mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 08:40:53 +07:00
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching
Pull livepatching updates from Jiri Kosina: - remove of our own implementation of architecture-specific relocation code and leveraging existing code in the module loader to perform arch-dependent work, from Jessica Yu. The relevant patches have been acked by Rusty (for module.c) and Heiko (for s390). - live patching support for ppc64le, which is a joint work of Michael Ellerman and Torsten Duwe. This is coming from topic branch that is share between livepatching.git and ppc tree. - addition of livepatching documentation from Petr Mladek * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching: livepatch: make object/func-walking helpers more robust livepatch: Add some basic livepatch documentation powerpc/livepatch: Add live patching support on ppc64le powerpc/livepatch: Add livepatch stack to struct thread_info powerpc/livepatch: Add livepatch header livepatch: Allow architectures to specify an alternate ftrace location ftrace: Make ftrace_location_range() global livepatch: robustify klp_register_patch() API error checking Documentation: livepatch: outline Elf format and requirements for patch modules livepatch: reuse module loader code to write relocations module: s390: keep mod_arch_specific for livepatch modules module: preserve Elf information for livepatch modules Elf: add livepatch-specific Elf constants
This commit is contained in:
commit
0b86c75db6
394
Documentation/livepatch/livepatch.txt
Normal file
394
Documentation/livepatch/livepatch.txt
Normal file
@ -0,0 +1,394 @@
|
||||
=========
|
||||
Livepatch
|
||||
=========
|
||||
|
||||
This document outlines basic information about kernel livepatching.
|
||||
|
||||
Table of Contents:
|
||||
|
||||
1. Motivation
|
||||
2. Kprobes, Ftrace, Livepatching
|
||||
3. Consistency model
|
||||
4. Livepatch module
|
||||
4.1. New functions
|
||||
4.2. Metadata
|
||||
4.3. Livepatch module handling
|
||||
5. Livepatch life-cycle
|
||||
5.1. Registration
|
||||
5.2. Enabling
|
||||
5.3. Disabling
|
||||
5.4. Unregistration
|
||||
6. Sysfs
|
||||
7. Limitations
|
||||
|
||||
|
||||
1. Motivation
|
||||
=============
|
||||
|
||||
There are many situations where users are reluctant to reboot a system. It may
|
||||
be because their system is performing complex scientific computations or under
|
||||
heavy load during peak usage. In addition to keeping systems up and running,
|
||||
users want to also have a stable and secure system. Livepatching gives users
|
||||
both by allowing for function calls to be redirected; thus, fixing critical
|
||||
functions without a system reboot.
|
||||
|
||||
|
||||
2. Kprobes, Ftrace, Livepatching
|
||||
================================
|
||||
|
||||
There are multiple mechanisms in the Linux kernel that are directly related
|
||||
to redirection of code execution; namely: kernel probes, function tracing,
|
||||
and livepatching:
|
||||
|
||||
+ The kernel probes are the most generic. The code can be redirected by
|
||||
putting a breakpoint instruction instead of any instruction.
|
||||
|
||||
+ The function tracer calls the code from a predefined location that is
|
||||
close to the function entry point. This location is generated by the
|
||||
compiler using the '-pg' gcc option.
|
||||
|
||||
+ Livepatching typically needs to redirect the code at the very beginning
|
||||
of the function entry before the function parameters or the stack
|
||||
are in any way modified.
|
||||
|
||||
All three approaches need to modify the existing code at runtime. Therefore
|
||||
they need to be aware of each other and not step over each other's toes.
|
||||
Most of these problems are solved by using the dynamic ftrace framework as
|
||||
a base. A Kprobe is registered as a ftrace handler when the function entry
|
||||
is probed, see CONFIG_KPROBES_ON_FTRACE. Also an alternative function from
|
||||
a live patch is called with the help of a custom ftrace handler. But there are
|
||||
some limitations, see below.
|
||||
|
||||
|
||||
3. Consistency model
|
||||
====================
|
||||
|
||||
Functions are there for a reason. They take some input parameters, get or
|
||||
release locks, read, process, and even write some data in a defined way,
|
||||
have return values. In other words, each function has a defined semantic.
|
||||
|
||||
Many fixes do not change the semantic of the modified functions. For
|
||||
example, they add a NULL pointer or a boundary check, fix a race by adding
|
||||
a missing memory barrier, or add some locking around a critical section.
|
||||
Most of these changes are self contained and the function presents itself
|
||||
the same way to the rest of the system. In this case, the functions might
|
||||
be updated independently one by one.
|
||||
|
||||
But there are more complex fixes. For example, a patch might change
|
||||
ordering of locking in multiple functions at the same time. Or a patch
|
||||
might exchange meaning of some temporary structures and update
|
||||
all the relevant functions. In this case, the affected unit
|
||||
(thread, whole kernel) need to start using all new versions of
|
||||
the functions at the same time. Also the switch must happen only
|
||||
when it is safe to do so, e.g. when the affected locks are released
|
||||
or no data are stored in the modified structures at the moment.
|
||||
|
||||
The theory about how to apply functions a safe way is rather complex.
|
||||
The aim is to define a so-called consistency model. It attempts to define
|
||||
conditions when the new implementation could be used so that the system
|
||||
stays consistent. The theory is not yet finished. See the discussion at
|
||||
http://thread.gmane.org/gmane.linux.kernel/1823033/focus=1828189
|
||||
|
||||
The current consistency model is very simple. It guarantees that either
|
||||
the old or the new function is called. But various functions get redirected
|
||||
one by one without any synchronization.
|
||||
|
||||
In other words, the current implementation _never_ modifies the behavior
|
||||
in the middle of the call. It is because it does _not_ rewrite the entire
|
||||
function in the memory. Instead, the function gets redirected at the
|
||||
very beginning. But this redirection is used immediately even when
|
||||
some other functions from the same patch have not been redirected yet.
|
||||
|
||||
See also the section "Limitations" below.
|
||||
|
||||
|
||||
4. Livepatch module
|
||||
===================
|
||||
|
||||
Livepatches are distributed using kernel modules, see
|
||||
samples/livepatch/livepatch-sample.c.
|
||||
|
||||
The module includes a new implementation of functions that we want
|
||||
to replace. In addition, it defines some structures describing the
|
||||
relation between the original and the new implementation. Then there
|
||||
is code that makes the kernel start using the new code when the livepatch
|
||||
module is loaded. Also there is code that cleans up before the
|
||||
livepatch module is removed. All this is explained in more details in
|
||||
the next sections.
|
||||
|
||||
|
||||
4.1. New functions
|
||||
------------------
|
||||
|
||||
New versions of functions are typically just copied from the original
|
||||
sources. A good practice is to add a prefix to the names so that they
|
||||
can be distinguished from the original ones, e.g. in a backtrace. Also
|
||||
they can be declared as static because they are not called directly
|
||||
and do not need the global visibility.
|
||||
|
||||
The patch contains only functions that are really modified. But they
|
||||
might want to access functions or data from the original source file
|
||||
that may only be locally accessible. This can be solved by a special
|
||||
relocation section in the generated livepatch module, see
|
||||
Documentation/livepatch/module-elf-format.txt for more details.
|
||||
|
||||
|
||||
4.2. Metadata
|
||||
------------
|
||||
|
||||
The patch is described by several structures that split the information
|
||||
into three levels:
|
||||
|
||||
+ struct klp_func is defined for each patched function. It describes
|
||||
the relation between the original and the new implementation of a
|
||||
particular function.
|
||||
|
||||
The structure includes the name, as a string, of the original function.
|
||||
The function address is found via kallsyms at runtime.
|
||||
|
||||
Then it includes the address of the new function. It is defined
|
||||
directly by assigning the function pointer. Note that the new
|
||||
function is typically defined in the same source file.
|
||||
|
||||
As an optional parameter, the symbol position in the kallsyms database can
|
||||
be used to disambiguate functions of the same name. This is not the
|
||||
absolute position in the database, but rather the order it has been found
|
||||
only for a particular object ( vmlinux or a kernel module ). Note that
|
||||
kallsyms allows for searching symbols according to the object name.
