mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
xfs: refactor log recovery buffer item dispatch for pass2 commit functions
Move the log buffer item pass2 commit code into the per-item source code files and use the dispatch function to call it. We do these one at a time because there's a lot of code to move. No functional changes. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
This commit is contained in:
parent
3304a4fabd
commit
1094d3f123
@ -37,6 +37,26 @@ struct xlog_recover_item_ops {
|
||||
|
||||
/* Do whatever work we need to do for pass1, if provided. */
|
||||
int (*commit_pass1)(struct xlog *log, struct xlog_recover_item *item);
|
||||
|
||||
/*
|
||||
* This function should do whatever work is needed for pass2 of log
|
||||
* recovery, if provided.
|
||||
*
|
||||
* If the recovered item is an intent item, this function should parse
|
||||
* the recovered item to construct an in-core log intent item and
|
||||
* insert it into the AIL. The in-core log intent item should have 1
|
||||
* refcount so that the item is freed either (a) when we commit the
|
||||
* recovered log item for the intent-done item; (b) replay the work and
|
||||
* log a new intent-done item; or (c) recovery fails and we have to
|
||||
* abort.
|
||||
*
|
||||
* If the recovered item is an intent-done item, this function should
|
||||
* parse the recovered item to find the id of the corresponding intent
|
||||
* log item. Next, it should find the in-core log intent item in the
|
||||
* AIL and release it.
|
||||
*/
|
||||
int (*commit_pass2)(struct xlog *log, struct list_head *buffer_list,
|
||||
struct xlog_recover_item *item, xfs_lsn_t lsn);
|
||||
};
|
||||
|
||||
extern const struct xlog_recover_item_ops xlog_icreate_item_ops;
|
||||
@ -101,5 +121,8 @@ struct xlog_recover {
|
||||
void xlog_buf_readahead(struct xlog *log, xfs_daddr_t blkno, uint len,
|
||||
const struct xfs_buf_ops *ops);
|
||||
bool xlog_add_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len);
|
||||
bool xlog_is_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len);
|
||||
bool xlog_put_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len);
|
||||
void xlog_recover_iodone(struct xfs_buf *bp);
|
||||
|
||||
#endif /* __XFS_LOG_RECOVER_H__ */
|
||||
|
@ -18,6 +18,10 @@
|
||||
#include "xfs_log.h"
|
||||
#include "xfs_log_priv.h"
|
||||
#include "xfs_log_recover.h"
|
||||
#include "xfs_error.h"
|
||||
#include "xfs_inode.h"
|
||||
#include "xfs_dir2.h"
|
||||
#include "xfs_quota.h"
|
||||
|
||||
/*
|
||||
* Sort buffer items for log recovery. Most buffer items should end up on the
|
||||
@ -82,9 +86,795 @@ xlog_recover_buf_commit_pass1(
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Validate the recovered buffer is of the correct type and attach the
|
||||
* appropriate buffer operations to them for writeback. Magic numbers are in a
|
||||
* few places:
|
||||
* the first 16 bits of the buffer (inode buffer, dquot buffer),
|
||||
* the first 32 bits of the buffer (most blocks),
|
||||
* inside a struct xfs_da_blkinfo at the start of the buffer.
|
||||
*/
|
||||
static void
|
||||
xlog_recover_validate_buf_type(
|
||||
struct xfs_mount *mp,
|
||||
struct xfs_buf *bp,
|
||||
struct xfs_buf_log_format *buf_f,
|
||||
xfs_lsn_t current_lsn)
|
||||
{
|
||||
struct xfs_da_blkinfo *info = bp->b_addr;
|
||||
uint32_t magic32;
|
||||
uint16_t magic16;
|
||||
uint16_t magicda;
|
||||
char *warnmsg = NULL;
|
||||
|
||||
/*
|
||||
* We can only do post recovery validation on items on CRC enabled
|
||||
* fielsystems as we need to know when the buffer was written to be able
|
||||
* to determine if we should have replayed the item. If we replay old
|
||||
* metadata over a newer buffer, then it will enter a temporarily
|
||||
* inconsistent state resulting in verification failures. Hence for now
|
||||
* just avoid the verification stage for non-crc filesystems
|
||||
*/
|
||||
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
||||
return;
|
||||
|
||||
magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
|
||||
magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
|
||||
magicda = be16_to_cpu(info->magic);
|
||||
switch (xfs_blft_from_flags(buf_f)) {
|
||||
case XFS_BLFT_BTREE_BUF:
|
||||
switch (magic32) {
|
||||
case XFS_ABTB_CRC_MAGIC:
|
||||
case XFS_ABTB_MAGIC:
|
||||
bp->b_ops = &xfs_bnobt_buf_ops;
|
||||
break;
|
||||
case XFS_ABTC_CRC_MAGIC:
|
||||
case XFS_ABTC_MAGIC:
|
||||
bp->b_ops = &xfs_cntbt_buf_ops;
|
||||
break;
|
||||
case XFS_IBT_CRC_MAGIC:
|
||||
case XFS_IBT_MAGIC:
|
||||
bp->b_ops = &xfs_inobt_buf_ops;
|
||||
break;
|
||||
case XFS_FIBT_CRC_MAGIC:
|
||||
case XFS_FIBT_MAGIC:
|
||||
bp->b_ops = &xfs_finobt_buf_ops;
|
||||
break;
|
||||
case XFS_BMAP_CRC_MAGIC:
|
||||
case XFS_BMAP_MAGIC:
|
||||
bp->b_ops = &xfs_bmbt_buf_ops;
|
||||
break;
|
||||
case XFS_RMAP_CRC_MAGIC:
|
||||
bp->b_ops = &xfs_rmapbt_buf_ops;
|
||||
break;
|
||||
case XFS_REFC_CRC_MAGIC:
|
||||
bp->b_ops = &xfs_refcountbt_buf_ops;
|
||||
break;
|
||||
default:
|
||||
warnmsg = "Bad btree block magic!";
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case XFS_BLFT_AGF_BUF:
|
||||
if (magic32 != XFS_AGF_MAGIC) {
|
||||
warnmsg = "Bad AGF block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_agf_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_AGFL_BUF:
|
||||
if (magic32 != XFS_AGFL_MAGIC) {
|
||||
warnmsg = "Bad AGFL block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_agfl_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_AGI_BUF:
|
||||
if (magic32 != XFS_AGI_MAGIC) {
|
||||
warnmsg = "Bad AGI block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_agi_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_UDQUOT_BUF:
|
||||
case XFS_BLFT_PDQUOT_BUF:
|
||||
case XFS_BLFT_GDQUOT_BUF:
|
||||
#ifdef CONFIG_XFS_QUOTA
|
||||
if (magic16 != XFS_DQUOT_MAGIC) {
|
||||
warnmsg = "Bad DQUOT block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dquot_buf_ops;
|
||||
#else
|
||||
xfs_alert(mp,
|
||||
"Trying to recover dquots without QUOTA support built in!");
|
||||
ASSERT(0);
|
||||
#endif
|
||||
break;
|
||||
case XFS_BLFT_DINO_BUF:
|
||||
if (magic16 != XFS_DINODE_MAGIC) {
|
||||
warnmsg = "Bad INODE block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_inode_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_SYMLINK_BUF:
|
||||
if (magic32 != XFS_SYMLINK_MAGIC) {
|
||||
warnmsg = "Bad symlink block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_symlink_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_BLOCK_BUF:
|
||||
if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
|
||||
magic32 != XFS_DIR3_BLOCK_MAGIC) {
|
||||
warnmsg = "Bad dir block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_block_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_DATA_BUF:
|
||||
if (magic32 != XFS_DIR2_DATA_MAGIC &&
|
||||
magic32 != XFS_DIR3_DATA_MAGIC) {
|
||||
warnmsg = "Bad dir data magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_data_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_FREE_BUF:
|
||||
if (magic32 != XFS_DIR2_FREE_MAGIC &&
|
||||
magic32 != XFS_DIR3_FREE_MAGIC) {
|
||||
warnmsg = "Bad dir3 free magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_free_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_LEAF1_BUF:
|
||||
if (magicda != XFS_DIR2_LEAF1_MAGIC &&
|
||||
magicda != XFS_DIR3_LEAF1_MAGIC) {
|
||||
warnmsg = "Bad dir leaf1 magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_leaf1_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_LEAFN_BUF:
|
||||
if (magicda != XFS_DIR2_LEAFN_MAGIC &&
|
||||
magicda != XFS_DIR3_LEAFN_MAGIC) {
|
||||
warnmsg = "Bad dir leafn magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_leafn_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DA_NODE_BUF:
|
||||
if (magicda != XFS_DA_NODE_MAGIC &&
|
||||
magicda != XFS_DA3_NODE_MAGIC) {
|
||||
warnmsg = "Bad da node magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_da3_node_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_ATTR_LEAF_BUF:
|
||||
if (magicda != XFS_ATTR_LEAF_MAGIC &&
|
||||
magicda != XFS_ATTR3_LEAF_MAGIC) {
|
||||
warnmsg = "Bad attr leaf magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_attr3_leaf_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_ATTR_RMT_BUF:
|
||||
if (magic32 != XFS_ATTR3_RMT_MAGIC) {
|
||||
warnmsg = "Bad attr remote magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_attr3_rmt_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_SB_BUF:
|
||||
if (magic32 != XFS_SB_MAGIC) {
|
||||
warnmsg = "Bad SB block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_sb_buf_ops;
|
||||
break;
|
||||
#ifdef CONFIG_XFS_RT
|
||||
case XFS_BLFT_RTBITMAP_BUF:
|
||||
case XFS_BLFT_RTSUMMARY_BUF:
|
||||
/* no magic numbers for verification of RT buffers */
|
||||
bp->b_ops = &xfs_rtbuf_ops;
|
||||
break;
|
||||
#endif /* CONFIG_XFS_RT */
|
||||
default:
|
||||
xfs_warn(mp, "Unknown buffer type %d!",
|
||||
xfs_blft_from_flags(buf_f));
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Nothing else to do in the case of a NULL current LSN as this means
|
||||
* the buffer is more recent than the change in the log and will be
|
||||
* skipped.
