mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-12 03:26:50 +07:00
Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc-next
Ben Hutchings says: ==================== 1. Change the TX path to stop queues earlier and avoid returning NETDEV_TX_BUSY. 2. Remove some inefficiencies in soft-TSO. 3. Fix various bugs involving device state transitions and/or reset scheduling by error handlers. 4. Take advantage of my previous change to operstate initialisation. 5. Miscellaneous cleanup. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
commit
255e87657a
@ -202,11 +202,21 @@ static void efx_stop_all(struct efx_nic *efx);
|
||||
|
||||
#define EFX_ASSERT_RESET_SERIALISED(efx) \
|
||||
do { \
|
||||
if ((efx->state == STATE_RUNNING) || \
|
||||
if ((efx->state == STATE_READY) || \
|
||||
(efx->state == STATE_DISABLED)) \
|
||||
ASSERT_RTNL(); \
|
||||
} while (0)
|
||||
|
||||
static int efx_check_disabled(struct efx_nic *efx)
|
||||
{
|
||||
if (efx->state == STATE_DISABLED) {
|
||||
netif_err(efx, drv, efx->net_dev,
|
||||
"device is disabled due to earlier errors\n");
|
||||
return -EIO;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**************************************************************************
|
||||
*
|
||||
* Event queue processing
|
||||
@ -630,6 +640,16 @@ static void efx_start_datapath(struct efx_nic *efx)
|
||||
efx->rx_buffer_order = get_order(efx->rx_buffer_len +
|
||||
sizeof(struct efx_rx_page_state));
|
||||
|
||||
/* We must keep at least one descriptor in a TX ring empty.
|
||||
* We could avoid this when the queue size does not exactly
|
||||
* match the hardware ring size, but it's not that important.
|
||||
* Therefore we stop the queue when one more skb might fill
|
||||
* the ring completely. We wake it when half way back to
|
||||
* empty.
|
||||
*/
|
||||
efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
|
||||
efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
|
||||
|
||||
/* Initialise the channels */
|
||||
efx_for_each_channel(channel, efx) {
|
||||
efx_for_each_channel_tx_queue(tx_queue, channel)
|
||||
@ -730,7 +750,11 @@ efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
|
||||
struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
|
||||
u32 old_rxq_entries, old_txq_entries;
|
||||
unsigned i, next_buffer_table = 0;
|
||||
int rc = 0;
|
||||
int rc;
|
||||
|
||||
rc = efx_check_disabled(efx);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
||||
/* Not all channels should be reallocated. We must avoid
|
||||
* reallocating their buffer table entries.
|
||||
@ -1365,6 +1389,8 @@ static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
|
||||
{
|
||||
struct efx_channel *channel;
|
||||
|
||||
BUG_ON(efx->state == STATE_DISABLED);
|
||||
|
||||
if (efx->legacy_irq)
|
||||
efx->legacy_irq_enabled = true;
|
||||
efx_nic_enable_interrupts(efx);
|
||||
@ -1382,6 +1408,9 @@ static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
|
||||
{
|
||||
struct efx_channel *channel;
|
||||
|
||||
if (efx->state == STATE_DISABLED)
|
||||
return;
|
||||
|
||||
efx_mcdi_mode_poll(efx);
|
||||
|
||||
efx_nic_disable_interrupts(efx);
|
||||
@ -1533,22 +1562,21 @@ static int efx_probe_all(struct efx_nic *efx)
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Called after previous invocation(s) of efx_stop_all, restarts the port,
|
||||
* kernel transmit queues and NAPI processing, and ensures that the port is
|
||||
* scheduled to be reconfigured. This function is safe to call multiple
|
||||
* times when the NIC is in any state.
|
||||
/* If the interface is supposed to be running but is not, start
|
||||
* the hardware and software data path, regular activity for the port
|
||||
* (MAC statistics, link polling, etc.) and schedule the port to be
|
||||
* reconfigured. Interrupts must already be enabled. This function
|
||||
* is safe to call multiple times, so long as the NIC is not disabled.
|
||||
* Requires the RTNL lock.