|
||||
|
||||
+ struct klp_object defines an array of patched functions (struct
|
||||
klp_func) in the same object. Where the object is either vmlinux
|
||||
(NULL) or a module name.
|
||||
|
||||
The structure helps to group and handle functions for each object
|
||||
together. Note that patched modules might be loaded later than
|
||||
the patch itself and the relevant functions might be patched
|
||||
only when they are available.
|
||||
|
||||
|
||||
+ struct klp_patch defines an array of patched objects (struct
|
||||
klp_object).
|
||||
|
||||
This structure handles all patched functions consistently and eventually,
|
||||
synchronously. The whole patch is applied only when all patched
|
||||
symbols are found. The only exception are symbols from objects
|
||||
(kernel modules) that have not been loaded yet. Also if a more complex
|
||||
consistency model is supported then a selected unit (thread,
|
||||
kernel as a whole) will see the new code from the entire patch
|
||||
only when it is in a safe state.
|
||||
|
||||
|
||||
4.3. Livepatch module handling
|
||||
------------------------------
|
||||
|
||||
The usual behavior is that the new functions will get used when
|
||||
the livepatch module is loaded. For this, the module init() function
|
||||
has to register the patch (struct klp_patch) and enable it. See the
|
||||
section "Livepatch life-cycle" below for more details about these
|
||||
two operations.
|
||||
|
||||
Module removal is only safe when there are no users of the underlying
|
||||
functions. The immediate consistency model is not able to detect this;
|
||||
therefore livepatch modules cannot be removed. See "Limitations" below.
|
||||
|
||||
5. Livepatch life-cycle
|
||||
=======================
|
||||
|
||||
Livepatching defines four basic operations that define the life cycle of each
|
||||
live patch: registration, enabling, disabling and unregistration. There are
|
||||
several reasons why it is done this way.
|
||||
|
||||
First, the patch is applied only when all patched symbols for already
|
||||
loaded objects are found. The error handling is much easier if this
|
||||
check is done before particular functions get redirected.
|
||||
|
||||
Second, the immediate consistency model does not guarantee that anyone is not
|
||||
sleeping in the new code after the patch is reverted. This means that the new
|
||||
code needs to stay around "forever". If the code is there, one could apply it
|
||||
again. Therefore it makes sense to separate the operations that might be done
|
||||
once and those that need to be repeated when the patch is enabled (applied)
|
||||
again.
|
||||
|
||||
Third, it might take some time until the entire system is migrated
|
||||
when a more complex consistency model is used. The patch revert might
|
||||
block the livepatch module removal for too long. Therefore it is useful
|
||||
to revert the patch using a separate operation that might be called
|
||||
explicitly. But it does not make sense to remove all information
|
||||
until the livepatch module is really removed.
|
||||
|
||||
|
||||
5.1. Registration
|
||||
-----------------
|
||||
|
||||
Each patch first has to be registered using klp_register_patch(). This makes
|
||||
the patch known to the livepatch framework. Also it does some preliminary
|
||||
computing and checks.
|
||||
|
||||
In particular, the patch is added into the list of known patches. The
|
||||
addresses of the patched functions are found according to their names.
|
||||
The special relocations, mentioned in the section "New functions", are
|
||||
applied. The relevant entries are created under
|
||||
/sys/kernel/livepatch/<name>. The patch is rejected when any operation
|
||||
fails.
|
||||
|
||||
|
||||
5.2. Enabling
|
||||
-------------
|
||||
|
||||
Registered patches might be enabled either by calling klp_enable_patch() or
|
||||
by writing '1' to /sys/kernel/livepatch/<name>/enabled. The system will
|
||||
start using the new implementation of the patched functions at this stage.
|
||||
|
||||
In particular, if an original function is patched for the first time, a
|
||||
function specific struct klp_ops is created and an universal ftrace handler
|
||||
is registered.
|
||||
|
||||
Functions might be patched multiple times. The ftrace handler is registered
|
||||
only once for the given function. Further patches just add an entry to the
|
||||
list (see field `func_stack`) of the struct klp_ops. The last added
|
||||
entry is chosen by the ftrace handler and becomes the active function
|
||||
replacement.
|
||||
|
||||
Note that the patches might be enabled in a different order than they were
|
||||
registered.
|
||||
|
||||
|
||||
5.3. Disabling
|
||||
--------------
|
||||
|
||||
Enabled patches might get disabled either by calling klp_disable_patch() or
|
||||
by writing '0' to /sys/kernel/livepatch/<name>/enabled. At this stage
|
||||
either the code from the previously enabled patch or even the original
|
||||
code gets used.
|
||||
|
||||
Here all the functions (struct klp_func) associated with the to-be-disabled
|
||||
patch are removed from the corresponding struct klp_ops. The ftrace handler
|
||||
is unregistered and the struct klp_ops is freed when the func_stack list
|
||||
becomes empty.
|
||||
|
||||
Patches must be disabled in exactly the reverse order in which they were
|
||||
enabled. It makes the problem and the implementation much easier.
|
||||
|
||||
|
||||
5.4. Unregistration
|
||||
-------------------
|
||||
|
||||
Disabled patches might be unregistered by calling klp_unregister_patch().
|
||||
This can be done only when the patch is disabled and the code is no longer
|
||||
used. It must be called before the livepatch module gets unloaded.
|
||||
|
||||
At this stage, all the relevant sys-fs entries are removed and the patch
|
||||
is removed from the list of known patches.
|
||||
|
||||
|
||||
6. Sysfs
|
||||
========
|
||||
|
||||
Information about the registered patches can be found under
|
||||
/sys/kernel/livepatch. The patches could be enabled and disabled
|
||||
by writing there.
|
||||
|
||||
See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.
|
||||
|
||||
|
||||
7. Limitations
|
||||
==============
|
||||
|
||||
The current Livepatch implementation has several limitations:
|
||||
|
||||
|
||||
+ The patch must not change the semantic of the patched functions.
|
||||
|
||||
The current implementation guarantees only that either the old
|
||||
or the new function is called. The functions are patched one
|
||||
by one. It means that the patch must _not_ change the semantic
|
||||
of the function.
|
||||
|
||||
|
||||
+ Data structures can not be patched.
|
||||
|
||||
There is no support to version data structures or anyhow migrate
|
||||
one structure into another. Also the simple consistency model does
|
||||
not allow to switch more functions atomically.
|
||||
|
||||
Once there is more complex consistency mode, it will be possible to
|
||||
use some workarounds. For example, it will be possible to use a hole
|
||||
for a new member because the data structure is aligned. Or it will
|
||||
be possible to use an existing member for something else.
|
||||
|
||||
There are no plans to add more generic support for modified structures
|
||||
at the moment.
|
||||
|
||||
|
||||
+ Only functions that can be traced could be patched.
|
||||
|
||||
Livepatch is based on the dynamic ftrace. In particular, functions
|
||||
implementing ftrace or the livepatch ftrace handler could not be
|
||||
patched. Otherwise, the code would end up in an infinite loop. A
|
||||
potential mistake is prevented by marking the problematic functions
|
||||
by "notrace".
|
||||
|
||||
|
||||
+ Anything inlined into __schedule() can not be patched.
|
||||
|
||||
The switch_to macro is inlined into __schedule(). It switches the
|
||||
context between two processes in the middle of the macro. It does
|
||||
not save RIP in x86_64 version (contrary to 32-bit version). Instead,
|
||||
the currently used __schedule()/switch_to() handles both processes.
|
||||
|
||||
Now, let's have two different tasks. One calls the original
|
||||
__schedule(), its registers are stored in a defined order and it
|
||||
goes to sleep in the switch_to macro and some other task is restored
|
||||
using the original __schedule(). Then there is the second task which
|
||||
calls patched__schedule(), it goes to sleep there and the first task
|
||||
is picked by the patched__schedule(). Its RSP is restored and now
|
||||
the registers should be restored as well. But the order is different
|
||||
in the new patched__schedule(), so...