|
||||
*/
|
||||
if (current_lsn == NULLCOMMITLSN)
|
||||
return;
|
||||
|
||||
if (warnmsg) {
|
||||
xfs_warn(mp, warnmsg);
|
||||
ASSERT(0);
|
||||
}
|
||||
|
||||
/*
|
||||
* We must update the metadata LSN of the buffer as it is written out to
|
||||
* ensure that older transactions never replay over this one and corrupt
|
||||
* the buffer. This can occur if log recovery is interrupted at some
|
||||
* point after the current transaction completes, at which point a
|
||||
* subsequent mount starts recovery from the beginning.
|
||||
*
|
||||
* Write verifiers update the metadata LSN from log items attached to
|
||||
* the buffer. Therefore, initialize a bli purely to carry the LSN to
|
||||
* the verifier. We'll clean it up in our ->iodone() callback.
|
||||
*/
|
||||
if (bp->b_ops) {
|
||||
struct xfs_buf_log_item *bip;
|
||||
|
||||
ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
|
||||
bp->b_iodone = xlog_recover_iodone;
|
||||
xfs_buf_item_init(bp, mp);
|
||||
bip = bp->b_log_item;
|
||||
bip->bli_item.li_lsn = current_lsn;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform a 'normal' buffer recovery. Each logged region of the
|
||||
* buffer should be copied over the corresponding region in the
|
||||
* given buffer. The bitmap in the buf log format structure indicates
|
||||
* where to place the logged data.
|
||||
*/
|
||||
STATIC void
|
||||
xlog_recover_do_reg_buffer(
|
||||
struct xfs_mount *mp,
|
||||
struct xlog_recover_item *item,
|
||||
struct xfs_buf *bp,
|
||||
struct xfs_buf_log_format *buf_f,
|
||||
xfs_lsn_t current_lsn)
|
||||
{
|
||||
int i;
|
||||
int bit;
|
||||
int nbits;
|
||||
xfs_failaddr_t fa;
|
||||
const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
|
||||
|
||||
trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
|
||||
|
||||
bit = 0;
|
||||
i = 1; /* 0 is the buf format structure */
|
||||
while (1) {
|
||||
bit = xfs_next_bit(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
if (bit == -1)
|
||||
break;
|
||||
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
ASSERT(nbits > 0);
|
||||
ASSERT(item->ri_buf[i].i_addr != NULL);
|
||||
ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
|
||||
ASSERT(BBTOB(bp->b_length) >=
|
||||
((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
|
||||
|
||||
/*
|
||||
* The dirty regions logged in the buffer, even though
|
||||
* contiguous, may span multiple chunks. This is because the
|
||||
* dirty region may span a physical page boundary in a buffer
|
||||
* and hence be split into two separate vectors for writing into
|
||||
* the log. Hence we need to trim nbits back to the length of
|
||||
* the current region being copied out of the log.
|
||||
*/
|
||||
if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
|
||||
nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
|
||||
|
||||
/*
|
||||
* Do a sanity check if this is a dquot buffer. Just checking
|
||||
* the first dquot in the buffer should do. XXXThis is
|
||||
* probably a good thing to do for other buf types also.
|
||||
*/
|
||||
fa = NULL;
|
||||
if (buf_f->blf_flags &
|
||||
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
||||
if (item->ri_buf[i].i_addr == NULL) {
|
||||
xfs_alert(mp,
|
||||
"XFS: NULL dquot in %s.", __func__);
|
||||
goto next;
|
||||
}
|
||||
if (item->ri_buf[i].i_len < size_disk_dquot) {
|
||||
xfs_alert(mp,
|
||||
"XFS: dquot too small (%d) in %s.",
|
||||
item->ri_buf[i].i_len, __func__);
|
||||
goto next;
|
||||
}
|
||||
fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
|
||||
-1, 0);
|
||||
if (fa) {
|
||||
xfs_alert(mp,
|
||||
"dquot corrupt at %pS trying to replay into block 0x%llx",
|
||||
fa, bp->b_bn);
|
||||
goto next;
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(xfs_buf_offset(bp,
|
||||
(uint)bit << XFS_BLF_SHIFT), /* dest */
|
||||
item->ri_buf[i].i_addr, /* source */
|
||||
nbits<<XFS_BLF_SHIFT); /* length */
|
||||
next:
|
||||
i++;
|
||||
bit += nbits;
|
||||
}
|
||||
|
||||
/* Shouldn't be any more regions */
|
||||
ASSERT(i == item->ri_total);
|
||||
|
||||
xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform a dquot buffer recovery.
|
||||
* Simple algorithm: if we have found a QUOTAOFF log item of the same type
|
||||
* (ie. USR or GRP), then just toss this buffer away; don't recover it.
|
||||
* Else, treat it as a regular buffer and do recovery.
|
||||
*
|
||||
* Return false if the buffer was tossed and true if we recovered the buffer to
|
||||
* indicate to the caller if the buffer needs writing.
|
||||
*/
|
||||
STATIC bool
|
||||
xlog_recover_do_dquot_buffer(
|
||||
struct xfs_mount *mp,
|
||||
struct xlog *log,
|
||||
struct xlog_recover_item *item,
|
||||
struct xfs_buf *bp,
|
||||
struct xfs_buf_log_format *buf_f)
|
||||
{
|
||||
uint type;
|
||||
|
||||
trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
|
||||
|
||||
/*
|
||||
* Filesystems are required to send in quota flags at mount time.