|
||||
*/
|
||||
static void efx_start_all(struct efx_nic *efx)
|
||||
{
|
||||
EFX_ASSERT_RESET_SERIALISED(efx);
|
||||
BUG_ON(efx->state == STATE_DISABLED);
|
||||
|
||||
/* Check that it is appropriate to restart the interface. All
|
||||
* of these flags are safe to read under just the rtnl lock */
|
||||
if (efx->port_enabled)
|
||||
return;
|
||||
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
|
||||
return;
|
||||
if (!netif_running(efx->net_dev))
|
||||
if (efx->port_enabled || !netif_running(efx->net_dev))
|
||||
return;
|
||||
|
||||
efx_start_port(efx);
|
||||
@ -1582,11 +1610,11 @@ static void efx_flush_all(struct efx_nic *efx)
|
||||
cancel_work_sync(&efx->mac_work);
|
||||
}
|
||||
|
||||
/* Quiesce hardware and software without bringing the link down.
|
||||
* Safe to call multiple times, when the nic and interface is in any
|
||||
* state. The caller is guaranteed to subsequently be in a position
|
||||
* to modify any hardware and software state they see fit without
|
||||
* taking locks. */
|
||||
/* Quiesce the hardware and software data path, and regular activity
|
||||
* for the port without bringing the link down. Safe to call multiple
|
||||
* times with the NIC in almost any state, but interrupts should be
|
||||
* enabled. Requires the RTNL lock.
|
||||
*/
|
||||
static void efx_stop_all(struct efx_nic *efx)
|
||||
{
|
||||
EFX_ASSERT_RESET_SERIALISED(efx);
|
||||
@ -1739,8 +1767,6 @@ static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
|
||||
struct efx_nic *efx = netdev_priv(net_dev);
|
||||
struct mii_ioctl_data *data = if_mii(ifr);
|
||||
|
||||
EFX_ASSERT_RESET_SERIALISED(efx);
|
||||
|
||||
/* Convert phy_id from older PRTAD/DEVAD format */
|
||||
if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
|
||||
(data->phy_id & 0xfc00) == 0x0400)
|
||||
@ -1820,13 +1846,14 @@ static void efx_netpoll(struct net_device *net_dev)
|
||||
static int efx_net_open(struct net_device *net_dev)
|
||||
{
|
||||
struct efx_nic *efx = netdev_priv(net_dev);
|
||||
EFX_ASSERT_RESET_SERIALISED(efx);
|
||||
int rc;
|
||||
|
||||
netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
|
||||
raw_smp_processor_id());
|
||||
|
||||
if (efx->state == STATE_DISABLED)
|
||||
return -EIO;
|
||||
rc = efx_check_disabled(efx);
|
||||
if (rc)
|
||||
return rc;
|
||||
if (efx->phy_mode & PHY_MODE_SPECIAL)
|
||||
return -EBUSY;
|
||||
if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
|
||||
@ -1852,10 +1879,8 @@ static int efx_net_stop(struct net_device *net_dev)
|
||||
netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
|
||||
raw_smp_processor_id());
|
||||
|
||||
if (efx->state != STATE_DISABLED) {
|
||||
/* Stop the device and flush all the channels */
|
||||
efx_stop_all(efx);
|
||||
}
|
||||
/* Stop the device and flush all the channels */
|
||||
efx_stop_all(efx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -1915,9 +1940,11 @@ static void efx_watchdog(struct net_device *net_dev)
|
||||
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
|
||||
{
|
||||
struct efx_nic *efx = netdev_priv(net_dev);
|
||||
int rc;
|
||||
|
||||
EFX_ASSERT_RESET_SERIALISED(efx);
|
||||
|
||||
rc = efx_check_disabled(efx);
|
||||
if (rc)
|
||||
return rc;
|
||||
if (new_mtu > EFX_MAX_MTU)
|
||||
return -EINVAL;
|
||||
|
||||
@ -1926,8 +1953,6 @@ static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
|
||||
netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
|
||||
|
||||
mutex_lock(&efx->mac_lock);
|
||||
/* Reconfigure the MAC before enabling the dma queues so that
|
||||
* the RX buffers don't overflow */
|
||||
net_dev->mtu = new_mtu;
|
||||
efx->type->reconfigure_mac(efx);
|
||||
mutex_unlock(&efx->mac_lock);
|
||||
@ -1942,8 +1967,6 @@ static int efx_set_mac_address(struct net_device *net_dev, void *data)
|
||||
struct sockaddr *addr = data;
|
||||
char *new_addr = addr->sa_data;
|
||||
|
||||
EFX_ASSERT_RESET_SERIALISED(efx);
|
||||
|
||||
if (!is_valid_ether_addr(new_addr)) {
|
||||
netif_err(efx, drv, efx->net_dev,
|
||||
"invalid ethernet MAC address requested: %pM\n",
|
||||
@ -2079,11 +2102,27 @@ static int efx_register_netdev(struct efx_nic *efx)
|
||||
|
||||
rtnl_lock();
|
||||
|
||||
/* Enable resets to be scheduled and check whether any were
|
||||
* already requested. If so, the NIC is probably hosed so we
|
||||
* abort.
