Staging: rtl8187se: r8180_dm.c Fixed indentation issues

Fixed indentation issues and converted spaces,
that were being use for indentation, to tabs

Signed-off-by: Andrew Miller <amiller@amilx.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Andrew Miller 2012-03-15 15:05:19 -04:00 committed by Greg Kroah-Hartman
parent aada7fdd8d
commit 1748d2de4e

View File

@ -75,12 +75,12 @@ DoTxHighPower(
// If it never enter High Power.
if( CckTxPwrIdx == u1bTmp) {
u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0; // 8dbm
write_nic_byte(dev, CCK_TXAGC, u1bTmp);
u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0; // 8dbm
write_nic_byte(dev, CCK_TXAGC, u1bTmp);
u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0; // 8dbm
write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0; // 8dbm
write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
}
} else if((priv->UndecoratedSmoothedSS < HiPwrLowerTh) &&
@ -91,16 +91,16 @@ DoTxHighPower(
//SD3 required.
u1bTmp= read_nic_byte(dev, CCK_TXAGC);
if(u1bTmp < CckTxPwrIdx) {
//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16); // 8dbm
//write_nic_byte(dev, CCK_TXAGC, u1bTmp);
write_nic_byte(dev, CCK_TXAGC, CckTxPwrIdx);
//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16); // 8dbm
//write_nic_byte(dev, CCK_TXAGC, u1bTmp);
write_nic_byte(dev, CCK_TXAGC, CckTxPwrIdx);
}
u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
if(u1bTmp < OfdmTxPwrIdx) {
//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16); // 8dbm
//write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16); // 8dbm
//write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
}
}
}
@ -121,8 +121,8 @@ void rtl8180_tx_pw_wq (struct work_struct *work)
// struct ieee80211_device * ieee = (struct ieee80211_device*)
// container_of(work, struct ieee80211_device, watch_dog_wq);
struct delayed_work *dwork = to_delayed_work(work);
struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,tx_pw_wq);
struct net_device *dev = ieee->dev;
struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,tx_pw_wq);
struct net_device *dev = ieee->dev;
// printk("----> UpdateTxPowerWorkItemCallback()\n");
@ -181,7 +181,7 @@ DIG_Zebra(
// printk("DIG**********CCK False Alarm: %#X \n",CCKFalseAlarm);
// printk("DIG**********OFDM False Alarm: %#X \n",OFDMFalseAlarm);
// The number of initial gain steps is different, by Bruce, 2007-04-13.
// The number of initial gain steps is different, by Bruce, 2007-04-13.
if (priv->InitialGain == 0 ) { //autoDIG
// Advised from SD3 DZ
priv->InitialGain = 4; // In 87B, m74dBm means State 4 (m82dBm)
@ -265,8 +265,8 @@ DynamicInitGain(struct net_device *dev)
void rtl8180_hw_dig_wq (struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,hw_dig_wq);
struct net_device *dev = ieee->dev;
struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,hw_dig_wq);
struct net_device *dev = ieee->dev;
struct r8180_priv *priv = ieee80211_priv(dev);
// Read CCK and OFDM False Alarm.
@ -280,33 +280,33 @@ void rtl8180_hw_dig_wq (struct work_struct *work)
int
IncludedInSupportedRates(
struct r8180_priv *priv,
u8 TxRate )
struct r8180_priv *priv,
u8 TxRate )
{
u8 rate_len;
u8 rate_ex_len;
u8 RateMask = 0x7F;
u8 idx;
unsigned short Found = 0;
u8 NaiveTxRate = TxRate&RateMask;
u8 rate_len;
u8 rate_ex_len;
u8 RateMask = 0x7F;
u8 idx;
unsigned short Found = 0;
u8 NaiveTxRate = TxRate&RateMask;
rate_len = priv->ieee80211->current_network.rates_len;
rate_ex_len = priv->ieee80211->current_network.rates_ex_len;
for( idx=0; idx< rate_len; idx++ ) {
if( (priv->ieee80211->current_network.rates[idx] & RateMask) == NaiveTxRate ) {
Found = 1;
goto found_rate;
}
}
for( idx=0; idx< rate_ex_len; idx++ ) {
if( (priv->ieee80211->current_network.rates_ex[idx] & RateMask) == NaiveTxRate ) {
Found = 1;
goto found_rate;
}
}
return Found;
found_rate:
return Found;
rate_len = priv->ieee80211->current_network.rates_len;
rate_ex_len = priv->ieee80211->current_network.rates_ex_len;
for( idx=0; idx< rate_len; idx++ ) {
if( (priv->ieee80211->current_network.rates[idx] & RateMask) == NaiveTxRate ) {
Found = 1;
goto found_rate;
}
}
for( idx=0; idx< rate_ex_len; idx++ ) {
if( (priv->ieee80211->current_network.rates_ex[idx] & RateMask) == NaiveTxRate ) {
Found = 1;
goto found_rate;
}
}
return Found;
found_rate:
return Found;
}
//
@ -317,64 +317,64 @@ IncludedInSupportedRates(
//
u8
GetUpgradeTxRate(
struct net_device *dev,
u8 rate
)
struct net_device *dev,
u8 rate
)
{
struct r8180_priv *priv = ieee80211_priv(dev);
u8 UpRate;
struct r8180_priv *priv = ieee80211_priv(dev);
u8 UpRate;
// Upgrade 1 degree.
