_mtd, partition_info, nr_partitions);
}
/* Return happy */
return 0;
}
static int bcm_umi_nand_remove(struct platform_device *pdev)
{
#if USE_DMA
nand_dma_term();
#endif
/* Release resources, unregister device */
nand_release(board_mtd);
/* unmap physical adress */
iounmap(bcm_umi_io_base);
/* Free the MTD device structure */
kfree(board_mtd);
return 0;
}
#ifdef CONFIG_PM
static int bcm_umi_nand_suspend(struct platform_device *pdev,
pm_message_t state)
{
printk(KERN_ERR "MTD NAND suspend is being called\n");
return 0;
}
static int bcm_umi_nand_resume(struct platform_device *pdev)
{
printk(KERN_ERR "MTD NAND resume is being called\n");
return 0;
}
#else
#define bcm_umi_nand_suspend NULL
#define bcm_umi_nand_resume NULL
#endif
static struct platform_driver nand_driver = {
.driver = {
.name = "bcm-nand",
.owner = THIS_MODULE,
},
.probe = bcm_umi_nand_probe,
.remove = bcm_umi_nand_remove,
.suspend = bcm_umi_nand_suspend,
.resume = bcm_umi_nand_resume,
};
static int __init nand_init(void)
{
return platform_driver_register(&nand_driver);
}
static void __exit nand_exit(void)
{
platform_driver_unregister(&nand_driver);
}
module_init(nand_init);
module_exit(nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Broadcom");
MODULE_DESCRIPTION("BCM UMI MTD NAND driver");

View File

@ -0,0 +1,149 @@
/*****************************************************************************
* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/* ---- Include Files ---------------------------------------------------- */
#include <mach/reg_umi.h>
#include "nand_bcm_umi.h"
#ifdef BOOT0_BUILD
#include <uart.h>
#endif
/* ---- External Variable Declarations ----------------------------------- */
/* ---- External Function Prototypes ------------------------------------- */
/* ---- Public Variables ------------------------------------------------- */
/* ---- Private Constants and Types -------------------------------------- */
/* ---- Private Function Prototypes -------------------------------------- */
/* ---- Private Variables ------------------------------------------------ */
/* ---- Private Functions ------------------------------------------------ */
#if NAND_ECC_BCH
/****************************************************************************
* nand_bch_ecc_flip_bit - Routine to flip an errored bit
*
* PURPOSE:
* This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the
* errored bit specified
*
* PARAMETERS:
* datap - Container that holds the 512 byte data
* errorLocation - Location of the bit that needs to be flipped
*
* RETURNS:
* None
****************************************************************************/
static void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap, int errorLocation)
{
int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0;
int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3;
int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5;
uint8_t errorByte = 0;
uint8_t byteMask = 1 << locWithinAByte;
/* BCH uses big endian, need to change the location
* bits to little endian */
locWithinAWord = 3 - locWithinAWord;
errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord];
#ifdef BOOT0_BUILD
puthexs("\nECC Correct Offset: ",
locWithinAPage * sizeof(uint32_t) + locWithinAWord);
puthexs(" errorByte:", errorByte);
puthex8(" Bit: ", locWithinAByte);
#endif
if (errorByte & byteMask) {
/* bit needs to be cleared */
errorByte &= ~byteMask;
} else {
/* bit needs to be set */
errorByte |= byteMask;
}
/* write back the value with the fixed bit */
datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte;
}
/****************************************************************************
* nand_correct_page_bch - Routine to correct bit errors when reading NAND
*
* PURPOSE:
* This routine reads the BCH registers to determine if there are any bit
* errors during the read of the last 512 bytes of data + ECC bytes. If
* errors exists, the routine fixes it.