|
||||
|
||||
There is work in progress to remove this limitation.
|
||||
|
||||
|
||||
+ Livepatch modules can not be removed.
|
||||
|
||||
The current implementation just redirects the functions at the very
|
||||
beginning. It does not check if the functions are in use. In other
|
||||
words, it knows when the functions get called but it does not
|
||||
know when the functions return. Therefore it can not decide when
|
||||
the livepatch module can be safely removed.
|
||||
|
||||
This will get most likely solved once a more complex consistency model
|
||||
is supported. The idea is that a safe state for patching should also
|
||||
mean a safe state for removing the patch.
|
||||
|
||||
Note that the patch itself might get disabled by writing zero
|
||||
to /sys/kernel/livepatch/<patch>/enabled. It causes that the new
|
||||
code will not longer get called. But it does not guarantee
|
||||
that anyone is not sleeping anywhere in the new code.
|
||||
|
||||
|
||||
+ Livepatch works reliably only when the dynamic ftrace is located at
|
||||
the very beginning of the function.
|
||||
|
||||
The function need to be redirected before the stack or the function
|
||||
parameters are modified in any way. For example, livepatch requires
|
||||
using -fentry gcc compiler option on x86_64.
|
||||
|
||||
One exception is the PPC port. It uses relative addressing and TOC.
|
||||
Each function has to handle TOC and save LR before it could call
|
||||
the ftrace handler. This operation has to be reverted on return.
|
||||
Fortunately, the generic ftrace code has the same problem and all
|
||||
this is is handled on the ftrace level.
|
||||
|
||||
|
||||
+ Kretprobes using the ftrace framework conflict with the patched
|
||||
functions.
|
||||
|
||||
Both kretprobes and livepatches use a ftrace handler that modifies
|
||||
the return address. The first user wins. Either the probe or the patch
|
||||
is rejected when the handler is already in use by the other.
|
||||
|
||||
|
||||
+ Kprobes in the original function are ignored when the code is
|
||||
redirected to the new implementation.
|
||||
|
||||
There is a work in progress to add warnings about this situation.
|
311
Documentation/livepatch/module-elf-format.txt
Normal file
311
Documentation/livepatch/module-elf-format.txt
Normal file
@ -0,0 +1,311 @@
|
||||
===========================
|
||||
Livepatch module Elf format
|
||||
===========================
|
||||
|
||||
This document outlines the Elf format requirements that livepatch modules must follow.
|
||||
|
||||
-----------------
|
||||
Table of Contents
|
||||
-----------------
|
||||
0. Background and motivation
|
||||
1. Livepatch modinfo field
|
||||
2. Livepatch relocation sections
|
||||
2.1 What are livepatch relocation sections?
|
||||
2.2 Livepatch relocation section format
|
||||
2.2.1 Required flags
|
||||
2.2.2 Required name format
|
||||
2.2.3 Example livepatch relocation section names
|
||||
2.2.4 Example `readelf --sections` output
|
||||
2.2.5 Example `readelf --relocs` output
|
||||
3. Livepatch symbols
|
||||
3.1 What are livepatch symbols?
|
||||
3.2 A livepatch module's symbol table
|
||||
3.3 Livepatch symbol format
|
||||
3.3.1 Required flags
|
||||
3.3.2 Required name format
|
||||
3.3.3 Example livepatch symbol names
|
||||
3.3.4 Example `readelf --symbols` output
|
||||
4. Symbol table and Elf section access
|
||||
|
||||
----------------------------
|
||||
0. Background and motivation
|
||||
----------------------------
|
||||
|
||||
Formerly, livepatch required separate architecture-specific code to write
|
||||
relocations. However, arch-specific code to write relocations already
|
||||
exists in the module loader, so this former approach produced redundant
|
||||
code. So, instead of duplicating code and re-implementing what the module
|
||||
loader can already do, livepatch leverages existing code in the module
|
||||
loader to perform the all the arch-specific relocation work. Specifically,
|
||||
livepatch reuses the apply_relocate_add() function in the module loader to
|
||||
write relocations. The patch module Elf format described in this document
|
||||
enables livepatch to be able to do this. The hope is that this will make
|
||||
livepatch more easily portable to other architectures and reduce the amount
|
||||
of arch-specific code required to port livepatch to a particular
|
||||
architecture.
|
||||
|
||||
Since apply_relocate_add() requires access to a module's section header
|
||||
table, symbol table, and relocation section indices, Elf information is
|
||||
preserved for livepatch modules (see section 4). Livepatch manages its own
|
||||
relocation sections and symbols, which are described in this document. The
|
||||
Elf constants used to mark livepatch symbols and relocation sections were
|
||||
selected from OS-specific ranges according to the definitions from glibc.
|
||||
|
||||
0.1 Why does livepatch need to write its own relocations?
|
||||
---------------------------------------------------------
|
||||
A typical livepatch module contains patched versions of functions that can
|
||||
reference non-exported global symbols and non-included local symbols.
|
||||
Relocations referencing these types of symbols cannot be left in as-is
|
||||
since the kernel module loader cannot resolve them and will therefore
|
||||
reject the livepatch module. Furthermore, we cannot apply relocations that
|
||||
affect modules not yet loaded at patch module load time (e.g. a patch to a
|
||||
driver that is not loaded). Formerly, livepatch solved this problem by
|
||||
embedding special "dynrela" (dynamic rela) sections in the resulting patch
|
||||
module Elf output. Using these dynrela sections, livepatch could resolve
|
||||
symbols while taking into account its scope and what module the symbol
|
||||
belongs to, and then manually apply the dynamic relocations. However this
|
||||
approach required livepatch to supply arch-specific code in order to write
|
||||
these relocations. In the new format, livepatch manages its own SHT_RELA
|
||||
relocation sections in place of dynrela sections, and the symbols that the
|
||||
relas reference are special livepatch symbols (see section 2 and 3). The
|
||||
arch-specific livepatch relocation code is replaced by a call to
|
||||
apply_relocate_add().
|
||||
|
||||
================================
|
||||
PATCH MODULE FORMAT REQUIREMENTS
|
||||
================================
|
||||
|
||||
--------------------------
|
||||
1. Livepatch modinfo field
|
||||
--------------------------
|
||||
|
||||
Livepatch modules are required to have the "livepatch" modinfo attribute.
|
||||
See the sample livepatch module in samples/livepatch/ for how this is done.
|
||||
|
||||
Livepatch modules can be identified by users by using the 'modinfo' command
|
||||
and looking for the presence of the "livepatch" field. This field is also
|
||||
used by the kernel module loader to identify livepatch modules.
|
||||
|
||||
Example modinfo output:
|
||||
-----------------------
|
||||
% modinfo livepatch-meminfo.ko
|
||||
filename: livepatch-meminfo.ko
|
||||
livepatch: Y
|
||||
license: GPL
|
||||
depends:
|
||||
vermagic: 4.3.0+ SMP mod_unload
|
||||
|
||||
--------------------------------
|
||||
2. Livepatch relocation sections
|
||||
--------------------------------
|
||||
|
||||
-------------------------------------------
|
||||
2.1 What are livepatch relocation sections?
|
||||
-------------------------------------------
|
||||
A livepatch module manages its own Elf relocation sections to apply
|
||||
relocations to modules as well as to the kernel (vmlinux) at the
|
||||
appropriate time. For example, if a patch module patches a driver that is
|
||||
not currently loaded, livepatch will apply the corresponding livepatch
|
||||
relocation section(s) to the driver once it loads.
|
||||
|
||||
Each "object" (e.g. vmlinux, or a module) within a patch module may have
|
||||
multiple livepatch relocation sections associated with it (e.g. patches to
|
||||
multiple functions within the same object). There is a 1-1 correspondence
|
||||
between a livepatch relocation section and the target section (usually the
|
||||
text section of a function) to which the relocation(s) apply. It is
|
||||
also possible for a livepatch module to have no livepatch relocation
|
||||
sections, as in the case of the sample livepatch module (see
|
||||
samples/livepatch).