switch(rate) {
case 108: // Up to 54Mbps.
UpRate = 108;
break;
// Upgrade 1 degree.
switch(rate) {
case 108: // Up to 54Mbps.
UpRate = 108;
break;
case 96: // Up to 54Mbps.
UpRate = 108;
break;
case 96: // Up to 54Mbps.
UpRate = 108;
break;
case 72: // Up to 48Mbps.
UpRate = 96;
break;
case 72: // Up to 48Mbps.
UpRate = 96;
break;
case 48: // Up to 36Mbps.
UpRate = 72;
break;
case 48: // Up to 36Mbps.
UpRate = 72;
break;
case 36: // Up to 24Mbps.
UpRate = 48;
break;
case 36: // Up to 24Mbps.
UpRate = 48;
break;
case 22: // Up to 18Mbps.
UpRate = 36;
break;
case 22: // Up to 18Mbps.
UpRate = 36;
break;
case 11: // Up to 11Mbps.
UpRate = 22;
break;
case 11: // Up to 11Mbps.
UpRate = 22;
break;
case 4: // Up to 5.5Mbps.
UpRate = 11;
break;
case 4: // Up to 5.5Mbps.
UpRate = 11;
break;
case 2: // Up to 2Mbps.
UpRate = 4;
break;
case 2: // Up to 2Mbps.
UpRate = 4;
break;
default:
printk("GetUpgradeTxRate(): Input Tx Rate(%d) is undefined!\n", rate);
return rate;
}
// Check if the rate is valid.
if(IncludedInSupportedRates(priv, UpRate)) {
default:
printk("GetUpgradeTxRate(): Input Tx Rate(%d) is undefined!\n", rate);
return rate;
}
// Check if the rate is valid.
if(IncludedInSupportedRates(priv, UpRate)) {
// printk("GetUpgradeTxRate(): GetUpgrade Tx rate(%d) from %d !\n", UpRate, priv->CurrentOperaRate);
return UpRate;
} else {
//printk("GetUpgradeTxRate(): Tx rate (%d) is not in supported rates\n", UpRate);
return rate;
}
return rate;
return UpRate;
} else {
//printk("GetUpgradeTxRate(): Tx rate (%d) is not in supported rates\n", UpRate);
return rate;
}
return rate;
}
//
// Description:
@ -384,64 +384,64 @@ GetUpgradeTxRate(
//
u8
GetDegradeTxRate(
struct net_device *dev,
u8 rate
)
struct net_device *dev,
u8 rate
)
{
struct r8180_priv *priv = ieee80211_priv(dev);
u8 DownRate;
struct r8180_priv *priv = ieee80211_priv(dev);
u8 DownRate;
// Upgrade 1 degree.
switch(rate) {
case 108: // Down to 48Mbps.
DownRate = 96;
break;
// Upgrade 1 degree.
switch(rate) {
case 108: // Down to 48Mbps.
DownRate = 96;
break;
case 96: // Down to 36Mbps.
DownRate = 72;
break;
case 96: // Down to 36Mbps.
DownRate = 72;
break;
case 72: // Down to 24Mbps.
DownRate = 48;
break;
case 72: // Down to 24Mbps.
DownRate = 48;
break;
case 48: // Down to 18Mbps.
DownRate = 36;
break;
case 48: // Down to 18Mbps.
DownRate = 36;
break;
case 36: // Down to 11Mbps.