*
* PARAMETERS:
* datap - Container that holds the 512 byte data
*
* RETURNS:
* 0 or greater = Number of errors corrected
* (No errors are found or errors have been fixed)
* -1 = Error(s) cannot be fixed
****************************************************************************/
int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
int numEccBytes)
{
int numErrors;
int errorLocation;
int idx;
uint32_t regValue;
/* wait for read ECC to be valid */
regValue = nand_bcm_umi_bch_poll_read_ecc_calc();
/*
* read the control status register to determine if there
* are error'ed bits
* see if errors are correctible
*/
if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) {
int i;
for (i = 0; i < numEccBytes; i++) {
if (readEccData[i] != 0xff) {
/* errors cannot be fixed, return -1 */
return -1;
}
}
/* If ECC is unprogrammed then we can't correct,
* assume everything OK */
return 0;
}
if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) {
/* no errors */
return 0;
}
/*
* Fix errored bits by doing the following:
* 1. Read the number of errors in the control and status register
* 2. Read the error location registers that corresponds to the number
* of errors reported
* 3. Invert the bit in the data
*/
numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20;
for (idx = 0; idx < numErrors; idx++) {
errorLocation =
REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK;
/* Flip bit */
nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation);
}
/* Errors corrected */
return numErrors;
}
#endif

View File

@ -0,0 +1,358 @@
/*****************************************************************************
* Copyright 2003 - 2009 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
#ifndef NAND_BCM_UMI_H
#define NAND_BCM_UMI_H
/* ---- Include Files ---------------------------------------------------- */
#include <mach/reg_umi.h>
#include <mach/reg_nand.h>
#include <cfg_global.h>
/* ---- Constants and Types ---------------------------------------------- */
#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING)
#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
#else
#define NAND_ECC_BCH 0
#endif
#define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13
#if NAND_ECC_BCH
#ifdef BOOT0_BUILD
#define NAND_ECC_NUM_BYTES 13
#else
#define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES
#endif
#else
#define NAND_ECC_NUM_BYTES 3
#endif
#define NAND_DATA_ACCESS_SIZE 512
/* ---- Variable Externs ------------------------------------------ */
/* ---- Function Prototypes --------------------------------------- */
int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
int numEccBytes);
/* Check in device is ready */
static inline int nand_bcm_umi_dev_ready(void)
{
return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY;
}
/* Wait until device is ready */
static inline void nand_bcm_umi_wait_till_ready(void)
{
while (nand_bcm_umi_dev_ready() == 0)
;
}
/* Enable Hamming ECC */
static inline void nand_bcm_umi_hamming_enable_hwecc(void)
{
/* disable and reset ECC, 512 byte page */
REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE |
REG_UMI_NAND_ECC_CSR_256BYTE);
/* enable ECC */
REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE;
}
#if NAND_ECC_BCH
/* BCH ECC specifics */
#define ECC_BITS_PER_CORRECTABLE_BIT 13
/* Enable BCH Read ECC */
static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
{
/* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
/* Turn on ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
}
/* Enable BCH Write ECC */
static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
{
/* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID;
/* Turn on ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN;
}
/* Config number of BCH ECC bytes */
static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
{
uint32_t nValue;
uint32_t tValue;
uint32_t kValue;
uint32_t numBits = numEccBytes * 8;
/* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS =
REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
/* Every correctible bit requires 13 ECC bits */
tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT);
/* Total data in number of bits for generating and computing BCH ECC */
nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;
/* K parameter is used internally. K = N - (T * 13) */
kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT);
/* Write the settings */
REG_UMI_BCH_N = nValue;
REG_UMI_BCH_T = tValue;
REG_UMI_BCH_K = kValue;
}
/* Pause during ECC read calculation to skip bytes in OOB */
static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
{
REG_UMI_BCH_CTRL_STATUS =
REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN |
REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
}
/* Resume during ECC read calculation after skipping bytes in OOB */
static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
{
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
}
/* Poll read ECC calc to check when hardware completes */
static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