|
||||
|
||||
Since Elf information is preserved for livepatch modules (see Section 4), a
|
||||
livepatch relocation section can be applied simply by passing in the
|
||||
appropriate section index to apply_relocate_add(), which then uses it to
|
||||
access the relocation section and apply the relocations.
|
||||
|
||||
Every symbol referenced by a rela in a livepatch relocation section is a
|
||||
livepatch symbol. These must be resolved before livepatch can call
|
||||
apply_relocate_add(). See Section 3 for more information.
|
||||
|
||||
---------------------------------------
|
||||
2.2 Livepatch relocation section format
|
||||
---------------------------------------
|
||||
|
||||
2.2.1 Required flags
|
||||
--------------------
|
||||
Livepatch relocation sections must be marked with the SHF_RELA_LIVEPATCH
|
||||
section flag. See include/uapi/linux/elf.h for the definition. The module
|
||||
loader recognizes this flag and will avoid applying those relocation sections
|
||||
at patch module load time. These sections must also be marked with SHF_ALLOC,
|
||||
so that the module loader doesn't discard them on module load (i.e. they will
|
||||
be copied into memory along with the other SHF_ALLOC sections).
|
||||
|
||||
2.2.2 Required name format
|
||||
--------------------------
|
||||
The name of a livepatch relocation section must conform to the following format:
|
||||
|
||||
.klp.rela.objname.section_name
|
||||
^ ^^ ^ ^ ^
|
||||
|________||_____| |__________|
|
||||
[A] [B] [C]
|
||||
|
||||
[A] The relocation section name is prefixed with the string ".klp.rela."
|
||||
[B] The name of the object (i.e. "vmlinux" or name of module) to
|
||||
which the relocation section belongs follows immediately after the prefix.
|
||||
[C] The actual name of the section to which this relocation section applies.
|
||||
|
||||
2.2.3 Example livepatch relocation section names:
|
||||
-------------------------------------------------
|
||||
.klp.rela.ext4.text.ext4_attr_store
|
||||
.klp.rela.vmlinux.text.cmdline_proc_show
|
||||
|
||||
2.2.4 Example `readelf --sections` output for a patch
|
||||
module that patches vmlinux and modules 9p, btrfs, ext4:
|
||||
--------------------------------------------------------
|
||||
Section Headers:
|
||||
[Nr] Name Type Address Off Size ES Flg Lk Inf Al
|
||||
[ snip ]
|
||||
[29] .klp.rela.9p.text.caches.show RELA 0000000000000000 002d58 0000c0 18 AIo 64 9 8
|
||||
[30] .klp.rela.btrfs.text.btrfs.feature.attr.show RELA 0000000000000000 002e18 000060 18 AIo 64 11 8
|
||||
[ snip ]
|
||||
[34] .klp.rela.ext4.text.ext4.attr.store RELA 0000000000000000 002fd8 0000d8 18 AIo 64 13 8
|
||||
[35] .klp.rela.ext4.text.ext4.attr.show RELA 0000000000000000 0030b0 000150 18 AIo 64 15 8
|
||||
[36] .klp.rela.vmlinux.text.cmdline.proc.show RELA 0000000000000000 003200 000018 18 AIo 64 17 8
|
||||
[37] .klp.rela.vmlinux.text.meminfo.proc.show RELA 0000000000000000 003218 0000f0 18 AIo 64 19 8
|
||||
[ snip ] ^ ^
|
||||
| |
|
||||
[*] [*]
|
||||
[*] Livepatch relocation sections are SHT_RELA sections but with a few special
|
||||
characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will
|
||||
not be discarded when the module is loaded into memory, as well as with the
|
||||
SHF_RELA_LIVEPATCH flag ("o" - for OS-specific).
|
||||
|
||||
2.2.5 Example `readelf --relocs` output for a patch module:
|
||||
-----------------------------------------------------------
|
||||
Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
|
||||
Offset Info Type Symbol's Value Symbol's Name + Addend
|
||||
000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
|
||||
0000000000000028 0000003d0000000b R_X86_64_32S 0000000000000000 .klp.sym.btrfs.btrfs_ktype,0 + 0
|
||||
0000000000000036 0000003b00000002 R_X86_64_PC32 0000000000000000 .klp.sym.btrfs.can_modify_feature.isra.3,0 - 4
|
||||
000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4
|
||||
[ snip ] ^
|
||||
|
|
||||
[*]
|
||||
[*] Every symbol referenced by a relocation is a livepatch symbol.
|
||||
|
||||
--------------------
|
||||
3. Livepatch symbols
|
||||
--------------------
|
||||
|
||||
-------------------------------
|
||||
3.1 What are livepatch symbols?
|
||||
-------------------------------
|
||||
Livepatch symbols are symbols referred to by livepatch relocation sections.
|
||||
These are symbols accessed from new versions of functions for patched
|
||||
objects, whose addresses cannot be resolved by the module loader (because
|
||||
they are local or unexported global syms). Since the module loader only
|
||||
resolves exported syms, and not every symbol referenced by the new patched
|
||||
functions is exported, livepatch symbols were introduced. They are used
|
||||
also in cases where we cannot immediately know the address of a symbol when
|
||||
a patch module loads. For example, this is the case when livepatch patches
|
||||
a module that is not loaded yet. In this case, the relevant livepatch
|
||||
symbols are resolved simply when the target module loads. In any case, for
|
||||
any livepatch relocation section, all livepatch symbols referenced by that
|
||||
section must be resolved before livepatch can call apply_relocate_add() for
|
||||
that reloc section.
|
||||
|
||||
Livepatch symbols must be marked with SHN_LIVEPATCH so that the module
|
||||
loader can identify and ignore them. Livepatch modules keep these symbols
|
||||
in their symbol tables, and the symbol table is made accessible through
|
||||
module->symtab.
|
||||
|
||||
-------------------------------------
|
||||
3.2 A livepatch module's symbol table
|
||||
-------------------------------------
|
||||
Normally, a stripped down copy of a module's symbol table (containing only
|
||||
"core" symbols) is made available through module->symtab (See layout_symtab()
|
||||
in kernel/module.c). For livepatch modules, the symbol table copied into memory
|
||||
on module load must be exactly the same as the symbol table produced when the
|
||||
patch module was compiled. This is because the relocations in each livepatch
|
||||
relocation section refer to their respective symbols with their symbol indices,
|
||||
and the original symbol indices (and thus the symtab ordering) must be
|
||||
preserved in order for apply_relocate_add() to find the right symbol.
|
||||
|
||||
For example, take this particular rela from a livepatch module:
|
||||
Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
|
||||
Offset Info Type Symbol's Value Symbol's Name + Addend
|
||||
000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
|
||||
|
||||
This rela refers to the symbol '.klp.sym.vmlinux.printk,0', and the symbol index is encoded
|
||||
in 'Info'. Here its symbol index is 0x5e, which is 94 in decimal, which refers to the
|
||||
symbol index 94.
|
||||
And in this patch module's corresponding symbol table, symbol index 94 refers to that very symbol:
|
||||
[ snip ]
|
||||
94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0
|
||||
[ snip ]
|
||||
|
||||
---------------------------
|
||||
3.3 Livepatch symbol format
|
||||
---------------------------
|
||||
|
||||
3.3.1 Required flags
|
||||
--------------------
|
||||
Livepatch symbols must have their section index marked as SHN_LIVEPATCH, so
|
||||
that the module loader can identify them and not attempt to resolve them.
|
||||
See include/uapi/linux/elf.h for the actual definitions.
|
||||
|
||||
3.3.2 Required name format
|
||||
--------------------------
|
||||
Livepatch symbol names must conform to the following format:
|
||||
|
||||
.klp.sym.objname.symbol_name,sympos
|
||||
^ ^^ ^ ^ ^ ^
|
||||
|_______||_____| |_________| |
|
||||
[A] [B] [C] [D]
|
||||
|
||||
[A] The symbol name is prefixed with the string ".klp.sym."