|
||||
*/
|
||||
if (!mp->m_qflags)
|
||||
return false;
|
||||
|
||||
type = 0;
|
||||
if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
|
||||
type |= XFS_DQ_USER;
|
||||
if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
|
||||
type |= XFS_DQ_PROJ;
|
||||
if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
|
||||
type |= XFS_DQ_GROUP;
|
||||
/*
|
||||
* This type of quotas was turned off, so ignore this buffer
|
||||
*/
|
||||
if (log->l_quotaoffs_flag & type)
|
||||
return false;
|
||||
|
||||
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform recovery for a buffer full of inodes. In these buffers, the only
|
||||
* data which should be recovered is that which corresponds to the
|
||||
* di_next_unlinked pointers in the on disk inode structures. The rest of the
|
||||
* data for the inodes is always logged through the inodes themselves rather
|
||||
* than the inode buffer and is recovered in xlog_recover_inode_pass2().
|
||||
*
|
||||
* The only time when buffers full of inodes are fully recovered is when the
|
||||
* buffer is full of newly allocated inodes. In this case the buffer will
|
||||
* not be marked as an inode buffer and so will be sent to
|
||||
* xlog_recover_do_reg_buffer() below during recovery.
|
||||
*/
|
||||
STATIC int
|
||||
xlog_recover_do_inode_buffer(
|
||||
struct xfs_mount *mp,
|
||||
struct xlog_recover_item *item,
|
||||
struct xfs_buf *bp,
|
||||
struct xfs_buf_log_format *buf_f)
|
||||
{
|
||||
int i;
|
||||
int item_index = 0;
|
||||
int bit = 0;
|
||||
int nbits = 0;
|
||||
int reg_buf_offset = 0;
|
||||
int reg_buf_bytes = 0;
|
||||
int next_unlinked_offset;
|
||||
int inodes_per_buf;
|
||||
xfs_agino_t *logged_nextp;
|
||||
xfs_agino_t *buffer_nextp;
|
||||
|
||||
trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
|
||||
|
||||
/*
|
||||
* Post recovery validation only works properly on CRC enabled
|
||||
* filesystems.
|
||||
*/
|
||||
if (xfs_sb_version_hascrc(&mp->m_sb))
|
||||
bp->b_ops = &xfs_inode_buf_ops;
|
||||
|
||||
inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
|
||||
for (i = 0; i < inodes_per_buf; i++) {
|
||||
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
|
||||
offsetof(xfs_dinode_t, di_next_unlinked);
|
||||
|
||||
while (next_unlinked_offset >=
|
||||
(reg_buf_offset + reg_buf_bytes)) {
|
||||
/*
|
||||
* The next di_next_unlinked field is beyond
|
||||
* the current logged region. Find the next
|
||||
* logged region that contains or is beyond
|
||||
* the current di_next_unlinked field.
|
||||
*/
|
||||
bit += nbits;
|
||||
bit = xfs_next_bit(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
|
||||
/*
|
||||
* If there are no more logged regions in the
|
||||
* buffer, then we're done.
|
||||
*/
|
||||
if (bit == -1)
|
||||
return 0;
|
||||
|
||||
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
ASSERT(nbits > 0);
|
||||
reg_buf_offset = bit << XFS_BLF_SHIFT;
|
||||
reg_buf_bytes = nbits << XFS_BLF_SHIFT;
|
||||
item_index++;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the current logged region starts after the current
|
||||
* di_next_unlinked field, then move on to the next
|
||||
* di_next_unlinked field.
|
||||
*/
|
||||
if (next_unlinked_offset < reg_buf_offset)
|
||||
continue;
|
||||
|
||||
ASSERT(item->ri_buf[item_index].i_addr != NULL);
|
||||
ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
|
||||
ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
|
||||
|
||||
/*
|
||||
* The current logged region contains a copy of the
|
||||
* current di_next_unlinked field. Extract its value
|
||||
* and copy it to the buffer copy.
|
||||
*/
|
||||
logged_nextp = item->ri_buf[item_index].i_addr +
|
||||
next_unlinked_offset - reg_buf_offset;
|
||||
if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
|
||||
xfs_alert(mp,
|
||||
"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
|
||||
"Trying to replay bad (0) inode di_next_unlinked field.",
|
||||
item, bp);
|
||||
return -EFSCORRUPTED;
|
||||
}
|
||||
|
||||
buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
|
||||
*buffer_nextp = *logged_nextp;
|
||||
|
||||
/*
|
||||
* If necessary, recalculate the CRC in the on-disk inode. We
|
||||
* have to leave the inode in a consistent state for whoever
|
||||
* reads it next....
|
||||
*/
|
||||
xfs_dinode_calc_crc(mp,
|
||||
xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* V5 filesystems know the age of the buffer on disk being recovered. We can
|
||||
* have newer objects on disk than we are replaying, and so for these cases we
|
||||
* don't want to replay the current change as that will make the buffer contents
|
||||
* temporarily invalid on disk.
|
||||
*
|
||||
* The magic number might not match the buffer type we are going to recover
|
||||
* (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
|
||||
* extract the LSN of the existing object in the buffer based on it's current
|
||||
* magic number. If we don't recognise the magic number in the buffer, then
|
||||
* return a LSN of -1 so that the caller knows it was an unrecognised block and
|
||||
* so can recover the buffer.
|
||||
*
|
||||
* Note: we cannot rely solely on magic number matches to determine that the
|
||||
* buffer has a valid LSN - we also need to verify that it belongs to this
|
||||
* filesystem, so we need to extract the object's LSN and compare it to that
|
||||
* which we read from the superblock. If the UUIDs don't match, then we've got a
|
||||
* stale metadata block from an old filesystem instance that we need to recover
|
||||
* over the top of.
|
||||
*/
|
||||
static xfs_lsn_t
|
||||
xlog_recover_get_buf_lsn(
|
||||
struct xfs_mount *mp,
|
||||
struct xfs_buf *bp)
|
||||
{
|
||||
uint32_t magic32;
|
||||
uint16_t magic16;
|
||||
uint16_t magicda;
|
||||
void *blk = bp->b_addr;
|
||||
uuid_t *uuid;
|
||||
xfs_lsn_t lsn = -1;
|
||||
|
||||
/* v4 filesystems always recover immediately */
|
||||
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
||||
goto recover_immediately;
|
||||
|
||||
magic32 = be32_to_cpu(*(__be32 *)blk);
|
||||
switch (magic32) {
|
||||
case XFS_ABTB_CRC_MAGIC:
|
||||
case XFS_ABTC_CRC_MAGIC:
|
||||
case XFS_ABTB_MAGIC:
|
||||
case XFS_ABTC_MAGIC:
|
||||
case XFS_RMAP_CRC_MAGIC:
|
||||
case XFS_REFC_CRC_MAGIC:
|
||||
case XFS_IBT_CRC_MAGIC:
|
||||
case XFS_IBT_MAGIC: {
|
||||
struct xfs_btree_block *btb = blk;
|
||||
|
||||
lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
|
||||
uuid = &btb->bb_u.s.bb_uuid;
|
||||
break;
|
||||
}
|
||||
case XFS_BMAP_CRC_MAGIC:
|
||||
case XFS_BMAP_MAGIC: {
|
||||
struct xfs_btree_block *btb = blk;
|
||||
|
||||
lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
|
||||
uuid = &btb->bb_u.l.bb_uuid;
|
||||
break;
|
||||
}
|
||||
case XFS_AGF_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
|
||||
uuid = &((struct xfs_agf *)blk)->agf_uuid;
|
||||
break;
|
||||
case XFS_AGFL_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
|
||||
uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
|
||||
break;
|
||||
case XFS_AGI_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
|
||||
uuid = &((struct xfs_agi *)blk)->agi_uuid;
|
||||
break;
|
||||
case XFS_SYMLINK_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
|
||||
uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
|
||||
break;
|
||||
case XFS_DIR3_BLOCK_MAGIC:
|
||||
case XFS_DIR3_DATA_MAGIC:
|
||||
case XFS_DIR3_FREE_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
|
||||
uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
|
||||
break;
|
||||
case XFS_ATTR3_RMT_MAGIC:
|
||||
/*
|
||||
* Remote attr blocks are written synchronously, rather than
|
||||
* being logged. That means they do not contain a valid LSN
|
||||
* (i.e. transactionally ordered) in them, and hence any time we
|
||||
* see a buffer to replay over the top of a remote attribute
|
||||
* block we should simply do so.