|
||||
*/
|
||||
efx->state = STATE_READY;
|
||||
smp_mb(); /* ensure we change state before checking reset_pending */
|
||||
if (efx->reset_pending) {
|
||||
netif_err(efx, probe, efx->net_dev,
|
||||
"aborting probe due to scheduled reset\n");
|
||||
rc = -EIO;
|
||||
goto fail_locked;
|
||||
}
|
||||
|
||||
rc = dev_alloc_name(net_dev, net_dev->name);
|
||||
if (rc < 0)
|
||||
goto fail_locked;
|
||||
efx_update_name(efx);
|
||||
|
||||
/* Always start with carrier off; PHY events will detect the link */
|
||||
netif_carrier_off(net_dev);
|
||||
|
||||
rc = register_netdevice(net_dev);
|
||||
if (rc)
|
||||
goto fail_locked;
|
||||
@ -2094,9 +2133,6 @@ static int efx_register_netdev(struct efx_nic *efx)
|
||||
efx_init_tx_queue_core_txq(tx_queue);
|
||||
}
|
||||
|
||||
/* Always start with carrier off; PHY events will detect the link */
|
||||
netif_carrier_off(net_dev);
|
||||
|
||||
rtnl_unlock();
|
||||
|
||||
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
||||
@ -2108,14 +2144,14 @@ static int efx_register_netdev(struct efx_nic *efx)
|
||||
|
||||
return 0;
|
||||
|
||||
fail_registered:
|
||||
rtnl_lock();
|
||||
unregister_netdevice(net_dev);
|
||||
fail_locked:
|
||||
efx->state = STATE_UNINIT;
|
||||
rtnl_unlock();
|
||||
netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
|
||||
return rc;
|
||||
|
||||
fail_registered:
|
||||
unregister_netdev(net_dev);
|
||||
return rc;
|
||||
}
|
||||
|
||||
static void efx_unregister_netdev(struct efx_nic *efx)
|
||||
@ -2138,7 +2174,11 @@ static void efx_unregister_netdev(struct efx_nic *efx)
|
||||
|
||||
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
|
||||
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
|
||||
unregister_netdev(efx->net_dev);
|
||||
|
||||
rtnl_lock();
|
||||
unregister_netdevice(efx->net_dev);
|
||||
efx->state = STATE_UNINIT;
|
||||
rtnl_unlock();
|
||||
}
|
||||
|
||||
/**************************************************************************
|
||||
@ -2154,9 +2194,9 @@ void efx_reset_down(struct efx_nic *efx, enum reset_type method)
|
||||
EFX_ASSERT_RESET_SERIALISED(efx);
|
||||
|
||||
efx_stop_all(efx);
|
||||
mutex_lock(&efx->mac_lock);
|
||||
|
||||
efx_stop_interrupts(efx, false);
|
||||
|
||||
mutex_lock(&efx->mac_lock);
|
||||
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
|
||||
efx->phy_op->fini(efx);
|
||||
efx->type->fini(efx);
|
||||
@ -2276,16 +2316,15 @@ static void efx_reset_work(struct work_struct *data)
|
||||
if (!pending)
|
||||
return;
|
||||
|
||||
/* If we're not RUNNING then don't reset. Leave the reset_pending
|
||||
* flags set so that efx_pci_probe_main will be retried */
|
||||
if (efx->state != STATE_RUNNING) {
|
||||
netif_info(efx, drv, efx->net_dev,
|
||||
"scheduled reset quenched. NIC not RUNNING\n");
|
||||
return;
|
||||
}
|
||||
|
||||
rtnl_lock();
|
||||
(void)efx_reset(efx, fls(pending) - 1);
|
||||
|
||||
/* We checked the state in efx_schedule_reset() but it may
|
||||
* have changed by now. Now that we have the RTNL lock,
|
||||
* it cannot change again.