|
||||
[B] The name of the object (i.e. "vmlinux" or name of module) to
|
||||
which the symbol belongs follows immediately after the prefix.
|
||||
[C] The actual name of the symbol.
|
||||
[D] The position of the symbol in the object (as according to kallsyms)
|
||||
This is used to differentiate duplicate symbols within the same
|
||||
object. The symbol position is expressed numerically (0, 1, 2...).
|
||||
The symbol position of a unique symbol is 0.
|
||||
|
||||
3.3.3 Example livepatch symbol names:
|
||||
-------------------------------------
|
||||
.klp.sym.vmlinux.snprintf,0
|
||||
.klp.sym.vmlinux.printk,0
|
||||
.klp.sym.btrfs.btrfs_ktype,0
|
||||
|
||||
3.3.4 Example `readelf --symbols` output for a patch module:
|
||||
------------------------------------------------------------
|
||||
Symbol table '.symtab' contains 127 entries:
|
||||
Num: Value Size Type Bind Vis Ndx Name
|
||||
[ snip ]
|
||||
73: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.snprintf,0
|
||||
74: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.capable,0
|
||||
75: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.find_next_bit,0
|
||||
76: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.si_swapinfo,0
|
||||
[ snip ] ^
|
||||
|
|
||||
[*]
|
||||
[*] Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
|
||||
"OS" means OS-specific.
|
||||
|
||||
--------------------------------------
|
||||
4. Symbol table and Elf section access
|
||||
--------------------------------------
|
||||
A livepatch module's symbol table is accessible through module->symtab.
|
||||
|
||||
Since apply_relocate_add() requires access to a module's section headers,
|
||||
symbol table, and relocation section indices, Elf information is preserved for
|
||||
livepatch modules and is made accessible by the module loader through
|
||||
module->klp_info, which is a klp_modinfo struct. When a livepatch module loads,
|
||||
this struct is filled in by the module loader. Its fields are documented below:
|
||||
|
||||
struct klp_modinfo {
|
||||
Elf_Ehdr hdr; /* Elf header */
|
||||
Elf_Shdr *sechdrs; /* Section header table */
|
||||
char *secstrings; /* String table for the section headers */
|
||||
unsigned int symndx; /* The symbol table section index */
|
||||
};
|
@ -6699,6 +6699,7 @@ F: kernel/livepatch/
|
||||
F: include/linux/livepatch.h
|
||||
F: arch/x86/include/asm/livepatch.h
|
||||
F: arch/x86/kernel/livepatch.c
|
||||
F: Documentation/livepatch/
|
||||
F: Documentation/ABI/testing/sysfs-kernel-livepatch
|
||||
F: samples/livepatch/
|
||||
L: live-patching@vger.kernel.org
|
||||
|
@ -160,6 +160,7 @@ config PPC
|
||||
select HAVE_ARCH_SECCOMP_FILTER
|
||||
select ARCH_HAS_UBSAN_SANITIZE_ALL
|
||||
select ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT
|
||||
select HAVE_LIVEPATCH if HAVE_DYNAMIC_FTRACE_WITH_REGS
|
||||
|
||||
config GENERIC_CSUM
|
||||
def_bool CPU_LITTLE_ENDIAN
|
||||
@ -1107,3 +1108,5 @@ config PPC_LIB_RHEAP
|
||||
bool
|
||||
|
||||
source "arch/powerpc/kvm/Kconfig"
|
||||
|
||||
source "kernel/livepatch/Kconfig"
|
||||
|
62
arch/powerpc/include/asm/livepatch.h
Normal file
62
arch/powerpc/include/asm/livepatch.h
Normal file
@ -0,0 +1,62 @@
|
||||
/*
|
||||
* livepatch.h - powerpc-specific Kernel Live Patching Core
|
||||
*
|
||||
* Copyright (C) 2015-2016, SUSE, IBM Corp.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef _ASM_POWERPC_LIVEPATCH_H
|
||||
#define _ASM_POWERPC_LIVEPATCH_H
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/ftrace.h>
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
static inline int klp_check_compiler_support(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int klp_write_module_reloc(struct module *mod, unsigned long
|
||||
type, unsigned long loc, unsigned long value)
|
||||
{
|
||||
/* This requires infrastructure changes; we need the loadinfos. */
|
||||
return -ENOSYS;
|
||||
}
|
||||
|
||||
static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip)
|
||||
{
|
||||
regs->nip = ip;
|
||||
}
|
||||
|
||||
#define klp_get_ftrace_location klp_get_ftrace_location
|
||||
static inline unsigned long klp_get_ftrace_location(unsigned long faddr)
|
||||
{
|
||||
/*
|
||||
* Live patch works only with -mprofile-kernel on PPC. In this case,
|
||||
* the ftrace location is always within the first 16 bytes.
|
||||
*/
|
||||
return ftrace_location_range(faddr, faddr + 16);
|
||||
}
|
||||
|
||||
static inline void klp_init_thread_info(struct thread_info *ti)
|
||||
{
|
||||
/* + 1 to account for STACK_END_MAGIC */
|
||||
ti->livepatch_sp = (unsigned long *)(ti + 1) + 1;
|
||||
}
|
||||
#else
|
||||
static void klp_init_thread_info(struct thread_info *ti) { }
|
||||
#endif /* CONFIG_LIVEPATCH */
|
||||
|
||||
#endif /* _ASM_POWERPC_LIVEPATCH_H */
|
@ -43,7 +43,9 @@ struct thread_info {
|
||||
int preempt_count; /* 0 => preemptable,
|
||||
<0 => BUG */
|
||||
unsigned long local_flags; /* private flags for thread */
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
unsigned long *livepatch_sp;
|
||||
#endif
|
||||
/* low level flags - has atomic operations done on it */
|
||||
unsigned long flags ____cacheline_aligned_in_smp;
|
||||
};
|
||||
|
@ -86,6 +86,10 @@ int main(void)
|
||||
DEFINE(KSP_LIMIT, offsetof(struct thread_struct, ksp_limit));
|
||||
#endif /* CONFIG_PPC64 */
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
DEFINE(TI_livepatch_sp, offsetof(struct thread_info, livepatch_sp));
|
||||
#endif
|
||||
|
||||
DEFINE(KSP, offsetof(struct thread_struct, ksp));
|
||||
DEFINE(PT_REGS, offsetof(struct thread_struct, regs));
|
||||
#ifdef CONFIG_BOOKE
|
||||
|
@ -20,6 +20,7 @@
|
||||
|
||||
#include <linux/errno.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/magic.h>
|
||||
#include <asm/unistd.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/page.h>
|
||||
@ -1248,6 +1249,9 @@ _GLOBAL(ftrace_caller)
|
||||
addi r3,r3,function_trace_op@toc@l
|
||||
ld r5,0(r3)
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
mr r14,r7 /* remember old NIP */
|
||||
#endif
|
||||
/* Calculate ip from nip-4 into r3 for call below */
|
||||
subi r3, r7, MCOUNT_INSN_SIZE
|
||||
|
||||
@ -1272,6 +1276,9 @@ ftrace_call:
|
||||
/* Load ctr with the possibly modified NIP */
|
||||
ld r3, _NIP(r1)
|
||||
mtctr r3
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
cmpd r14,r3 /* has NIP been altered? */
|
||||
#endif
|
||||
|
||||
/* Restore gprs */
|
||||
REST_8GPRS(0,r1)
|
||||
@ -1289,6 +1296,11 @@ ftrace_call:
|
||||
ld r0, LRSAVE(r1)
|
||||
mtlr r0
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
/* Based on the cmpd above, if the NIP was altered handle livepatch */
|
||||
bne- livepatch_handler
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
||||
stdu r1, -112(r1)
|
||||
.globl ftrace_graph_call
|
||||
@ -1305,6 +1317,91 @@ _GLOBAL(ftrace_graph_stub)
|
||||
|
||||
_GLOBAL(ftrace_stub)
|
||||
blr
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
/*
|
||||
* This function runs in the mcount context, between two functions. As
|
||||
* such it can only clobber registers which are volatile and used in
|
||||
* function linkage.
