mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 23:46:48 +07:00
sfc: move common tx code
Once again, a tiny bit of refactoring was required to stitch the code together (i.e. adding headers). The moved code deals with managing tx queues and mappings. Signed-off-by: Alexandru-Mihai Maftei <amaftei@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
1751cc365f
commit
17d3b21c7b
@ -1,7 +1,7 @@
|
||||
# SPDX-License-Identifier: GPL-2.0
|
||||
sfc-y += efx.o efx_common.o efx_channels.o nic.o \
|
||||
farch.o siena.o ef10.o \
|
||||
tx.o rx.o rx_common.o \
|
||||
tx.o tx_common.o rx.o rx_common.o \
|
||||
selftest.o ethtool.o ptp.o tx_tso.o \
|
||||
mcdi.o mcdi_port.o \
|
||||
mcdi_mon.o
|
||||
|
@ -57,72 +57,6 @@ u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
|
||||
return efx_tx_get_copy_buffer(tx_queue, buffer);
|
||||
}
|
||||
|
||||
void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tx_buffer *buffer,
|
||||
unsigned int *pkts_compl,
|
||||
unsigned int *bytes_compl)
|
||||
{
|
||||
if (buffer->unmap_len) {
|
||||
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
|
||||
dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
|
||||
if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
|
||||
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
else
|
||||
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
buffer->unmap_len = 0;
|
||||
}
|
||||
|
||||
if (buffer->flags & EFX_TX_BUF_SKB) {
|
||||
struct sk_buff *skb = (struct sk_buff *)buffer->skb;
|
||||
|
||||
EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
|
||||
(*pkts_compl)++;
|
||||
(*bytes_compl) += skb->len;
|
||||
if (tx_queue->timestamping &&
|
||||
(tx_queue->completed_timestamp_major ||
|
||||
tx_queue->completed_timestamp_minor)) {
|
||||
struct skb_shared_hwtstamps hwtstamp;
|
||||
|
||||
hwtstamp.hwtstamp =
|
||||
efx_ptp_nic_to_kernel_time(tx_queue);
|
||||
skb_tstamp_tx(skb, &hwtstamp);
|
||||
|
||||
tx_queue->completed_timestamp_major = 0;
|
||||
tx_queue->completed_timestamp_minor = 0;
|
||||
}
|
||||
dev_consume_skb_any((struct sk_buff *)buffer->skb);
|
||||
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
|
||||
"TX queue %d transmission id %x complete\n",
|
||||
tx_queue->queue, tx_queue->read_count);
|
||||
} else if (buffer->flags & EFX_TX_BUF_XDP) {
|
||||
xdp_return_frame_rx_napi(buffer->xdpf);
|
||||
}
|
||||
|
||||
buffer->len = 0;
|
||||
buffer->flags = 0;
|
||||
}
|
||||
|
||||
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
|
||||
{
|
||||
/* Header and payload descriptor for each output segment, plus
|
||||
* one for every input fragment boundary within a segment
|
||||
*/
|
||||
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
|
||||
|
||||
/* Possibly one more per segment for option descriptors */
|
||||
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
||||
max_descs += EFX_TSO_MAX_SEGS;
|
||||
|
||||
/* Possibly more for PCIe page boundaries within input fragments */
|
||||
if (PAGE_SIZE > EFX_PAGE_SIZE)
|
||||
max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
|
||||
DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
|
||||
|
||||
return max_descs;
|
||||
}
|
||||
|
||||
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
|
||||
{
|
||||
/* We need to consider both queues that the net core sees as one */
|
||||
@ -334,107 +268,6 @@ static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
|
||||
}
|
||||
#endif /* EFX_USE_PIO */
|
||||
|
||||
struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr,
|
||||
size_t len)
|
||||
{
|
||||
const struct efx_nic_type *nic_type = tx_queue->efx->type;
|
||||
struct efx_tx_buffer *buffer;
|
||||
unsigned int dma_len;
|
||||
|
||||
/* Map the fragment taking account of NIC-dependent DMA limits. */
|
||||
do {
|
||||
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
|
||||
|
||||
buffer->len = dma_len;
|
||||
buffer->dma_addr = dma_addr;
|
||||
buffer->flags = EFX_TX_BUF_CONT;
|
||||
len -= dma_len;
|
||||
dma_addr += dma_len;
|
||||
++tx_queue->insert_count;
|
||||
} while (len);
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
/* Map all data from an SKB for DMA and create descriptors on the queue.