|
||||
*/
|
||||
if (efx->state == STATE_READY)
|
||||
(void)efx_reset(efx, fls(pending) - 1);
|
||||
|
||||
rtnl_unlock();
|
||||
}
|
||||
|
||||
@ -2311,6 +2350,13 @@ void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
|
||||
}
|
||||
|
||||
set_bit(method, &efx->reset_pending);
|
||||
smp_mb(); /* ensure we change reset_pending before checking state */
|
||||
|
||||
/* If we're not READY then just leave the flags set as the cue
|
||||
* to abort probing or reschedule the reset later.
|
||||
*/
|
||||
if (ACCESS_ONCE(efx->state) != STATE_READY)
|
||||
return;
|
||||
|
||||
/* efx_process_channel() will no longer read events once a
|
||||
* reset is scheduled. So switch back to poll'd MCDI completions. */
|
||||
@ -2376,13 +2422,12 @@ static const struct efx_phy_operations efx_dummy_phy_operations = {
|
||||
/* This zeroes out and then fills in the invariants in a struct
|
||||
* efx_nic (including all sub-structures).
|
||||
*/
|
||||
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
|
||||
static int efx_init_struct(struct efx_nic *efx,
|
||||
struct pci_dev *pci_dev, struct net_device *net_dev)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Initialise common structures */
|
||||
memset(efx, 0, sizeof(*efx));
|
||||
spin_lock_init(&efx->biu_lock);
|
||||
#ifdef CONFIG_SFC_MTD
|
||||
INIT_LIST_HEAD(&efx->mtd_list);
|
||||
@ -2392,7 +2437,7 @@ static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
|
||||
INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
|
||||
efx->pci_dev = pci_dev;
|
||||
efx->msg_enable = debug;
|
||||
efx->state = STATE_INIT;
|
||||
efx->state = STATE_UNINIT;
|
||||
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
|
||||
|
||||
efx->net_dev = net_dev;
|
||||
@ -2409,8 +2454,6 @@ static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
|
||||
goto fail;
|
||||
}
|
||||
|
||||
efx->type = type;
|
||||
|
||||
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
|
||||
|
||||
/* Higher numbered interrupt modes are less capable! */
|
||||
@ -2455,6 +2498,12 @@ static void efx_fini_struct(struct efx_nic *efx)
|
||||
*/
|
||||
static void efx_pci_remove_main(struct efx_nic *efx)
|
||||
{
|
||||
/* Flush reset_work. It can no longer be scheduled since we
|
||||
* are not READY.
|
||||
*/
|
||||
BUG_ON(efx->state == STATE_READY);
|
||||
cancel_work_sync(&efx->reset_work);
|
||||
|
||||
#ifdef CONFIG_RFS_ACCEL
|
||||
free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
|
||||
efx->net_dev->rx_cpu_rmap = NULL;
|
||||
@ -2480,24 +2529,15 @@ static void efx_pci_remove(struct pci_dev *pci_dev)
|
||||
|
||||
/* Mark the NIC as fini, then stop the interface */
|
||||
rtnl_lock();
|
||||
efx->state = STATE_FINI;
|
||||
dev_close(efx->net_dev);
|
||||
|
||||
/* Allow any queued efx_resets() to complete */
|
||||
efx_stop_interrupts(efx, false);
|
||||
rtnl_unlock();
|
||||
|
||||
efx_stop_interrupts(efx, false);
|
||||
efx_sriov_fini(efx);
|
||||
efx_unregister_netdev(efx);
|
||||
|
||||
efx_mtd_remove(efx);
|
||||
|
||||
/* Wait for any scheduled resets to complete. No more will be
|
||||
* scheduled from this point because efx_stop_all() has been
|
||||
* called, we are no longer registered with driverlink, and
|
||||
* the net_device's have been removed. */
|
||||
cancel_work_sync(&efx->reset_work);
|
||||
|
||||
efx_pci_remove_main(efx);
|
||||
|
||||
efx_fini_io(efx);
|
||||
@ -2617,7 +2657,6 @@ static int efx_pci_probe_main(struct efx_nic *efx)
|
||||
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
|
||||
const struct pci_device_id *entry)