|
||||
*
|
||||
* We get here when a function A, calls another function B, but B has
|
||||
* been live patched with a new function C.
|
||||
*
|
||||
* On entry:
|
||||
* - we have no stack frame and can not allocate one
|
||||
* - LR points back to the original caller (in A)
|
||||
* - CTR holds the new NIP in C
|
||||
* - r0 & r12 are free
|
||||
*
|
||||
* r0 can't be used as the base register for a DS-form load or store, so
|
||||
* we temporarily shuffle r1 (stack pointer) into r0 and then put it back.
|
||||
*/
|
||||
livepatch_handler:
|
||||
CURRENT_THREAD_INFO(r12, r1)
|
||||
|
||||
/* Save stack pointer into r0 */
|
||||
mr r0, r1
|
||||
|
||||
/* Allocate 3 x 8 bytes */
|
||||
ld r1, TI_livepatch_sp(r12)
|
||||
addi r1, r1, 24
|
||||
std r1, TI_livepatch_sp(r12)
|
||||
|
||||
/* Save toc & real LR on livepatch stack */
|
||||
std r2, -24(r1)
|
||||
mflr r12
|
||||
std r12, -16(r1)
|
||||
|
||||
/* Store stack end marker */
|
||||
lis r12, STACK_END_MAGIC@h
|
||||
ori r12, r12, STACK_END_MAGIC@l
|
||||
std r12, -8(r1)
|
||||
|
||||
/* Restore real stack pointer */
|
||||
mr r1, r0
|
||||
|
||||
/* Put ctr in r12 for global entry and branch there */
|
||||
mfctr r12
|
||||
bctrl
|
||||
|
||||
/*
|
||||
* Now we are returning from the patched function to the original
|
||||
* caller A. We are free to use r0 and r12, and we can use r2 until we
|
||||
* restore it.
|
||||
*/
|
||||
|
||||
CURRENT_THREAD_INFO(r12, r1)
|
||||
|
||||
/* Save stack pointer into r0 */
|
||||
mr r0, r1
|
||||
|
||||
ld r1, TI_livepatch_sp(r12)
|
||||
|
||||
/* Check stack marker hasn't been trashed */
|
||||
lis r2, STACK_END_MAGIC@h
|
||||
ori r2, r2, STACK_END_MAGIC@l
|
||||
ld r12, -8(r1)
|
||||
1: tdne r12, r2
|
||||
EMIT_BUG_ENTRY 1b, __FILE__, __LINE__ - 1, 0
|
||||
|
||||
/* Restore LR & toc from livepatch stack */
|
||||
ld r12, -16(r1)
|
||||
mtlr r12
|
||||
ld r2, -24(r1)
|
||||
|
||||
/* Pop livepatch stack frame */
|
||||
CURRENT_THREAD_INFO(r12, r0)
|
||||
subi r1, r1, 24
|
||||
std r1, TI_livepatch_sp(r12)
|
||||
|
||||
/* Restore real stack pointer */
|
||||
mr r1, r0
|
||||
|
||||
/* Return to original caller of live patched function */
|
||||
blr
|
||||
#endif
|
||||
|
||||
|
||||
#else
|
||||
_GLOBAL_TOC(_mcount)
|
||||
/* Taken from output of objdump from lib64/glibc */
|
||||
|
@ -66,6 +66,7 @@
|
||||
#include <asm/udbg.h>
|
||||
#include <asm/smp.h>
|
||||
#include <asm/debug.h>
|
||||
#include <asm/livepatch.h>
|
||||
|
||||
#ifdef CONFIG_PPC64
|
||||
#include <asm/paca.h>
|
||||
@ -607,10 +608,12 @@ void irq_ctx_init(void)
|
||||
memset((void *)softirq_ctx[i], 0, THREAD_SIZE);
|
||||
tp = softirq_ctx[i];
|
||||
tp->cpu = i;
|
||||
klp_init_thread_info(tp);
|
||||
|
||||
memset((void *)hardirq_ctx[i], 0, THREAD_SIZE);
|
||||
tp = hardirq_ctx[i];
|
||||
tp->cpu = i;
|
||||
klp_init_thread_info(tp);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -55,6 +55,8 @@
|
||||
#include <asm/firmware.h>
|
||||
#endif
|
||||
#include <asm/code-patching.h>
|
||||
#include <asm/livepatch.h>
|
||||
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/kdebug.h>
|
||||
|
||||
@ -1400,13 +1402,15 @@ int copy_thread(unsigned long clone_flags, unsigned long usp,
|
||||
extern void ret_from_kernel_thread(void);
|
||||
void (*f)(void);
|
||||
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
||||
struct thread_info *ti = task_thread_info(p);
|
||||
|
||||
klp_init_thread_info(ti);
|
||||
|
||||
/* Copy registers */
|
||||
sp -= sizeof(struct pt_regs);
|
||||
childregs = (struct pt_regs *) sp;
|
||||
if (unlikely(p->flags & PF_KTHREAD)) {
|
||||
/* kernel thread */
|
||||
struct thread_info *ti = (void *)task_stack_page(p);
|
||||
memset(childregs, 0, sizeof(struct pt_regs));
|
||||
childregs->gpr[1] = sp + sizeof(struct pt_regs);
|
||||
/* function */
|
||||
|
@ -69,6 +69,7 @@
|
||||
#include <asm/kvm_ppc.h>
|
||||
#include <asm/hugetlb.h>
|
||||
#include <asm/epapr_hcalls.h>
|
||||
#include <asm/livepatch.h>
|
||||
|
||||
#ifdef DEBUG
|
||||
#define DBG(fmt...) udbg_printf(fmt)
|
||||
@ -667,16 +668,16 @@ static void __init emergency_stack_init(void)
|
||||
limit = min(safe_stack_limit(), ppc64_rma_size);
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
unsigned long sp;
|
||||
sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
|
||||
sp += THREAD_SIZE;
|
||||
paca[i].emergency_sp = __va(sp);
|
||||
struct thread_info *ti;
|
||||
ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
|
||||
klp_init_thread_info(ti);
|
||||
paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
|
||||
|
||||
#ifdef CONFIG_PPC_BOOK3S_64
|
||||
/* emergency stack for machine check exception handling. */
|
||||
sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
|
||||
sp += THREAD_SIZE;
|
||||
paca[i].mc_emergency_sp = __va(sp);
|
||||
ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
|
||||
klp_init_thread_info(ti);
|
||||
paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
@ -700,6 +701,8 @@ void __init setup_arch(char **cmdline_p)
|
||||
if (ppc_md.panic)
|
||||
setup_panic();
|
||||
|
||||
klp_init_thread_info(&init_thread_info);
|
||||
|
||||
init_mm.start_code = (unsigned long)_stext;
|
||||
init_mm.end_code = (unsigned long) _etext;
|
||||
init_mm.end_data = (unsigned long) _edata;
|
||||
|
@ -24,13 +24,6 @@ static inline int klp_check_compiler_support(void)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int klp_write_module_reloc(struct module *mod, unsigned long
|
||||
type, unsigned long loc, unsigned long value)
|
||||
{
|
||||
/* not supported yet */
|
||||
return -ENOSYS;
|
||||
}
|
||||
|
||||
static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip)
|
||||
{
|
||||
regs->psw.addr = ip;
|
||||
|
@ -51,6 +51,10 @@ void *module_alloc(unsigned long size)
|
||||
|
||||
void module_arch_freeing_init(struct module *mod)
|
||||
{
|
||||
if (is_livepatch_module(mod) &&
|
||||
mod->state == MODULE_STATE_LIVE)
|
||||
return;
|
||||
|
||||
vfree(mod->arch.syminfo);
|
||||
mod->arch.syminfo = NULL;
|
||||
}
|
||||
@ -425,7 +429,5 @@ int module_finalize(const Elf_Ehdr *hdr,
|
||||
struct module *me)
|
||||
{
|
||||
jump_label_apply_nops(me);
|
||||
vfree(me->arch.syminfo);
|
||||
me->arch.syminfo = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
@ -32,8 +32,6 @@ static inline int klp_check_compiler_support(void)
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
int klp_write_module_reloc(struct module *mod, unsigned long type,
|
||||
unsigned long loc, unsigned long value);
|
||||
|
||||
static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip)
|
||||
{
|
||||
|
@ -83,7 +83,6 @@ obj-$(CONFIG_X86_MPPARSE) += mpparse.o
|
||||
obj-y += apic/
|
||||
obj-$(CONFIG_X86_REBOOTFIXUPS) += reboot_fixups_32.o
|
||||
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
|
||||
obj-$(CONFIG_LIVEPATCH) += livepatch.o
|
||||
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
|
||||
obj-$(CONFIG_FTRACE_SYSCALLS) += ftrace.o
|
||||
obj-$(CONFIG_X86_TSC) += trace_clock.o
|
||||
|
@ -1,70 +0,0 @@
|
||||
/*
|
||||
* livepatch.c - x86-specific Kernel Live Patching Core
|
||||
*
|
||||
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
|
||||
* Copyright (C) 2014 SUSE
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/elf.h>
|
||||
#include <asm/livepatch.h>
|
||||
|
||||
/**
|
||||
* klp_write_module_reloc() - write a relocation in a module
|
||||
* @mod: module in which the section to be modified is found
|
||||
* @type: ELF relocation type (see asm/elf.h)
|
||||
* @loc: address that the relocation should be written to
|
||||
* @value: relocation value (sym address + addend)
|
||||
*
|
||||
* This function writes a relocation to the specified location for
|
||||
* a particular module.