|
||||
*/
|
||||
goto recover_immediately;
|
||||
case XFS_SB_MAGIC:
|
||||
/*
|
||||
* superblock uuids are magic. We may or may not have a
|
||||
* sb_meta_uuid on disk, but it will be set in the in-core
|
||||
* superblock. We set the uuid pointer for verification
|
||||
* according to the superblock feature mask to ensure we check
|
||||
* the relevant UUID in the superblock.
|
||||
*/
|
||||
lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
|
||||
if (xfs_sb_version_hasmetauuid(&mp->m_sb))
|
||||
uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
|
||||
else
|
||||
uuid = &((struct xfs_dsb *)blk)->sb_uuid;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (lsn != (xfs_lsn_t)-1) {
|
||||
if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
|
||||
goto recover_immediately;
|
||||
return lsn;
|
||||
}
|
||||
|
||||
magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
|
||||
switch (magicda) {
|
||||
case XFS_DIR3_LEAF1_MAGIC:
|
||||
case XFS_DIR3_LEAFN_MAGIC:
|
||||
case XFS_DA3_NODE_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
|
||||
uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (lsn != (xfs_lsn_t)-1) {
|
||||
if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
|
||||
goto recover_immediately;
|
||||
return lsn;
|
||||
}
|
||||
|
||||
/*
|
||||
* We do individual object checks on dquot and inode buffers as they
|
||||
* have their own individual LSN records. Also, we could have a stale
|
||||
* buffer here, so we have to at least recognise these buffer types.
|
||||
*
|
||||
* A notd complexity here is inode unlinked list processing - it logs
|
||||
* the inode directly in the buffer, but we don't know which inodes have
|
||||
* been modified, and there is no global buffer LSN. Hence we need to
|
||||
* recover all inode buffer types immediately. This problem will be
|
||||
* fixed by logical logging of the unlinked list modifications.
|
||||
*/
|
||||
magic16 = be16_to_cpu(*(__be16 *)blk);
|
||||
switch (magic16) {
|
||||
case XFS_DQUOT_MAGIC:
|
||||
case XFS_DINODE_MAGIC:
|
||||
goto recover_immediately;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
/* unknown buffer contents, recover immediately */
|
||||
|
||||
recover_immediately:
|
||||
return (xfs_lsn_t)-1;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* This routine replays a modification made to a buffer at runtime.
|
||||
* There are actually two types of buffer, regular and inode, which
|
||||
* are handled differently. Inode buffers are handled differently
|
||||
* in that we only recover a specific set of data from them, namely
|
||||
* the inode di_next_unlinked fields. This is because all other inode
|
||||
* data is actually logged via inode records and any data we replay
|
||||
* here which overlaps that may be stale.
|
||||
*
|
||||
* When meta-data buffers are freed at run time we log a buffer item
|
||||
* with the XFS_BLF_CANCEL bit set to indicate that previous copies
|
||||
* of the buffer in the log should not be replayed at recovery time.
|
||||
* This is so that if the blocks covered by the buffer are reused for
|
||||
* file data before we crash we don't end up replaying old, freed
|
||||
* meta-data into a user's file.
|
||||
*
|
||||
* To handle the cancellation of buffer log items, we make two passes
|
||||
* over the log during recovery. During the first we build a table of
|
||||
* those buffers which have been cancelled, and during the second we
|
||||
* only replay those buffers which do not have corresponding cancel
|
||||
* records in the table. See xlog_recover_buf_pass[1,2] above
|
||||
* for more details on the implementation of the table of cancel records.
|
||||
*/
|
||||
STATIC int
|
||||
xlog_recover_buf_commit_pass2(
|
||||
struct xlog *log,
|
||||
struct list_head *buffer_list,
|
||||
struct xlog_recover_item *item,
|
||||
xfs_lsn_t current_lsn)
|
||||
{
|
||||
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
|
||||
struct xfs_mount *mp = log->l_mp;
|
||||
struct xfs_buf *bp;
|
||||
int error;
|
||||
uint buf_flags;
|
||||
xfs_lsn_t lsn;
|
||||
|
||||
/*
|
||||
* In this pass we only want to recover all the buffers which have
|
||||
* not been cancelled and are not cancellation buffers themselves.
|
||||
*/
|
||||
if (buf_f->blf_flags & XFS_BLF_CANCEL) {
|
||||
if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
|
||||
buf_f->blf_len))
|
||||
goto cancelled;
|
||||
} else {
|
||||
|
||||
if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
|
||||
buf_f->blf_len))
|
||||
goto cancelled;
|
||||
}
|
||||
|
||||
trace_xfs_log_recover_buf_recover(log, buf_f);
|
||||
|
||||
buf_flags = 0;
|
||||
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
|
||||
buf_flags |= XBF_UNMAPPED;
|
||||
|
||||
error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
|
||||
buf_flags, &bp, NULL);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
/*
|
||||
* Recover the buffer only if we get an LSN from it and it's less than
|
||||
* the lsn of the transaction we are replaying.
|
||||
*
|
||||
* Note that we have to be extremely careful of readahead here.
|
||||
* Readahead does not attach verfiers to the buffers so if we don't
|
||||
* actually do any replay after readahead because of the LSN we found
|
||||
* in the buffer if more recent than that current transaction then we
|
||||
* need to attach the verifier directly. Failure to do so can lead to
|
||||
* future recovery actions (e.g. EFI and unlinked list recovery) can
|
||||
* operate on the buffers and they won't get the verifier attached. This
|
||||
* can lead to blocks on disk having the correct content but a stale
|
||||
* CRC.
|
||||
*
|
||||
* It is safe to assume these clean buffers are currently up to date.
|
||||
* If the buffer is dirtied by a later transaction being replayed, then
|
||||
* the verifier will be reset to match whatever recover turns that
|
||||
* buffer into.
|
||||
*/
|
||||
lsn = xlog_recover_get_buf_lsn(mp, bp);
|
||||
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
|
||||
trace_xfs_log_recover_buf_skip(log, buf_f);
|
||||
xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
|
||||
goto out_release;
|
||||
}
|
||||
|
||||
if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
|
||||
error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
|
||||
if (error)
|
||||
goto out_release;
|
||||
} else if (buf_f->blf_flags &
|
||||
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
||||
bool dirty;
|
||||
|
||||
dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
|
||||
if (!dirty)
|
||||
goto out_release;
|
||||
} else {
|
||||
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform delayed write on the buffer. Asynchronous writes will be
|
||||
* slower when taking into account all the buffers to be flushed.
|
||||
*
|
||||
* Also make sure that only inode buffers with good sizes stay in
|
||||
* the buffer cache. The kernel moves inodes in buffers of 1 block
|
||||
* or inode_cluster_size bytes, whichever is bigger. The inode
|
||||
* buffers in the log can be a different size if the log was generated
|
||||
* by an older kernel using unclustered inode buffers or a newer kernel
|
||||
* running with a different inode cluster size. Regardless, if the
|
||||
* the inode buffer size isn't max(blocksize, inode_cluster_size)
|
||||
* for *our* value of inode_cluster_size, then we need to keep
|
||||
* the buffer out of the buffer cache so that the buffer won't
|
||||
* overlap with future reads of those inodes.