|
||||
{
|
||||
const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
|
||||
struct net_device *net_dev;
|
||||
struct efx_nic *efx;
|
||||
int rc;
|
||||
@ -2627,10 +2666,12 @@ static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
|
||||
EFX_MAX_RX_QUEUES);
|
||||
if (!net_dev)
|
||||
return -ENOMEM;
|
||||
net_dev->features |= (type->offload_features | NETIF_F_SG |
|
||||
efx = netdev_priv(net_dev);
|
||||
efx->type = (const struct efx_nic_type *) entry->driver_data;
|
||||
net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
|
||||
NETIF_F_HIGHDMA | NETIF_F_TSO |
|
||||
NETIF_F_RXCSUM);
|
||||
if (type->offload_features & NETIF_F_V6_CSUM)
|
||||
if (efx->type->offload_features & NETIF_F_V6_CSUM)
|
||||
net_dev->features |= NETIF_F_TSO6;
|
||||
/* Mask for features that also apply to VLAN devices */
|
||||
net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
|
||||
@ -2638,10 +2679,9 @@ static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
|
||||
NETIF_F_RXCSUM);
|
||||
/* All offloads can be toggled */
|
||||
net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
|
||||
efx = netdev_priv(net_dev);
|
||||
pci_set_drvdata(pci_dev, efx);
|
||||
SET_NETDEV_DEV(net_dev, &pci_dev->dev);
|
||||
rc = efx_init_struct(efx, type, pci_dev, net_dev);
|
||||
rc = efx_init_struct(efx, pci_dev, net_dev);
|
||||
if (rc)
|
||||
goto fail1;
|
||||
|
||||
@ -2656,28 +2696,9 @@ static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
|
||||
goto fail2;
|
||||
|
||||
rc = efx_pci_probe_main(efx);
|
||||
|
||||
/* Serialise against efx_reset(). No more resets will be
|
||||
* scheduled since efx_stop_all() has been called, and we have
|
||||
* not and never have been registered.
|
||||
*/
|
||||
cancel_work_sync(&efx->reset_work);
|
||||
|
||||
if (rc)
|
||||
goto fail3;
|
||||
|
||||
/* If there was a scheduled reset during probe, the NIC is
|
||||
* probably hosed anyway.
|
||||
*/
|
||||
if (efx->reset_pending) {
|
||||
rc = -EIO;
|
||||
goto fail4;
|
||||
}
|
||||
|
||||
/* Switch to the running state before we expose the device to the OS,
|
||||
* so that dev_open()|efx_start_all() will actually start the device */
|
||||
efx->state = STATE_RUNNING;
|
||||
|
||||
rc = efx_register_netdev(efx);
|
||||
if (rc)
|
||||
goto fail4;
|
||||
@ -2717,12 +2738,18 @@ static int efx_pm_freeze(struct device *dev)
|
||||
{
|
||||
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
||||
|
||||
efx->state = STATE_FINI;
|
||||
rtnl_lock();
|
||||
|
||||
netif_device_detach(efx->net_dev);
|
||||
if (efx->state != STATE_DISABLED) {
|
||||
efx->state = STATE_UNINIT;
|
||||
|
||||
efx_stop_all(efx);
|
||||
efx_stop_interrupts(efx, false);
|
||||
netif_device_detach(efx->net_dev);
|
||||
|
||||
efx_stop_all(efx);
|
||||
efx_stop_interrupts(efx, false);
|
||||
}
|
||||
|
||||
rtnl_unlock();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -2731,21 +2758,25 @@ static int efx_pm_thaw(struct device *dev)
|
||||
{
|
||||
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
|
||||
|
||||
efx->state = STATE_INIT;
|
||||
rtnl_lock();
|
||||
|
||||
efx_start_interrupts(efx, false);
|
||||
if (efx->state != STATE_DISABLED) {
|
||||
efx_start_interrupts(efx, false);
|
||||
|
||||
mutex_lock(&efx->mac_lock);
|
||||
efx->phy_op->reconfigure(efx);
|
||||
mutex_unlock(&efx->mac_lock);
|
||||
mutex_lock(&efx->mac_lock);
|
||||
efx->phy_op->reconfigure(efx);
|
||||
mutex_unlock(&efx->mac_lock);
|
||||
|
||||
efx_start_all(efx);
|
||||
efx_start_all(efx);
|
||||
|
||||
netif_device_attach(efx->net_dev);