DownRate = 22;
break;
case 36: // Down to 11Mbps.
DownRate = 22;
break;
case 22: // Down to 5.5Mbps.
DownRate = 11;
break;
case 22: // Down to 5.5Mbps.
DownRate = 11;
break;
case 11: // Down to 2Mbps.
DownRate = 4;
break;
case 11: // Down to 2Mbps.
DownRate = 4;
break;
case 4: // Down to 1Mbps.
DownRate = 2;
break;
case 4: // Down to 1Mbps.
DownRate = 2;
break;
case 2: // Down to 1Mbps.
DownRate = 2;
break;
case 2: // Down to 1Mbps.
DownRate = 2;
break;
default:
printk("GetDegradeTxRate(): Input Tx Rate(%d) is undefined!\n", rate);
return rate;
}
// Check if the rate is valid.
if(IncludedInSupportedRates(priv, DownRate)) {
default:
printk("GetDegradeTxRate(): Input Tx Rate(%d) is undefined!\n", rate);
return rate;
}
// Check if the rate is valid.
if(IncludedInSupportedRates(priv, DownRate)) {
// printk("GetDegradeTxRate(): GetDegrade Tx rate(%d) from %d!\n", DownRate, priv->CurrentOperaRate);
return DownRate;
} else {
//printk("GetDegradeTxRate(): Tx rate (%d) is not in supported rates\n", DownRate);
return rate;
}
return rate;
return DownRate;
} else {
//printk("GetDegradeTxRate(): Tx rate (%d) is not in supported rates\n", DownRate);
return rate;
}
return rate;
}
//
// Helper function to determine if specified data rate is
@ -450,16 +450,16 @@ GetDegradeTxRate(
//
bool
MgntIsCckRate(
u16 rate
)
u16 rate
)
{
bool bReturn = false;
bool bReturn = false;
if((rate <= 22) && (rate != 12) && (rate != 18)) {
bReturn = true;
}
if((rate <= 22) && (rate != 12) && (rate != 18)) {
bReturn = true;
}
return bReturn;
return bReturn;
}
//
// Description:
@ -526,19 +526,19 @@ StaRateAdaptive87SE(
)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
unsigned long CurrTxokCnt;
u16 CurrRetryCnt;
u16 CurrRetryRate;
//u16 i,idx;
unsigned long CurrRxokCnt;
bool bTryUp = false;
bool bTryDown = false;
u8 TryUpTh = 1;
u8 TryDownTh = 2;
u32 TxThroughput;
unsigned long CurrTxokCnt;
u16 CurrRetryCnt;
u16 CurrRetryRate;
//u16 i,idx;
unsigned long CurrRxokCnt;
bool bTryUp = false;
bool bTryDown = false;
u8 TryUpTh = 1;
u8 TryDownTh = 2;
u32 TxThroughput;
long CurrSignalStrength;
bool bUpdateInitialGain = false;
u8 u1bOfdm=0, u1bCck = 0;
u8 u1bOfdm=0, u1bCck = 0;
char OfdmTxPwrIdx, CckTxPwrIdx;
priv->RateAdaptivePeriod= RATE_ADAPTIVE_TIMER_PERIOD;
@ -629,7 +629,7 @@ StaRateAdaptive87SE(
// Let these rates down more difficult.
//
if(MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36)
TryDownTh += 1;
TryDownTh += 1;
//1 Adjust Rate.