|
||||
*/
|
||||
int klp_write_module_reloc(struct module *mod, unsigned long type,
|
||||
unsigned long loc, unsigned long value)
|
||||
{
|
||||
size_t size = 4;
|
||||
unsigned long val;
|
||||
unsigned long core = (unsigned long)mod->core_layout.base;
|
||||
unsigned long core_size = mod->core_layout.size;
|
||||
|
||||
switch (type) {
|
||||
case R_X86_64_NONE:
|
||||
return 0;
|
||||
case R_X86_64_64:
|
||||
val = value;
|
||||
size = 8;
|
||||
break;
|
||||
case R_X86_64_32:
|
||||
val = (u32)value;
|
||||
break;
|
||||
case R_X86_64_32S:
|
||||
val = (s32)value;
|
||||
break;
|
||||
case R_X86_64_PC32:
|
||||
val = (u32)(value - loc);
|
||||
break;
|
||||
default:
|
||||
/* unsupported relocation type */
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (loc < core || loc >= core + core_size)
|
||||
/* loc does not point to any symbol inside the module */
|
||||
return -EINVAL;
|
||||
|
||||
return probe_kernel_write((void *)loc, &val, size);
|
||||
}
|
@ -455,6 +455,7 @@ int ftrace_update_record(struct dyn_ftrace *rec, int enable);
|
||||
int ftrace_test_record(struct dyn_ftrace *rec, int enable);
|
||||
void ftrace_run_stop_machine(int command);
|
||||
unsigned long ftrace_location(unsigned long ip);
|
||||
unsigned long ftrace_location_range(unsigned long start, unsigned long end);
|
||||
unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec);
|
||||
unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec);
|
||||
|
||||
|
@ -64,28 +64,9 @@ struct klp_func {
|
||||
struct list_head stack_node;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct klp_reloc - relocation structure for live patching
|
||||
* @loc: address where the relocation will be written
|
||||
* @sympos: position in kallsyms to disambiguate symbols (optional)
|
||||
* @type: ELF relocation type
|
||||
* @name: name of the referenced symbol (for lookup/verification)
|
||||
* @addend: offset from the referenced symbol
|
||||
* @external: symbol is either exported or within the live patch module itself
|
||||
*/
|
||||
struct klp_reloc {
|
||||
unsigned long loc;
|
||||
unsigned long sympos;
|
||||
unsigned long type;
|
||||
const char *name;
|
||||
int addend;
|
||||
int external;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct klp_object - kernel object structure for live patching
|
||||
* @name: module name (or NULL for vmlinux)
|
||||
* @relocs: relocation entries to be applied at load time
|
||||
* @funcs: function entries for functions to be patched in the object
|
||||
* @kobj: kobject for sysfs resources
|
||||
* @mod: kernel module associated with the patched object
|
||||
@ -95,7 +76,6 @@ struct klp_reloc {
|
||||
struct klp_object {
|
||||
/* external */
|
||||
const char *name;
|
||||
struct klp_reloc *relocs;
|
||||
struct klp_func *funcs;
|
||||
|
||||
/* internal */
|
||||
@ -124,10 +104,12 @@ struct klp_patch {
|
||||
};
|
||||
|
||||
#define klp_for_each_object(patch, obj) \
|
||||
for (obj = patch->objs; obj->funcs; obj++)
|
||||
for (obj = patch->objs; obj->funcs || obj->name; obj++)
|
||||
|
||||
#define klp_for_each_func(obj, func) \
|
||||
for (func = obj->funcs; func->old_name; func++)
|
||||
for (func = obj->funcs; \
|
||||
func->old_name || func->new_func || func->old_sympos; \
|
||||
func++)
|
||||
|
||||
int klp_register_patch(struct klp_patch *);
|
||||
int klp_unregister_patch(struct klp_patch *);
|
||||
|
@ -330,6 +330,15 @@ struct mod_kallsyms {
|
||||
char *strtab;
|
||||
};
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
struct klp_modinfo {
|
||||
Elf_Ehdr hdr;
|
||||
Elf_Shdr *sechdrs;
|
||||
char *secstrings;
|
||||
unsigned int symndx;
|
||||
};
|
||||
#endif
|
||||
|
||||
struct module {
|
||||
enum module_state state;
|
||||
|
||||
@ -456,7 +465,11 @@ struct module {
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
bool klp; /* Is this a livepatch module? */
|
||||
bool klp_alive;
|
||||
|
||||
/* Elf information */
|
||||
struct klp_modinfo *klp_info;
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_MODULE_UNLOAD
|
||||
@ -630,6 +643,18 @@ static inline bool module_requested_async_probing(struct module *module)
|
||||
return module && module->async_probe_requested;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
static inline bool is_livepatch_module(struct module *mod)
|
||||
{
|
||||
return mod->klp;
|
||||
}
|
||||
#else /* !CONFIG_LIVEPATCH */
|
||||
static inline bool is_livepatch_module(struct module *mod)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
#endif /* CONFIG_LIVEPATCH */
|
||||
|
||||
#else /* !CONFIG_MODULES... */
|
||||
|
||||
/* Given an address, look for it in the exception tables. */
|
||||
|
@ -285,6 +285,7 @@ typedef struct elf64_phdr {
|
||||
#define SHF_WRITE 0x1
|
||||
#define SHF_ALLOC 0x2
|
||||
#define SHF_EXECINSTR 0x4
|
||||
#define SHF_RELA_LIVEPATCH 0x00100000
|
||||
#define SHF_MASKPROC 0xf0000000
|
||||
|
||||
/* special section indexes */
|
||||
@ -292,6 +293,7 @@ typedef struct elf64_phdr {
|
||||
#define SHN_LORESERVE 0xff00
|
||||
#define SHN_LOPROC 0xff00
|
||||
#define SHN_HIPROC 0xff1f
|
||||
#define SHN_LIVEPATCH 0xff20
|
||||
#define SHN_ABS 0xfff1
|
||||
#define SHN_COMMON 0xfff2
|
||||
#define SHN_HIRESERVE 0xffff
|
||||
|
@ -28,6 +28,8 @@
|
||||
#include <linux/list.h>
|
||||
#include <linux/kallsyms.h>
|
||||
#include <linux/livepatch.h>
|
||||
#include <linux/elf.h>
|
||||
#include <linux/moduleloader.h>
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
/**
|
||||
@ -204,75 +206,109 @@ static int klp_find_object_symbol(const char *objname, const char *name,
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
* external symbols are located outside the parent object (where the parent
|
||||
* object is either vmlinux or the kmod being patched).