|
||||
netif_device_attach(efx->net_dev);
|
||||
|
||||
efx->state = STATE_RUNNING;
|
||||
efx->state = STATE_READY;
|
||||
|
||||
efx->type->resume_wol(efx);
|
||||
efx->type->resume_wol(efx);
|
||||
}
|
||||
|
||||
rtnl_unlock();
|
||||
|
||||
/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
|
||||
queue_work(reset_workqueue, &efx->reset_work);
|
||||
|
@ -529,9 +529,7 @@ static void efx_ethtool_self_test(struct net_device *net_dev,
|
||||
if (!efx_tests)
|
||||
goto fail;
|
||||
|
||||
|
||||
ASSERT_RTNL();
|
||||
if (efx->state != STATE_RUNNING) {
|
||||
if (efx->state != STATE_READY) {
|
||||
rc = -EIO;
|
||||
goto fail1;
|
||||
}
|
||||
|
@ -380,7 +380,7 @@ static ssize_t set_phy_flash_cfg(struct device *dev,
|
||||
new_mode = PHY_MODE_SPECIAL;
|
||||
if (!((old_mode ^ new_mode) & PHY_MODE_SPECIAL)) {
|
||||
err = 0;
|
||||
} else if (efx->state != STATE_RUNNING || netif_running(efx->net_dev)) {
|
||||
} else if (efx->state != STATE_READY || netif_running(efx->net_dev)) {
|
||||
err = -EBUSY;
|
||||
} else {
|
||||
/* Reset the PHY, reconfigure the MAC and enable/disable
|
||||
|
@ -91,29 +91,31 @@ struct efx_special_buffer {
|
||||
};
|
||||
|
||||
/**
|
||||
* struct efx_tx_buffer - An Efx TX buffer
|
||||
* @skb: The associated socket buffer.
|
||||
* Set only on the final fragment of a packet; %NULL for all other
|
||||
* fragments. When this fragment completes, then we can free this
|
||||
* skb.
|
||||
* @tsoh: The associated TSO header structure, or %NULL if this
|
||||
* buffer is not a TSO header.
|
||||
* struct efx_tx_buffer - buffer state for a TX descriptor
|
||||
* @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
|
||||
* freed when descriptor completes
|
||||
* @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
|
||||
* freed when descriptor completes.
|
||||
* @dma_addr: DMA address of the fragment.
|
||||
* @flags: Flags for allocation and DMA mapping type
|
||||
* @len: Length of this fragment.
|
||||
* This field is zero when the queue slot is empty.
|
||||
* @continuation: True if this fragment is not the end of a packet.
|
||||
* @unmap_single: True if dma_unmap_single should be used.
|
||||
* @unmap_len: Length of this fragment to unmap
|
||||
*/
|
||||
struct efx_tx_buffer {
|
||||
const struct sk_buff *skb;
|
||||
struct efx_tso_header *tsoh;
|
||||
union {
|
||||
const struct sk_buff *skb;
|
||||
void *heap_buf;
|
||||
};
|
||||
dma_addr_t dma_addr;
|
||||
unsigned short flags;
|
||||
unsigned short len;
|
||||
bool continuation;
|
||||
bool unmap_single;
|
||||
unsigned short unmap_len;
|
||||
};
|
||||
#define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
|
||||
#define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
|
||||
#define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */
|
||||
#define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
|
||||
|
||||
/**
|
||||
* struct efx_tx_queue - An Efx TX queue
|
||||
@ -133,6 +135,7 @@ struct efx_tx_buffer {
|
||||
* @channel: The associated channel
|
||||
* @core_txq: The networking core TX queue structure
|
||||
* @buffer: The software buffer ring
|
||||
* @tsoh_page: Array of pages of TSO header buffers
|
||||
* @txd: The hardware descriptor ring
|
||||
* @ptr_mask: The size of the ring minus 1.
|
||||
* @initialised: Has hardware queue been initialised?
|
||||
@ -156,9 +159,6 @@ struct efx_tx_buffer {
|
||||
* variable indicates that the queue is full. This is to
|
||||
* avoid cache-line ping-pong between the xmit path and the
|
||||
* completion path.