|
||||
*/
|
||||
int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
||||
unsigned int segment_count)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
struct device *dma_dev = &efx->pci_dev->dev;
|
||||
unsigned int frag_index, nr_frags;
|
||||
dma_addr_t dma_addr, unmap_addr;
|
||||
unsigned short dma_flags;
|
||||
size_t len, unmap_len;
|
||||
|
||||
nr_frags = skb_shinfo(skb)->nr_frags;
|
||||
frag_index = 0;
|
||||
|
||||
/* Map header data. */
|
||||
len = skb_headlen(skb);
|
||||
dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
|
||||
dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
||||
unmap_len = len;
|
||||
unmap_addr = dma_addr;
|
||||
|
||||
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
||||
return -EIO;
|
||||
|
||||
if (segment_count) {
|
||||
/* For TSO we need to put the header in to a separate
|
||||
* descriptor. Map this separately if necessary.
|
||||
*/
|
||||
size_t header_len = skb_transport_header(skb) - skb->data +
|
||||
(tcp_hdr(skb)->doff << 2u);
|
||||
|
||||
if (header_len != len) {
|
||||
tx_queue->tso_long_headers++;
|
||||
efx_tx_map_chunk(tx_queue, dma_addr, header_len);
|
||||
len -= header_len;
|
||||
dma_addr += header_len;
|
||||
}
|
||||
}
|
||||
|
||||
/* Add descriptors for each fragment. */
|
||||
do {
|
||||
struct efx_tx_buffer *buffer;
|
||||
skb_frag_t *fragment;
|
||||
|
||||
buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
|
||||
|
||||
/* The final descriptor for a fragment is responsible for
|
||||
* unmapping the whole fragment.
|
||||
*/
|
||||
buffer->flags = EFX_TX_BUF_CONT | dma_flags;
|
||||
buffer->unmap_len = unmap_len;
|
||||
buffer->dma_offset = buffer->dma_addr - unmap_addr;
|
||||
|
||||
if (frag_index >= nr_frags) {
|
||||
/* Store SKB details with the final buffer for
|
||||
* the completion.
|
||||
*/
|
||||
buffer->skb = skb;
|
||||
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Move on to the next fragment. */
|
||||
fragment = &skb_shinfo(skb)->frags[frag_index++];
|
||||
len = skb_frag_size(fragment);
|
||||
dma_addr = skb_frag_dma_map(dma_dev, fragment,
|
||||
0, len, DMA_TO_DEVICE);
|
||||
dma_flags = 0;
|
||||
unmap_len = len;
|
||||
unmap_addr = dma_addr;
|
||||
|
||||
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
||||
return -EIO;
|
||||
} while (1);
|
||||
}
|
||||
|
||||
/* Remove buffers put into a tx_queue for the current packet.
|
||||
* None of the buffers must have an skb attached.
|
||||
*/
|
||||
@ -877,131 +710,3 @@ void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
|
||||
}
|
||||
|
||||
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
unsigned int entries;
|
||||
int rc;
|
||||
|
||||
/* Create the smallest power-of-two aligned ring */
|
||||
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
|
||||
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
||||
tx_queue->ptr_mask = entries - 1;
|
||||
|
||||
netif_dbg(efx, probe, efx->net_dev,
|
||||
"creating TX queue %d size %#x mask %#x\n",
|
||||
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
|
||||
|
||||
/* Allocate software ring */
|
||||
tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
|
||||
GFP_KERNEL);
|
||||
if (!tx_queue->buffer)
|
||||
return -ENOMEM;
|
||||
|
||||
tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
|
||||
sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
|
||||
if (!tx_queue->cb_page) {
|
||||
rc = -ENOMEM;
|
||||
goto fail1;
|
||||
}
|
||||
|
||||
/* Allocate hardware ring */
|
||||
rc = efx_nic_probe_tx(tx_queue);
|
||||
if (rc)
|
||||
goto fail2;
|
||||
|
||||
return 0;
|
||||
|
||||
fail2:
|
||||
kfree(tx_queue->cb_page);
|
||||
tx_queue->cb_page = NULL;
|
||||
fail1:
|
||||
kfree(tx_queue->buffer);
|
||||
tx_queue->buffer = NULL;
|
||||
return rc;
|
||||
}
|
||||
|
||||
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
|
||||
netif_dbg(efx, drv, efx->net_dev,
|
||||
"initialising TX queue %d\n", tx_queue->queue);
|
||||
|
||||
tx_queue->insert_count = 0;
|
||||
tx_queue->write_count = 0;
|
||||
tx_queue->packet_write_count = 0;
|
||||
tx_queue->old_write_count = 0;
|
||||
tx_queue->read_count = 0;
|
||||
tx_queue->old_read_count = 0;
|
||||
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
|
||||
tx_queue->xmit_more_available = false;
|
||||
tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
|
||||
tx_queue->channel == efx_ptp_channel(efx));
|
||||
tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
|
||||
tx_queue->completed_timestamp_major = 0;
|
||||
tx_queue->completed_timestamp_minor = 0;
|
||||
|
||||
tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
|
||||
|
||||
/* Set up default function pointers. These may get replaced by
|
||||
* efx_nic_init_tx() based off NIC/queue capabilities.