|
||||
*/
|
||||
if (XFS_DINODE_MAGIC ==
|
||||
be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
|
||||
(BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
|
||||
xfs_buf_stale(bp);
|
||||
error = xfs_bwrite(bp);
|
||||
} else {
|
||||
ASSERT(bp->b_mount == mp);
|
||||
bp->b_iodone = xlog_recover_iodone;
|
||||
xfs_buf_delwri_queue(bp, buffer_list);
|
||||
}
|
||||
|
||||
out_release:
|
||||
xfs_buf_relse(bp);
|
||||
return error;
|
||||
cancelled:
|
||||
trace_xfs_log_recover_buf_cancel(log, buf_f);
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct xlog_recover_item_ops xlog_buf_item_ops = {
|
||||
.item_type = XFS_LI_BUF,
|
||||
.reorder = xlog_recover_buf_reorder,
|
||||
.ra_pass2 = xlog_recover_buf_ra_pass2,
|
||||
.commit_pass1 = xlog_recover_buf_commit_pass1,
|
||||
.commit_pass2 = xlog_recover_buf_commit_pass2,
|
||||
};
|
||||
|
@ -284,7 +284,7 @@ xlog_header_check_mount(
|
||||
return 0;
|
||||
}
|
||||
|
||||
STATIC void
|
||||
void
|
||||
xlog_recover_iodone(
|
||||
struct xfs_buf *bp)
|
||||
{
|
||||
@ -1985,7 +1985,7 @@ xlog_add_buffer_cancelled(
|
||||
/*
|
||||
* Check if there is and entry for blkno, len in the buffer cancel record table.
|
||||
*/
|
||||
static bool
|
||||
bool
|
||||
xlog_is_buffer_cancelled(
|
||||
struct xlog *log,
|
||||
xfs_daddr_t blkno,
|
||||
@ -2002,7 +2002,7 @@ xlog_is_buffer_cancelled(
|
||||
* buffer is re-used again after its last cancellation we actually replay the
|
||||
* changes made at that point.
|
||||
*/
|
||||
static bool
|
||||
bool
|
||||
xlog_put_buffer_cancelled(
|
||||
struct xlog *log,
|
||||
xfs_daddr_t blkno,
|
||||
@ -2034,791 +2034,6 @@ xlog_buf_readahead(
|
||||
xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform recovery for a buffer full of inodes. In these buffers, the only
|
||||
* data which should be recovered is that which corresponds to the
|
||||
* di_next_unlinked pointers in the on disk inode structures. The rest of the
|
||||
* data for the inodes is always logged through the inodes themselves rather
|
||||
* than the inode buffer and is recovered in xlog_recover_inode_pass2().
|
||||
*
|
||||
* The only time when buffers full of inodes are fully recovered is when the
|
||||
* buffer is full of newly allocated inodes. In this case the buffer will
|
||||
* not be marked as an inode buffer and so will be sent to
|
||||
* xlog_recover_do_reg_buffer() below during recovery.
|
||||
*/
|
||||
STATIC int
|
||||
xlog_recover_do_inode_buffer(
|
||||
struct xfs_mount *mp,
|
||||
struct xlog_recover_item *item,
|
||||
struct xfs_buf *bp,
|
||||
xfs_buf_log_format_t *buf_f)
|
||||
{
|
||||
int i;
|
||||
int item_index = 0;
|
||||
int bit = 0;
|
||||
int nbits = 0;
|
||||
int reg_buf_offset = 0;
|
||||
int reg_buf_bytes = 0;
|
||||
int next_unlinked_offset;
|
||||
int inodes_per_buf;
|
||||
xfs_agino_t *logged_nextp;
|
||||
xfs_agino_t *buffer_nextp;
|
||||
|
||||
trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
|
||||
|
||||
/*
|
||||
* Post recovery validation only works properly on CRC enabled
|
||||
* filesystems.
|
||||
*/
|
||||
if (xfs_sb_version_hascrc(&mp->m_sb))
|
||||
bp->b_ops = &xfs_inode_buf_ops;
|
||||
|
||||
inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
|
||||
for (i = 0; i < inodes_per_buf; i++) {
|
||||
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
|
||||
offsetof(xfs_dinode_t, di_next_unlinked);
|
||||
|
||||
while (next_unlinked_offset >=
|
||||
(reg_buf_offset + reg_buf_bytes)) {
|
||||
/*
|
||||
* The next di_next_unlinked field is beyond
|
||||
* the current logged region. Find the next
|
||||
* logged region that contains or is beyond
|
||||
* the current di_next_unlinked field.
|
||||
*/
|
||||
bit += nbits;
|
||||
bit = xfs_next_bit(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
|
||||
/*
|
||||
* If there are no more logged regions in the
|
||||
* buffer, then we're done.
|
||||
*/
|
||||
if (bit == -1)
|
||||
return 0;
|
||||
|
||||
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
ASSERT(nbits > 0);
|
||||
reg_buf_offset = bit << XFS_BLF_SHIFT;
|
||||
reg_buf_bytes = nbits << XFS_BLF_SHIFT;
|
||||
item_index++;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the current logged region starts after the current
|
||||
* di_next_unlinked field, then move on to the next
|
||||
* di_next_unlinked field.
|
||||
*/
|
||||
if (next_unlinked_offset < reg_buf_offset)
|
||||
continue;
|
||||
|
||||
ASSERT(item->ri_buf[item_index].i_addr != NULL);
|
||||
ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
|
||||
ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
|
||||
|
||||
/*
|
||||
* The current logged region contains a copy of the
|
||||
* current di_next_unlinked field. Extract its value
|
||||
* and copy it to the buffer copy.
|
||||
*/
|
||||
logged_nextp = item->ri_buf[item_index].i_addr +
|
||||
next_unlinked_offset - reg_buf_offset;
|
||||
if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
|
||||
xfs_alert(mp,
|
||||
"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
|
||||
"Trying to replay bad (0) inode di_next_unlinked field.",
|
||||
item, bp);
|
||||
return -EFSCORRUPTED;
|
||||
}
|
||||
|
||||
buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
|
||||
*buffer_nextp = *logged_nextp;
|
||||
|
||||
/*
|
||||
* If necessary, recalculate the CRC in the on-disk inode. We
|
||||
* have to leave the inode in a consistent state for whoever
|
||||
* reads it next....
|
||||
*/
|
||||
xfs_dinode_calc_crc(mp,
|
||||
xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* V5 filesystems know the age of the buffer on disk being recovered. We can
|
||||
* have newer objects on disk than we are replaying, and so for these cases we
|
||||
* don't want to replay the current change as that will make the buffer contents
|
||||
* temporarily invalid on disk.
|
||||
*
|
||||
* The magic number might not match the buffer type we are going to recover
|
||||
* (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
|
||||
* extract the LSN of the existing object in the buffer based on it's current
|
||||
* magic number. If we don't recognise the magic number in the buffer, then
|
||||
* return a LSN of -1 so that the caller knows it was an unrecognised block and
|
||||
* so can recover the buffer.
|
||||
*
|
||||
* Note: we cannot rely solely on magic number matches to determine that the
|
||||
* buffer has a valid LSN - we also need to verify that it belongs to this
|
||||
* filesystem, so we need to extract the object's LSN and compare it to that
|
||||
* which we read from the superblock. If the UUIDs don't match, then we've got a
|
||||
* stale metadata block from an old filesystem instance that we need to recover
|
||||
* over the top of.