|
||||
* @tso_headers_free: A list of TSO headers allocated for this TX queue
|
||||
* that are not in use, and so available for new TSO sends. The list
|
||||
* is protected by the TX queue lock.
|
||||
* @tso_bursts: Number of times TSO xmit invoked by kernel
|
||||
* @tso_long_headers: Number of packets with headers too long for standard
|
||||
* blocks
|
||||
@ -175,6 +175,7 @@ struct efx_tx_queue {
|
||||
struct efx_channel *channel;
|
||||
struct netdev_queue *core_txq;
|
||||
struct efx_tx_buffer *buffer;
|
||||
struct efx_buffer *tsoh_page;
|
||||
struct efx_special_buffer txd;
|
||||
unsigned int ptr_mask;
|
||||
bool initialised;
|
||||
@ -187,7 +188,6 @@ struct efx_tx_queue {
|
||||
unsigned int insert_count ____cacheline_aligned_in_smp;
|
||||
unsigned int write_count;
|
||||
unsigned int old_read_count;
|
||||
struct efx_tso_header *tso_headers_free;
|
||||
unsigned int tso_bursts;
|
||||
unsigned int tso_long_headers;
|
||||
unsigned int tso_packets;
|
||||
@ -430,11 +430,9 @@ enum efx_int_mode {
|
||||
#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
|
||||
|
||||
enum nic_state {
|
||||
STATE_INIT = 0,
|
||||
STATE_RUNNING = 1,
|
||||
STATE_FINI = 2,
|
||||
STATE_DISABLED = 3,
|
||||
STATE_MAX,
|
||||
STATE_UNINIT = 0, /* device being probed/removed or is frozen */
|
||||
STATE_READY = 1, /* hardware ready and netdev registered */
|
||||
STATE_DISABLED = 2, /* device disabled due to hardware errors */
|
||||
};
|
||||
|
||||
/*
|
||||
@ -654,7 +652,7 @@ struct vfdi_status;
|
||||
* @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
|
||||
* @irq_rx_moderation: IRQ moderation time for RX event queues
|
||||
* @msg_enable: Log message enable flags
|
||||
* @state: Device state flag. Serialised by the rtnl_lock.
|
||||
* @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
|
||||
* @reset_pending: Bitmask for pending resets
|
||||
* @tx_queue: TX DMA queues
|
||||
* @rx_queue: RX DMA queues
|
||||
@ -664,6 +662,8 @@ struct vfdi_status;
|
||||
* should be allocated for this NIC
|
||||
* @rxq_entries: Size of receive queues requested by user.
|
||||
* @txq_entries: Size of transmit queues requested by user.
|
||||
* @txq_stop_thresh: TX queue fill level at or above which we stop it.
|
||||
* @txq_wake_thresh: TX queue fill level at or below which we wake it.
|
||||
* @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
|
||||
* @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
|
||||
* @sram_lim_qw: Qword address limit of SRAM
|
||||
@ -774,6 +774,9 @@ struct efx_nic {
|
||||
|
||||
unsigned rxq_entries;
|
||||
unsigned txq_entries;
|
||||
unsigned int txq_stop_thresh;
|
||||
unsigned int txq_wake_thresh;
|
||||
|
||||
unsigned tx_dc_base;
|
||||
unsigned rx_dc_base;
|
||||
unsigned sram_lim_qw;
|
||||
|
@ -298,7 +298,7 @@ efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
||||
/**************************************************************************
|
||||
*
|
||||
* Generic buffer handling
|
||||
* These buffers are used for interrupt status and MAC stats
|
||||
* These buffers are used for interrupt status, MAC stats, etc.
|
||||
*
|
||||
**************************************************************************/
|
||||
|
||||
@ -401,8 +401,10 @@ void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
|
||||
++tx_queue->write_count;
|
||||
|
||||
/* Create TX descriptor ring entry */
|
||||
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
|
||||
EFX_POPULATE_QWORD_4(*txd,
|
||||
FSF_AZ_TX_KER_CONT, buffer->continuation,
|
||||
FSF_AZ_TX_KER_CONT,
|
||||
buffer->flags & EFX_TX_BUF_CONT,
|
||||
FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
|
||||
FSF_AZ_TX_KER_BUF_REGION, 0,
|
||||
FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
|
||||
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user