|
||||
*/
|
||||
tx_queue->handle_tso = efx_enqueue_skb_tso;
|
||||
|
||||
/* Set up TX descriptor ring */
|
||||
efx_nic_init_tx(tx_queue);
|
||||
|
||||
tx_queue->initialised = true;
|
||||
}
|
||||
|
||||
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
|
||||
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
||||
"shutting down TX queue %d\n", tx_queue->queue);
|
||||
|
||||
if (!tx_queue->buffer)
|
||||
return;
|
||||
|
||||
/* Free any buffers left in the ring */
|
||||
while (tx_queue->read_count != tx_queue->write_count) {
|
||||
unsigned int pkts_compl = 0, bytes_compl = 0;
|
||||
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
|
||||
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
|
||||
|
||||
++tx_queue->read_count;
|
||||
}
|
||||
tx_queue->xmit_more_available = false;
|
||||
netdev_tx_reset_queue(tx_queue->core_txq);
|
||||
}
|
||||
|
||||
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (!tx_queue->buffer)
|
||||
return;
|
||||
|
||||
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
||||
"destroying TX queue %d\n", tx_queue->queue);
|
||||
efx_nic_remove_tx(tx_queue);
|
||||
|
||||
if (tx_queue->cb_page) {
|
||||
for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
|
||||
efx_nic_free_buffer(tx_queue->efx,
|
||||
&tx_queue->cb_page[i]);
|
||||
kfree(tx_queue->cb_page);
|
||||
tx_queue->cb_page = NULL;
|
||||
}
|
||||
|
||||
kfree(tx_queue->buffer);
|
||||
tx_queue->buffer = NULL;
|
||||
}
|
||||
|
310
drivers/net/ethernet/sfc/tx_common.c
Normal file
310
drivers/net/ethernet/sfc/tx_common.c
Normal file
@ -0,0 +1,310 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/****************************************************************************
|
||||
* Driver for Solarflare network controllers and boards
|
||||
* Copyright 2018 Solarflare Communications Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 as published
|
||||
* by the Free Software Foundation, incorporated herein by reference.
|
||||
*/
|
||||
|
||||
#include "net_driver.h"
|
||||
#include "efx.h"
|
||||
#include "nic.h"
|
||||
#include "tx_common.h"
|
||||
|
||||
static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
|
||||
PAGE_SIZE >> EFX_TX_CB_ORDER);
|
||||
}
|
||||
|
||||
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
unsigned int entries;
|
||||
int rc;
|
||||
|
||||
/* Create the smallest power-of-two aligned ring */
|
||||
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
|
||||
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
||||
tx_queue->ptr_mask = entries - 1;
|
||||
|
||||
netif_dbg(efx, probe, efx->net_dev,
|
||||
"creating TX queue %d size %#x mask %#x\n",
|
||||
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
|
||||
|
||||
/* Allocate software ring */
|
||||
tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
|
||||
GFP_KERNEL);
|
||||
if (!tx_queue->buffer)
|
||||
return -ENOMEM;
|
||||
|
||||
tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
|
||||
sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
|
||||
if (!tx_queue->cb_page) {
|
||||
rc = -ENOMEM;
|
||||
goto fail1;
|
||||
}
|
||||
|
||||
/* Allocate hardware ring */
|
||||
rc = efx_nic_probe_tx(tx_queue);
|
||||
if (rc)
|
||||
goto fail2;
|
||||
|
||||
return 0;
|
||||
|
||||
fail2:
|
||||
kfree(tx_queue->cb_page);
|
||||
tx_queue->cb_page = NULL;
|
||||
fail1:
|
||||
kfree(tx_queue->buffer);
|
||||
tx_queue->buffer = NULL;
|
||||
return rc;
|
||||
}
|
||||
|
||||
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
|
||||
netif_dbg(efx, drv, efx->net_dev,
|
||||
"initialising TX queue %d\n", tx_queue->queue);
|
||||
|
||||
tx_queue->insert_count = 0;
|
||||
tx_queue->write_count = 0;
|
||||
tx_queue->packet_write_count = 0;
|
||||
tx_queue->old_write_count = 0;
|
||||
tx_queue->read_count = 0;
|
||||
tx_queue->old_read_count = 0;
|
||||
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
|
||||
tx_queue->xmit_more_available = false;
|
||||
tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
|
||||
tx_queue->channel == efx_ptp_channel(efx));
|
||||
tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
|
||||
tx_queue->completed_timestamp_major = 0;
|
||||
tx_queue->completed_timestamp_minor = 0;
|
||||
|
||||
tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
|
||||
|
||||
/* Set up default function pointers. These may get replaced by
|
||||
* efx_nic_init_tx() based off NIC/queue capabilities.