|
||||
*/
|
||||
static xfs_lsn_t
|
||||
xlog_recover_get_buf_lsn(
|
||||
struct xfs_mount *mp,
|
||||
struct xfs_buf *bp)
|
||||
{
|
||||
uint32_t magic32;
|
||||
uint16_t magic16;
|
||||
uint16_t magicda;
|
||||
void *blk = bp->b_addr;
|
||||
uuid_t *uuid;
|
||||
xfs_lsn_t lsn = -1;
|
||||
|
||||
/* v4 filesystems always recover immediately */
|
||||
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
||||
goto recover_immediately;
|
||||
|
||||
magic32 = be32_to_cpu(*(__be32 *)blk);
|
||||
switch (magic32) {
|
||||
case XFS_ABTB_CRC_MAGIC:
|
||||
case XFS_ABTC_CRC_MAGIC:
|
||||
case XFS_ABTB_MAGIC:
|
||||
case XFS_ABTC_MAGIC:
|
||||
case XFS_RMAP_CRC_MAGIC:
|
||||
case XFS_REFC_CRC_MAGIC:
|
||||
case XFS_IBT_CRC_MAGIC:
|
||||
case XFS_IBT_MAGIC: {
|
||||
struct xfs_btree_block *btb = blk;
|
||||
|
||||
lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
|
||||
uuid = &btb->bb_u.s.bb_uuid;
|
||||
break;
|
||||
}
|
||||
case XFS_BMAP_CRC_MAGIC:
|
||||
case XFS_BMAP_MAGIC: {
|
||||
struct xfs_btree_block *btb = blk;
|
||||
|
||||
lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
|
||||
uuid = &btb->bb_u.l.bb_uuid;
|
||||
break;
|
||||
}
|
||||
case XFS_AGF_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
|
||||
uuid = &((struct xfs_agf *)blk)->agf_uuid;
|
||||
break;
|
||||
case XFS_AGFL_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
|
||||
uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
|
||||
break;
|
||||
case XFS_AGI_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
|
||||
uuid = &((struct xfs_agi *)blk)->agi_uuid;
|
||||
break;
|
||||
case XFS_SYMLINK_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
|
||||
uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
|
||||
break;
|
||||
case XFS_DIR3_BLOCK_MAGIC:
|
||||
case XFS_DIR3_DATA_MAGIC:
|
||||
case XFS_DIR3_FREE_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
|
||||
uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
|
||||
break;
|
||||
case XFS_ATTR3_RMT_MAGIC:
|
||||
/*
|
||||
* Remote attr blocks are written synchronously, rather than
|
||||
* being logged. That means they do not contain a valid LSN
|
||||
* (i.e. transactionally ordered) in them, and hence any time we
|
||||
* see a buffer to replay over the top of a remote attribute
|
||||
* block we should simply do so.
|
||||
*/
|
||||
goto recover_immediately;
|
||||
case XFS_SB_MAGIC:
|
||||
/*
|
||||
* superblock uuids are magic. We may or may not have a
|
||||
* sb_meta_uuid on disk, but it will be set in the in-core
|
||||
* superblock. We set the uuid pointer for verification
|
||||
* according to the superblock feature mask to ensure we check
|
||||
* the relevant UUID in the superblock.
|
||||
*/
|
||||
lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
|
||||
if (xfs_sb_version_hasmetauuid(&mp->m_sb))
|
||||
uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
|
||||
else
|
||||
uuid = &((struct xfs_dsb *)blk)->sb_uuid;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (lsn != (xfs_lsn_t)-1) {
|
||||
if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
|
||||
goto recover_immediately;
|
||||
return lsn;
|
||||
}
|
||||
|
||||
magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
|
||||
switch (magicda) {
|
||||
case XFS_DIR3_LEAF1_MAGIC:
|
||||
case XFS_DIR3_LEAFN_MAGIC:
|
||||
case XFS_DA3_NODE_MAGIC:
|
||||
lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
|
||||
uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (lsn != (xfs_lsn_t)-1) {
|
||||
if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
|
||||
goto recover_immediately;
|
||||
return lsn;
|
||||
}
|
||||
|
||||
/*
|
||||
* We do individual object checks on dquot and inode buffers as they
|
||||
* have their own individual LSN records. Also, we could have a stale
|
||||
* buffer here, so we have to at least recognise these buffer types.
|
||||
*
|
||||
* A notd complexity here is inode unlinked list processing - it logs
|
||||
* the inode directly in the buffer, but we don't know which inodes have
|
||||
* been modified, and there is no global buffer LSN. Hence we need to
|
||||
* recover all inode buffer types immediately. This problem will be
|
||||
* fixed by logical logging of the unlinked list modifications.
|
||||
*/
|
||||
magic16 = be16_to_cpu(*(__be16 *)blk);
|
||||
switch (magic16) {
|
||||
case XFS_DQUOT_MAGIC:
|
||||
case XFS_DINODE_MAGIC:
|
||||
goto recover_immediately;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
/* unknown buffer contents, recover immediately */
|
||||
|
||||
recover_immediately:
|
||||
return (xfs_lsn_t)-1;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* Validate the recovered buffer is of the correct type and attach the
|
||||
* appropriate buffer operations to them for writeback. Magic numbers are in a
|
||||
* few places:
|
||||
* the first 16 bits of the buffer (inode buffer, dquot buffer),
|
||||
* the first 32 bits of the buffer (most blocks),
|
||||
* inside a struct xfs_da_blkinfo at the start of the buffer.
|
||||
*/
|
||||
static void
|
||||
xlog_recover_validate_buf_type(
|
||||
struct xfs_mount *mp,
|
||||
struct xfs_buf *bp,
|
||||
xfs_buf_log_format_t *buf_f,
|
||||
xfs_lsn_t current_lsn)
|
||||
{
|
||||
struct xfs_da_blkinfo *info = bp->b_addr;
|
||||
uint32_t magic32;
|
||||
uint16_t magic16;
|
||||
uint16_t magicda;
|
||||
char *warnmsg = NULL;
|
||||
|
||||
/*
|
||||
* We can only do post recovery validation on items on CRC enabled
|
||||
* fielsystems as we need to know when the buffer was written to be able
|
||||
* to determine if we should have replayed the item. If we replay old
|
||||
* metadata over a newer buffer, then it will enter a temporarily
|
||||
* inconsistent state resulting in verification failures. Hence for now
|
||||
* just avoid the verification stage for non-crc filesystems
|
||||
*/
|
||||
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
||||
return;
|
||||
|
||||
magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
|
||||
magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
|
||||
magicda = be16_to_cpu(info->magic);
|
||||
switch (xfs_blft_from_flags(buf_f)) {
|
||||
case XFS_BLFT_BTREE_BUF:
|
||||
switch (magic32) {
|
||||
case XFS_ABTB_CRC_MAGIC:
|
||||
case XFS_ABTB_MAGIC:
|
||||
bp->b_ops = &xfs_bnobt_buf_ops;
|
||||
break;
|
||||
case XFS_ABTC_CRC_MAGIC:
|
||||
case XFS_ABTC_MAGIC:
|
||||
bp->b_ops = &xfs_cntbt_buf_ops;
|
||||
break;
|
||||
case XFS_IBT_CRC_MAGIC:
|
||||
case XFS_IBT_MAGIC:
|
||||
bp->b_ops = &xfs_inobt_buf_ops;
|
||||
break;
|
||||
case XFS_FIBT_CRC_MAGIC:
|
||||
case XFS_FIBT_MAGIC:
|
||||
bp->b_ops = &xfs_finobt_buf_ops;
|
||||
break;
|
||||
case XFS_BMAP_CRC_MAGIC:
|
||||
case XFS_BMAP_MAGIC:
|
||||
bp->b_ops = &xfs_bmbt_buf_ops;
|
||||
break;
|
||||
case XFS_RMAP_CRC_MAGIC:
|
||||
bp->b_ops = &xfs_rmapbt_buf_ops;
|
||||
break;
|
||||
case XFS_REFC_CRC_MAGIC:
|
||||
bp->b_ops = &xfs_refcountbt_buf_ops;
|
||||
break;
|
||||
default:
|
||||
warnmsg = "Bad btree block magic!";
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case XFS_BLFT_AGF_BUF:
|
||||
if (magic32 != XFS_AGF_MAGIC) {
|
||||
warnmsg = "Bad AGF block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_agf_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_AGFL_BUF:
|
||||
if (magic32 != XFS_AGFL_MAGIC) {
|
||||
warnmsg = "Bad AGFL block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_agfl_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_AGI_BUF:
|
||||
if (magic32 != XFS_AGI_MAGIC) {
|
||||
warnmsg = "Bad AGI block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_agi_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_UDQUOT_BUF:
|
||||