{
uint32_t regVal;
do {
/* wait for ECC to be valid */
regVal = REG_UMI_BCH_CTRL_STATUS;
} while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);
return regVal;
}
/* Poll write ECC calc to check when hardware completes */
static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
{
/* wait for ECC to be valid */
while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID)
== 0)
;
}
/* Read the OOB and ECC, for kernel write OOB to a buffer */
#if defined(__KERNEL__) && !defined(STANDALONE)
static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
uint8_t *eccCalc, int numEccBytes, uint8_t *oobp)
#else
static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
uint8_t *eccCalc, int numEccBytes)
#endif
{
int eccPos = 0;
int numToRead = 16; /* There are 16 bytes per sector in the OOB */
/* ECC is already paused when this function is called */
if (pageSize == NAND_DATA_ACCESS_SIZE) {
while (numToRead > numEccBytes) {
/* skip free oob region */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
}
/* read ECC bytes before BI */
nand_bcm_umi_bch_resume_read_ecc_calc();
while (numToRead > 11) {
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8;
eccCalc[eccPos++] = *oobp;
oobp++;
#else
eccCalc[eccPos++] = REG_NAND_DATA8;
#endif
}
nand_bcm_umi_bch_pause_read_ecc_calc();
if (numToRead == 11) {
/* read BI */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
}
/* read ECC bytes */
nand_bcm_umi_bch_resume_read_ecc_calc();
while (numToRead) {
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8;
eccCalc[eccPos++] = *oobp;
oobp++;
#else
eccCalc[eccPos++] = REG_NAND_DATA8;
#endif
numToRead--;
}
} else {
/* skip BI */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
while (numToRead > numEccBytes) {
/* skip free oob region */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
}
/* read ECC bytes */
nand_bcm_umi_bch_resume_read_ecc_calc();
while (numToRead) {
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8;
eccCalc[eccPos++] = *oobp;
oobp++;
#else
eccCalc[eccPos++] = REG_NAND_DATA8;
#endif
numToRead--;
}
}
}
/* Helper function to write ECC */
static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos,
uint8_t *oobp, uint8_t eccVal)
{
if (eccBytePos <= numEccBytes)
*oobp = eccVal;
}
/* Write OOB with ECC */
static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
uint8_t *oobp, int numEccBytes)
{
uint32_t eccVal = 0xffffffff;
/* wait for write ECC to be valid */
nand_bcm_umi_bch_poll_write_ecc_calc();
/*
** Get the hardware ecc from the 32-bit result registers.
** Read after 512 byte accesses. Format B3B2B1B0
** where B3 = ecc3, etc.
*/
if (pageSize == NAND_DATA_ACCESS_SIZE) {
/* Now fill in the ECC bytes */
if (numEccBytes >= 13)
eccVal = REG_UMI_BCH_WR_ECC_3;
/* Usually we skip CM in oob[0,1] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0],
(eccVal >> 16) & 0xff);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1],
(eccVal >> 8) & 0xff);
/* Write ECC in oob[2,3,4] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2],
eccVal & 0xff); /* ECC 12 */
if (numEccBytes >= 9)
eccVal = REG_UMI_BCH_WR_ECC_2;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3],
(eccVal >> 24) & 0xff); /* ECC11 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4],
(eccVal >> 16) & 0xff); /* ECC10 */
/* Always Skip BI in oob[5] */
} else {
/* Always Skip BI in oob[0] */
/* Now fill in the ECC bytes */
if (numEccBytes >= 13)
eccVal = REG_UMI_BCH_WR_ECC_3;
/* Usually skip CM in oob[1,2] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1],
(eccVal >> 16) & 0xff);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2],
(eccVal >> 8) & 0xff);
/* Write ECC in oob[3-15] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3],
eccVal & 0xff); /* ECC12 */
if (numEccBytes >= 9)
eccVal = REG_UMI_BCH_WR_ECC_2;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4],
(eccVal >> 24) & 0xff); /* ECC11 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5],
(eccVal >> 16) & 0xff); /* ECC10 */
}
/* Fill in the remainder of ECC locations */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6],
(eccVal >> 8) & 0xff); /* ECC9 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7],
eccVal & 0xff); /* ECC8 */
if (numEccBytes >= 5)
eccVal = REG_UMI_BCH_WR_ECC_1;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8],
(eccVal >> 24) & 0xff); /* ECC7 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9],
(eccVal >> 16) & 0xff); /* ECC6 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10],
(eccVal >> 8) & 0xff); /* ECC5 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11],
eccVal & 0xff); /* ECC4 */
if (numEccBytes >= 1)
eccVal = REG_UMI_BCH_WR_ECC_0;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12],
(eccVal >> 24) & 0xff); /* ECC3 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13],
(eccVal >> 16) & 0xff); /* ECC2 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14],
(eccVal >> 8) & 0xff); /* ECC1 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15],
eccVal & 0xff); /* ECC0 */
}
#endif
#endif /* NAND_BCM_UMI_H */