|
||||
*/
|
||||
tx_queue->handle_tso = efx_enqueue_skb_tso;
|
||||
|
||||
/* Set up TX descriptor ring */
|
||||
efx_nic_init_tx(tx_queue);
|
||||
|
||||
tx_queue->initialised = true;
|
||||
}
|
||||
|
||||
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
|
||||
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
||||
"shutting down TX queue %d\n", tx_queue->queue);
|
||||
|
||||
if (!tx_queue->buffer)
|
||||
return;
|
||||
|
||||
/* Free any buffers left in the ring */
|
||||
while (tx_queue->read_count != tx_queue->write_count) {
|
||||
unsigned int pkts_compl = 0, bytes_compl = 0;
|
||||
|
||||
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
|
||||
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
|
||||
|
||||
++tx_queue->read_count;
|
||||
}
|
||||
tx_queue->xmit_more_available = false;
|
||||
netdev_tx_reset_queue(tx_queue->core_txq);
|
||||
}
|
||||
|
||||
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (!tx_queue->buffer)
|
||||
return;
|
||||
|
||||
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
||||
"destroying TX queue %d\n", tx_queue->queue);
|
||||
efx_nic_remove_tx(tx_queue);
|
||||
|
||||
if (tx_queue->cb_page) {
|
||||
for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
|
||||
efx_nic_free_buffer(tx_queue->efx,
|
||||
&tx_queue->cb_page[i]);
|
||||
kfree(tx_queue->cb_page);
|
||||
tx_queue->cb_page = NULL;
|
||||
}
|
||||
|
||||
kfree(tx_queue->buffer);
|
||||
tx_queue->buffer = NULL;
|
||||
}
|
||||
|
||||
void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tx_buffer *buffer,
|
||||
unsigned int *pkts_compl,
|
||||
unsigned int *bytes_compl)
|
||||
{
|
||||
if (buffer->unmap_len) {
|
||||
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
|
||||
dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
|
||||
|
||||
if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
|
||||
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
else
|
||||
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
buffer->unmap_len = 0;
|
||||
}
|
||||
|
||||
if (buffer->flags & EFX_TX_BUF_SKB) {
|
||||
struct sk_buff *skb = (struct sk_buff *)buffer->skb;
|
||||
|
||||
EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
|
||||
(*pkts_compl)++;
|
||||
(*bytes_compl) += skb->len;
|
||||
if (tx_queue->timestamping &&
|
||||
(tx_queue->completed_timestamp_major ||
|
||||
tx_queue->completed_timestamp_minor)) {
|
||||
struct skb_shared_hwtstamps hwtstamp;
|
||||
|
||||
hwtstamp.hwtstamp =
|
||||
efx_ptp_nic_to_kernel_time(tx_queue);
|
||||
skb_tstamp_tx(skb, &hwtstamp);
|
||||
|
||||
tx_queue->completed_timestamp_major = 0;
|
||||
tx_queue->completed_timestamp_minor = 0;
|
||||
}
|
||||
dev_consume_skb_any((struct sk_buff *)buffer->skb);
|
||||
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
|
||||
"TX queue %d transmission id %x complete\n",
|
||||
tx_queue->queue, tx_queue->read_count);
|
||||
} else if (buffer->flags & EFX_TX_BUF_XDP) {
|
||||
xdp_return_frame_rx_napi(buffer->xdpf);
|
||||
}
|
||||
|
||||
buffer->len = 0;
|
||||
buffer->flags = 0;
|
||||
}
|
||||
|
||||
struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, size_t len)
|
||||
{
|
||||
const struct efx_nic_type *nic_type = tx_queue->efx->type;
|
||||
struct efx_tx_buffer *buffer;
|
||||
unsigned int dma_len;
|
||||
|
||||
/* Map the fragment taking account of NIC-dependent DMA limits. */
|
||||
do {
|
||||
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
|
||||