case XFS_BLFT_PDQUOT_BUF:
|
||||
case XFS_BLFT_GDQUOT_BUF:
|
||||
#ifdef CONFIG_XFS_QUOTA
|
||||
if (magic16 != XFS_DQUOT_MAGIC) {
|
||||
warnmsg = "Bad DQUOT block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dquot_buf_ops;
|
||||
#else
|
||||
xfs_alert(mp,
|
||||
"Trying to recover dquots without QUOTA support built in!");
|
||||
ASSERT(0);
|
||||
#endif
|
||||
break;
|
||||
case XFS_BLFT_DINO_BUF:
|
||||
if (magic16 != XFS_DINODE_MAGIC) {
|
||||
warnmsg = "Bad INODE block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_inode_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_SYMLINK_BUF:
|
||||
if (magic32 != XFS_SYMLINK_MAGIC) {
|
||||
warnmsg = "Bad symlink block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_symlink_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_BLOCK_BUF:
|
||||
if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
|
||||
magic32 != XFS_DIR3_BLOCK_MAGIC) {
|
||||
warnmsg = "Bad dir block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_block_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_DATA_BUF:
|
||||
if (magic32 != XFS_DIR2_DATA_MAGIC &&
|
||||
magic32 != XFS_DIR3_DATA_MAGIC) {
|
||||
warnmsg = "Bad dir data magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_data_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_FREE_BUF:
|
||||
if (magic32 != XFS_DIR2_FREE_MAGIC &&
|
||||
magic32 != XFS_DIR3_FREE_MAGIC) {
|
||||
warnmsg = "Bad dir3 free magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_free_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_LEAF1_BUF:
|
||||
if (magicda != XFS_DIR2_LEAF1_MAGIC &&
|
||||
magicda != XFS_DIR3_LEAF1_MAGIC) {
|
||||
warnmsg = "Bad dir leaf1 magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_leaf1_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DIR_LEAFN_BUF:
|
||||
if (magicda != XFS_DIR2_LEAFN_MAGIC &&
|
||||
magicda != XFS_DIR3_LEAFN_MAGIC) {
|
||||
warnmsg = "Bad dir leafn magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_dir3_leafn_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_DA_NODE_BUF:
|
||||
if (magicda != XFS_DA_NODE_MAGIC &&
|
||||
magicda != XFS_DA3_NODE_MAGIC) {
|
||||
warnmsg = "Bad da node magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_da3_node_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_ATTR_LEAF_BUF:
|
||||
if (magicda != XFS_ATTR_LEAF_MAGIC &&
|
||||
magicda != XFS_ATTR3_LEAF_MAGIC) {
|
||||
warnmsg = "Bad attr leaf magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_attr3_leaf_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_ATTR_RMT_BUF:
|
||||
if (magic32 != XFS_ATTR3_RMT_MAGIC) {
|
||||
warnmsg = "Bad attr remote magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_attr3_rmt_buf_ops;
|
||||
break;
|
||||
case XFS_BLFT_SB_BUF:
|
||||
if (magic32 != XFS_SB_MAGIC) {
|
||||
warnmsg = "Bad SB block magic!";
|
||||
break;
|
||||
}
|
||||
bp->b_ops = &xfs_sb_buf_ops;
|
||||
break;
|
||||
#ifdef CONFIG_XFS_RT
|
||||
case XFS_BLFT_RTBITMAP_BUF:
|
||||
case XFS_BLFT_RTSUMMARY_BUF:
|
||||
/* no magic numbers for verification of RT buffers */
|
||||
bp->b_ops = &xfs_rtbuf_ops;
|
||||
break;
|
||||
#endif /* CONFIG_XFS_RT */
|
||||
default:
|
||||
xfs_warn(mp, "Unknown buffer type %d!",
|
||||
xfs_blft_from_flags(buf_f));
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Nothing else to do in the case of a NULL current LSN as this means
|
||||
* the buffer is more recent than the change in the log and will be
|
||||
* skipped.
|
||||
*/
|
||||
if (current_lsn == NULLCOMMITLSN)
|
||||
return;
|
||||
|
||||
if (warnmsg) {
|
||||
xfs_warn(mp, warnmsg);
|
||||
ASSERT(0);
|
||||
}
|
||||
|
||||
/*
|
||||
* We must update the metadata LSN of the buffer as it is written out to
|
||||
* ensure that older transactions never replay over this one and corrupt
|
||||
* the buffer. This can occur if log recovery is interrupted at some
|
||||
* point after the current transaction completes, at which point a
|
||||
* subsequent mount starts recovery from the beginning.
|
||||
*
|
||||
* Write verifiers update the metadata LSN from log items attached to
|
||||
* the buffer. Therefore, initialize a bli purely to carry the LSN to
|
||||
* the verifier. We'll clean it up in our ->iodone() callback.
|
||||
*/
|
||||
if (bp->b_ops) {
|
||||
struct xfs_buf_log_item *bip;
|
||||
|
||||
ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
|
||||
bp->b_iodone = xlog_recover_iodone;
|
||||
xfs_buf_item_init(bp, mp);
|
||||
bip = bp->b_log_item;
|
||||
bip->bli_item.li_lsn = current_lsn;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform a 'normal' buffer recovery. Each logged region of the
|
||||
* buffer should be copied over the corresponding region in the
|
||||
* given buffer. The bitmap in the buf log format structure indicates
|
||||
* where to place the logged data.
|
||||
*/
|
||||
STATIC void
|
||||
xlog_recover_do_reg_buffer(
|
||||
struct xfs_mount *mp,
|
||||
struct xlog_recover_item *item,
|
||||
struct xfs_buf *bp,
|
||||
xfs_buf_log_format_t *buf_f,
|
||||
xfs_lsn_t current_lsn)
|
||||
{
|
||||
int i;
|
||||
int bit;
|
||||
int nbits;
|
||||
xfs_failaddr_t fa;
|
||||
const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
|
||||
|
||||
trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
|
||||
|
||||
bit = 0;
|
||||
i = 1; /* 0 is the buf format structure */
|
||||
while (1) {
|
||||
bit = xfs_next_bit(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
if (bit == -1)
|
||||
break;
|
||||
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
||||
buf_f->blf_map_size, bit);
|
||||
ASSERT(nbits > 0);
|
||||
ASSERT(item->ri_buf[i].i_addr != NULL);
|
||||
ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
|
||||
ASSERT(BBTOB(bp->b_length) >=
|
||||
((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
|
||||
|
||||
/*
|
||||
* The dirty regions logged in the buffer, even though
|
||||
* contiguous, may span multiple chunks. This is because the
|
||||
* dirty region may span a physical page boundary in a buffer
|
||||
* and hence be split into two separate vectors for writing into
|
||||
* the log. Hence we need to trim nbits back to the length of
|
||||
* the current region being copied out of the log.
|
||||
*/
|
||||
if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
|
||||
nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
|
||||
|
||||
/*
|
||||
* Do a sanity check if this is a dquot buffer. Just checking
|
||||
* the first dquot in the buffer should do. XXXThis is
|
||||
* probably a good thing to do for other buf types also.
|
||||
*/
|
||||
fa = NULL;
|
||||
if (buf_f->blf_flags &
|
||||
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
||||
if (item->ri_buf[i].i_addr == NULL) {
|
||||
xfs_alert(mp,
|
||||
"XFS: NULL dquot in %s.", __func__);
|
||||
goto next;
|
||||
}
|
||||
if (item->ri_buf[i].i_len < size_disk_dquot) {
|
||||
xfs_alert(mp,
|
||||
"XFS: dquot too small (%d) in %s.",
|
||||
item->ri_buf[i].i_len, __func__);
|
||||
goto next;
|
||||
}
|
||||
fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
|
||||
-1, 0);
|
||||
if (fa) {
|
||||
xfs_alert(mp,
|
||||
"dquot corrupt at %pS trying to replay into block 0x%llx",
|
||||
fa, bp->b_bn);
|
||||
goto next;
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(xfs_buf_offset(bp,
|
||||
(uint)bit << XFS_BLF_SHIFT), /* dest */
|
||||
item->ri_buf[i].i_addr, /* source */
|
||||
nbits<<XFS_BLF_SHIFT); /* length */
|
||||
next:
|
||||
i++;
|
||||
bit += nbits;
|
||||
}
|
||||
|
||||
/* Shouldn't be any more regions */
|
||||
ASSERT(i == item->ri_total);
|
||||
|
||||
xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform a dquot buffer recovery.