if (priv->bTryuping == true) {
@ -993,9 +993,9 @@ StaRateAdaptive87SE(
// case 1: Never enter High power
if(u1bCck == CckTxPwrIdx ) {
priv->bEnhanceTxPwr= false;
write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
//printk("Recover OFDM_TXAGC : ===== u1bOfdm= 0x%x\n", OfdmTxPwrIdx);
priv->bEnhanceTxPwr= false;
write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
//printk("Recover OFDM_TXAGC : ===== u1bOfdm= 0x%x\n", OfdmTxPwrIdx);
}
// case 2: enter high power
else if(u1bCck < CckTxPwrIdx) {
@ -1050,11 +1050,11 @@ StaRateAdaptive87SE(
void rtl8180_rate_adapter(struct work_struct * work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,rate_adapter_wq);
struct net_device *dev = ieee->dev;
//struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = container_of(dwork,struct ieee80211_device,rate_adapter_wq);
struct net_device *dev = ieee->dev;
//struct r8180_priv *priv = ieee80211_priv(dev);
// DMESG("---->rtl8180_rate_adapter");
StaRateAdaptive87SE(dev);
StaRateAdaptive87SE(dev);
// DMESG("<----rtl8180_rate_adapter");
}
void timer_rate_adaptive(unsigned long data)
@ -1165,12 +1165,12 @@ SwitchAntenna(
bool bResult;
if(priv->CurrAntennaIndex == 0) {
bResult = SetAntenna8185(dev, 1);
bResult = SetAntenna8185(dev, 1);
//by amy 080312
// printk("SwitchAntenna(): switching to antenna 1 ......\n");
// bResult = SetAntenna8185(dev, 1);//-by amy 080312
} else {
bResult = SetAntenna8185(dev, 0);
bResult = SetAntenna8185(dev, 0);
//by amy 080312
// printk("SwitchAntenna(): switching to antenna 0 ......\n");
// bResult = SetAntenna8185(dev, 0);//-by amy 080312
@ -1319,35 +1319,35 @@ SwAntennaDiversity(
//
if( (!priv->bHWAdSwitched) && (bSwCheckSS)) {
//by amy 080312}
// Evaluate Rx signal strength if we shall switch antenna now.
if(priv->AdRxSignalStrength < priv->AdRxSsThreshold) {
// Rx signal strength is weak => Switch Antenna.
// printk("SwAntennaDiversity(): Rx Signal Strength is weak, CurrRxSs: %d, RxSsThreshold: %d\n",
// Evaluate Rx signal strength if we shall switch antenna now.
if(priv->AdRxSignalStrength < priv->AdRxSsThreshold) {
// Rx signal strength is weak => Switch Antenna.
// printk("SwAntennaDiversity(): Rx Signal Strength is weak, CurrRxSs: %d, RxSsThreshold: %d\n",
// priv->AdRxSignalStrength, priv->AdRxSsThreshold);
priv->AdRxSsBeforeSwitched = priv->AdRxSignalStrength;
priv->bAdSwitchedChecking = true;
priv->AdRxSsBeforeSwitched = priv->AdRxSignalStrength;
priv->bAdSwitchedChecking = true;
SwitchAntenna(dev);
} else {
// Rx signal strength is OK.
// printk("SwAntennaDiversity(): Rx Signal Strength is OK, CurrRxSs: %d, RxSsThreshold: %d\n",
SwitchAntenna(dev);
} else {
// Rx signal strength is OK.
// printk("SwAntennaDiversity(): Rx Signal Strength is OK, CurrRxSs: %d, RxSsThreshold: %d\n",
// priv->AdRxSignalStrength, priv->AdRxSsThreshold);
priv->bAdSwitchedChecking = false;
// Increase Rx signal strength threshold if necessary.
if( (priv->AdRxSignalStrength > (priv->AdRxSsThreshold + 10)) && // Signal is much stronger than current threshold
priv->AdRxSsThreshold <= priv->AdMaxRxSsThreshold) { // Current threhold is not yet reach upper limit.
priv->bAdSwitchedChecking = false;
// Increase Rx signal strength threshold if necessary.
if( (priv->AdRxSignalStrength > (priv->AdRxSsThreshold + 10)) && // Signal is much stronger than current threshold
priv->AdRxSsThreshold <= priv->AdMaxRxSsThreshold) { // Current threhold is not yet reach upper limit.
priv->AdRxSsThreshold = (priv->AdRxSsThreshold + priv->AdRxSignalStrength) / 2;
priv->AdRxSsThreshold = (priv->AdRxSsThreshold > priv->AdMaxRxSsThreshold) ?
priv->AdMaxRxSsThreshold: priv->AdRxSsThreshold;//+by amy 080312
priv->AdRxSsThreshold = (priv->AdRxSsThreshold + priv->AdRxSignalStrength) / 2;
priv->AdRxSsThreshold = (priv->AdRxSsThreshold > priv->AdMaxRxSsThreshold) ?
priv->AdMaxRxSsThreshold: priv->AdRxSsThreshold;//+by amy 080312
}
// Reduce Antenna Diversity checking period if possible.
if( priv->AdCheckPeriod > priv->AdMinCheckPeriod )
priv->AdCheckPeriod /= 2;
}
// Reduce Antenna Diversity checking period if possible.
if( priv->AdCheckPeriod > priv->AdMinCheckPeriod )
priv->AdCheckPeriod /= 2;
}
}
}
//by amy 080312