|
||||
buffer->len = dma_len;
|
||||
buffer->dma_addr = dma_addr;
|
||||
buffer->flags = EFX_TX_BUF_CONT;
|
||||
len -= dma_len;
|
||||
dma_addr += dma_len;
|
||||
++tx_queue->insert_count;
|
||||
} while (len);
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
/* Map all data from an SKB for DMA and create descriptors on the queue. */
|
||||
int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
||||
unsigned int segment_count)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
struct device *dma_dev = &efx->pci_dev->dev;
|
||||
unsigned int frag_index, nr_frags;
|
||||
dma_addr_t dma_addr, unmap_addr;
|
||||
unsigned short dma_flags;
|
||||
size_t len, unmap_len;
|
||||
|
||||
nr_frags = skb_shinfo(skb)->nr_frags;
|
||||
frag_index = 0;
|
||||
|
||||
/* Map header data. */
|
||||
len = skb_headlen(skb);
|
||||
dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
|
||||
dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
||||
unmap_len = len;
|
||||
unmap_addr = dma_addr;
|
||||
|
||||
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
||||
return -EIO;
|
||||
|
||||
if (segment_count) {
|
||||
/* For TSO we need to put the header in to a separate
|
||||
* descriptor. Map this separately if necessary.
|
||||
*/
|
||||
size_t header_len = skb_transport_header(skb) - skb->data +
|
||||
(tcp_hdr(skb)->doff << 2u);
|
||||
|
||||
if (header_len != len) {
|
||||
tx_queue->tso_long_headers++;
|
||||
efx_tx_map_chunk(tx_queue, dma_addr, header_len);
|
||||
len -= header_len;
|
||||
dma_addr += header_len;
|
||||
}
|
||||
}
|
||||
|
||||
/* Add descriptors for each fragment. */
|
||||
do {
|
||||
struct efx_tx_buffer *buffer;
|
||||
skb_frag_t *fragment;
|
||||
|
||||
buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
|
||||
|
||||
/* The final descriptor for a fragment is responsible for
|
||||
* unmapping the whole fragment.
|
||||
*/
|
||||
buffer->flags = EFX_TX_BUF_CONT | dma_flags;
|
||||
buffer->unmap_len = unmap_len;
|
||||
buffer->dma_offset = buffer->dma_addr - unmap_addr;
|
||||
|
||||
if (frag_index >= nr_frags) {
|
||||
/* Store SKB details with the final buffer for
|
||||
* the completion.
|
||||
*/
|
||||
buffer->skb = skb;
|
||||
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Move on to the next fragment. */
|
||||
fragment = &skb_shinfo(skb)->frags[frag_index++];
|
||||
len = skb_frag_size(fragment);
|
||||
dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
|
||||
DMA_TO_DEVICE);
|
||||
dma_flags = 0;
|
||||
unmap_len = len;
|
||||
unmap_addr = dma_addr;
|
||||
|
||||
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
||||
return -EIO;
|
||||
} while (1);
|
||||
}
|
||||
|
||||
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
|
||||
{
|
||||
/* Header and payload descriptor for each output segment, plus
|
||||
* one for every input fragment boundary within a segment
|
||||
*/
|
||||
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
|
||||
|
||||
/* Possibly one more per segment for option descriptors */
|
||||
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
||||
max_descs += EFX_TSO_MAX_SEGS;
|
||||
|
||||
/* Possibly more for PCIe page boundaries within input fragments */
|
||||
if (PAGE_SIZE > EFX_PAGE_SIZE)
|
||||
max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
|
||||
DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
|
||||
|
||||
return max_descs;
|
||||
}
|
Loading…
Reference in New Issue
Block a user