|
||||
* Simple algorithm: if we have found a QUOTAOFF log item of the same type
|
||||
* (ie. USR or GRP), then just toss this buffer away; don't recover it.
|
||||
* Else, treat it as a regular buffer and do recovery.
|
||||
*
|
||||
* Return false if the buffer was tossed and true if we recovered the buffer to
|
||||
* indicate to the caller if the buffer needs writing.
|
||||
*/
|
||||
STATIC bool
|
||||
xlog_recover_do_dquot_buffer(
|
||||
struct xfs_mount *mp,
|
||||
struct xlog *log,
|
||||
struct xlog_recover_item *item,
|
||||
struct xfs_buf *bp,
|
||||
struct xfs_buf_log_format *buf_f)
|
||||
{
|
||||
uint type;
|
||||
|
||||
trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
|
||||
|
||||
/*
|
||||
* Filesystems are required to send in quota flags at mount time.
|
||||
*/
|
||||
if (!mp->m_qflags)
|
||||
return false;
|
||||
|
||||
type = 0;
|
||||
if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
|
||||
type |= XFS_DQ_USER;
|
||||
if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
|
||||
type |= XFS_DQ_PROJ;
|
||||
if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
|
||||
type |= XFS_DQ_GROUP;
|
||||
/*
|
||||
* This type of quotas was turned off, so ignore this buffer
|
||||
*/
|
||||
if (log->l_quotaoffs_flag & type)
|
||||
return false;
|
||||
|
||||
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* This routine replays a modification made to a buffer at runtime.
|
||||
* There are actually two types of buffer, regular and inode, which
|
||||
* are handled differently. Inode buffers are handled differently
|
||||
* in that we only recover a specific set of data from them, namely
|
||||
* the inode di_next_unlinked fields. This is because all other inode
|
||||
* data is actually logged via inode records and any data we replay
|
||||
* here which overlaps that may be stale.
|
||||
*
|
||||
* When meta-data buffers are freed at run time we log a buffer item
|
||||
* with the XFS_BLF_CANCEL bit set to indicate that previous copies
|
||||
* of the buffer in the log should not be replayed at recovery time.
|
||||
* This is so that if the blocks covered by the buffer are reused for
|
||||
* file data before we crash we don't end up replaying old, freed
|
||||
* meta-data into a user's file.
|
||||
*
|
||||
* To handle the cancellation of buffer log items, we make two passes
|
||||
* over the log during recovery. During the first we build a table of
|
||||
* those buffers which have been cancelled, and during the second we
|
||||
* only replay those buffers which do not have corresponding cancel
|
||||
* records in the table. See xlog_recover_buffer_pass[1,2] above
|
||||
* for more details on the implementation of the table of cancel records.
|
||||
*/
|
||||
STATIC int
|
||||
xlog_recover_buffer_pass2(
|
||||
struct xlog *log,
|
||||
struct list_head *buffer_list,
|
||||
struct xlog_recover_item *item,
|
||||
xfs_lsn_t current_lsn)
|
||||
{
|
||||
xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
|
||||
xfs_mount_t *mp = log->l_mp;
|
||||
xfs_buf_t *bp;
|
||||
int error;
|
||||
uint buf_flags;
|
||||
xfs_lsn_t lsn;
|
||||
|
||||
/*
|
||||
* In this pass we only want to recover all the buffers which have
|
||||
* not been cancelled and are not cancellation buffers themselves.
|
||||
*/
|
||||
if (buf_f->blf_flags & XFS_BLF_CANCEL) {
|
||||
if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
|
||||
buf_f->blf_len))
|
||||
goto cancelled;
|
||||
} else {
|
||||
|
||||
if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
|
||||
buf_f->blf_len))
|
||||
goto cancelled;
|
||||
}
|
||||
|
||||
trace_xfs_log_recover_buf_recover(log, buf_f);
|
||||
|
||||
buf_flags = 0;
|
||||
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
|
||||
buf_flags |= XBF_UNMAPPED;
|
||||
|
||||
error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
|
||||
buf_flags, &bp, NULL);
|
||||
if (error)
|
||||
return error;
|
||||
|
||||
/*
|
||||
* Recover the buffer only if we get an LSN from it and it's less than
|
||||
* the lsn of the transaction we are replaying.
|
||||
*
|
||||
* Note that we have to be extremely careful of readahead here.
|
||||
* Readahead does not attach verfiers to the buffers so if we don't
|
||||
* actually do any replay after readahead because of the LSN we found
|
||||
* in the buffer if more recent than that current transaction then we
|
||||
* need to attach the verifier directly. Failure to do so can lead to
|
||||
* future recovery actions (e.g. EFI and unlinked list recovery) can
|
||||
* operate on the buffers and they won't get the verifier attached. This
|
||||
* can lead to blocks on disk having the correct content but a stale
|
||||
* CRC.
|
||||
*
|
||||
* It is safe to assume these clean buffers are currently up to date.
|
||||
* If the buffer is dirtied by a later transaction being replayed, then
|
||||
* the verifier will be reset to match whatever recover turns that
|
||||
* buffer into.
|
||||
*/
|
||||
lsn = xlog_recover_get_buf_lsn(mp, bp);
|
||||
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
|
||||
trace_xfs_log_recover_buf_skip(log, buf_f);
|
||||
xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
|
||||
goto out_release;
|
||||
}
|
||||
|
||||
if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
|
||||
error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
|
||||
if (error)
|
||||
goto out_release;
|
||||
} else if (buf_f->blf_flags &
|
||||
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
||||
bool dirty;
|
||||
|
||||
dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
|
||||
if (!dirty)
|
||||
goto out_release;
|
||||
} else {
|
||||
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform delayed write on the buffer. Asynchronous writes will be
|
||||
* slower when taking into account all the buffers to be flushed.
|
||||
*
|
||||
* Also make sure that only inode buffers with good sizes stay in
|
||||
* the buffer cache. The kernel moves inodes in buffers of 1 block
|
||||
* or inode_cluster_size bytes, whichever is bigger. The inode
|
||||
* buffers in the log can be a different size if the log was generated
|
||||
* by an older kernel using unclustered inode buffers or a newer kernel
|
||||
* running with a different inode cluster size. Regardless, if the
|
||||
* the inode buffer size isn't max(blocksize, inode_cluster_size)
|
||||
* for *our* value of inode_cluster_size, then we need to keep
|
||||
* the buffer out of the buffer cache so that the buffer won't
|
||||
* overlap with future reads of those inodes.
|
||||
*/
|
||||
if (XFS_DINODE_MAGIC ==
|
||||
be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
|
||||
(BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
|
||||
xfs_buf_stale(bp);
|
||||
error = xfs_bwrite(bp);
|
||||
} else {
|
||||
ASSERT(bp->b_mount == mp);
|
||||
bp->b_iodone = xlog_recover_iodone;
|
||||
xfs_buf_delwri_queue(bp, buffer_list);
|
||||
}
|
||||
|
||||
out_release:
|
||||
xfs_buf_relse(bp);
|
||||
return error;
|
||||
cancelled:
|
||||
trace_xfs_log_recover_buf_cancel(log, buf_f);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Inode fork owner changes
|
||||
*
|
||||
@ -3846,10 +3061,11 @@ xlog_recover_commit_pass2(
|
||||
{
|
||||
trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
|
||||
|
||||
if (item->ri_ops->commit_pass2)
|
||||
return item->ri_ops->commit_pass2(log, buffer_list, item,
|
||||
trans->r_lsn);
|
||||
|
||||
switch (ITEM_TYPE(item)) {
|
||||
case XFS_LI_BUF:
|
||||
return xlog_recover_buffer_pass2(log, buffer_list, item,
|
||||
trans->r_lsn);
|
||||
case XFS_LI_INODE:
|
||||
return xlog_recover_inode_pass2(log, buffer_list, item,
|
||||
trans->r_lsn);
|
||||
|
Loading…
Reference in New Issue
Block a user