|
||||
*/
|
||||
static int klp_find_external_symbol(struct module *pmod, const char *name,
|
||||
unsigned long *addr)
|
||||
static int klp_resolve_symbols(Elf_Shdr *relasec, struct module *pmod)
|
||||
{
|
||||
const struct kernel_symbol *sym;
|
||||
|
||||
/* first, check if it's an exported symbol */
|
||||
preempt_disable();
|
||||
sym = find_symbol(name, NULL, NULL, true, true);
|
||||
if (sym) {
|
||||
*addr = sym->value;
|
||||
preempt_enable();
|
||||
return 0;
|
||||
}
|
||||
preempt_enable();
|
||||
int i, cnt, vmlinux, ret;
|
||||
char objname[MODULE_NAME_LEN];
|
||||
char symname[KSYM_NAME_LEN];
|
||||
char *strtab = pmod->core_kallsyms.strtab;
|
||||
Elf_Rela *relas;
|
||||
Elf_Sym *sym;
|
||||
unsigned long sympos, addr;
|
||||
|
||||
/*
|
||||
* Check if it's in another .o within the patch module. This also
|
||||
* checks that the external symbol is unique.
|
||||
* Since the field widths for objname and symname in the sscanf()
|
||||
* call are hard-coded and correspond to MODULE_NAME_LEN and
|
||||
* KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
|
||||
* and KSYM_NAME_LEN have the values we expect them to have.
|
||||
*
|
||||
* Because the value of MODULE_NAME_LEN can differ among architectures,
|
||||
* we use the smallest/strictest upper bound possible (56, based on
|
||||
* the current definition of MODULE_NAME_LEN) to prevent overflows.
|
||||
*/
|
||||
return klp_find_object_symbol(pmod->name, name, 0, addr);
|
||||
BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
|
||||
|
||||
relas = (Elf_Rela *) relasec->sh_addr;
|
||||
/* For each rela in this klp relocation section */
|
||||
for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
|
||||
sym = pmod->core_kallsyms.symtab + ELF_R_SYM(relas[i].r_info);
|
||||
if (sym->st_shndx != SHN_LIVEPATCH) {
|
||||
pr_err("symbol %s is not marked as a livepatch symbol",
|
||||
strtab + sym->st_name);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* Format: .klp.sym.objname.symname,sympos */
|
||||
cnt = sscanf(strtab + sym->st_name,
|
||||
".klp.sym.%55[^.].%127[^,],%lu",
|
||||
objname, symname, &sympos);
|
||||
if (cnt != 3) {
|
||||
pr_err("symbol %s has an incorrectly formatted name",
|
||||
strtab + sym->st_name);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* klp_find_object_symbol() treats a NULL objname as vmlinux */
|
||||
vmlinux = !strcmp(objname, "vmlinux");
|
||||
ret = klp_find_object_symbol(vmlinux ? NULL : objname,
|
||||
symname, sympos, &addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sym->st_value = addr;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int klp_write_object_relocations(struct module *pmod,
|
||||
struct klp_object *obj)
|
||||
{
|
||||
int ret = 0;
|
||||
unsigned long val;
|
||||
struct klp_reloc *reloc;
|
||||
int i, cnt, ret = 0;
|
||||
const char *objname, *secname;
|
||||
char sec_objname[MODULE_NAME_LEN];
|
||||
Elf_Shdr *sec;
|
||||
|
||||
if (WARN_ON(!klp_is_object_loaded(obj)))
|
||||
return -EINVAL;
|
||||
|
||||
if (WARN_ON(!obj->relocs))
|
||||
return -EINVAL;
|
||||
objname = klp_is_module(obj) ? obj->name : "vmlinux";
|
||||
|
||||
module_disable_ro(pmod);
|
||||
/* For each klp relocation section */
|
||||
for (i = 1; i < pmod->klp_info->hdr.e_shnum; i++) {
|
||||
sec = pmod->klp_info->sechdrs + i;
|
||||
secname = pmod->klp_info->secstrings + sec->sh_name;
|
||||
if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
|
||||
continue;
|
||||
|
||||
for (reloc = obj->relocs; reloc->name; reloc++) {
|
||||
/* discover the address of the referenced symbol */
|
||||
if (reloc->external) {
|
||||
if (reloc->sympos > 0) {
|
||||
pr_err("non-zero sympos for external reloc symbol '%s' is not supported\n",
|
||||
reloc->name);
|
||||
/*
|
||||
* Format: .klp.rela.sec_objname.section_name
|
||||
* See comment in klp_resolve_symbols() for an explanation
|
||||
* of the selected field width value.
|
||||
*/
|
||||
cnt = sscanf(secname, ".klp.rela.%55[^.]", sec_objname);
|
||||
if (cnt != 1) {
|
||||
pr_err("section %s has an incorrectly formatted name",
|
||||
secname);
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
break;
|
||||
}
|
||||
ret = klp_find_external_symbol(pmod, reloc->name, &val);
|
||||
} else
|
||||
ret = klp_find_object_symbol(obj->name,
|
||||
reloc->name,
|
||||
reloc->sympos,
|
||||
&val);
|
||||
|
||||
if (strcmp(objname, sec_objname))
|
||||
continue;
|
||||
|
||||
ret = klp_resolve_symbols(sec, pmod);
|
||||
if (ret)
|
||||
goto out;
|
||||
break;
|
||||
|
||||
ret = klp_write_module_reloc(pmod, reloc->type, reloc->loc,
|
||||
val + reloc->addend);
|
||||
if (ret) {
|
||||
pr_err("relocation failed for symbol '%s' at 0x%016lx (%d)\n",
|
||||
reloc->name, val, ret);
|
||||
goto out;
|
||||
}
|
||||
ret = apply_relocate_add(pmod->klp_info->sechdrs,
|
||||
pmod->core_kallsyms.strtab,
|
||||
pmod->klp_info->symndx, i, pmod);
|
||||
if (ret)
|
||||
break;
|
||||
}
|
||||
|
||||
out:
|
||||
module_enable_ro(pmod);
|
||||
return ret;
|
||||
}
|
||||
@ -298,6 +334,19 @@ static void notrace klp_ftrace_handler(unsigned long ip,
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a function address into the appropriate ftrace location.
|
||||
*
|
||||
* Usually this is just the address of the function, but on some architectures
|
||||
* it's more complicated so allow them to provide a custom behaviour.
|
||||
*/
|
||||
#ifndef klp_get_ftrace_location
|
||||
static unsigned long klp_get_ftrace_location(unsigned long faddr)
|
||||
{
|
||||
return faddr;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void klp_disable_func(struct klp_func *func)
|
||||
{
|
||||
struct klp_ops *ops;
|
||||
@ -312,8 +361,14 @@ static void klp_disable_func(struct klp_func *func)
|
||||
return;
|
||||
|
||||
if (list_is_singular(&ops->func_stack)) {
|
||||
unsigned long ftrace_loc;
|
||||
|
||||
ftrace_loc = klp_get_ftrace_location(func->old_addr);
|
||||
if (WARN_ON(!ftrace_loc))
|
||||
return;
|
||||
|
||||
WARN_ON(unregister_ftrace_function(&ops->fops));
|
||||
WARN_ON(ftrace_set_filter_ip(&ops->fops, func->old_addr, 1, 0));
|
||||
WARN_ON(ftrace_set_filter_ip(&ops->fops, ftrace_loc, 1, 0));
|
||||
|
||||
list_del_rcu(&func->stack_node);
|
||||
list_del(&ops->node);
|
||||
@ -338,6 +393,15 @@ static int klp_enable_func(struct klp_func *func)
|
||||
|
||||
ops = klp_find_ops(func->old_addr);
|
||||
if (!ops) {
|
||||
unsigned long ftrace_loc;
|
||||
|
||||
ftrace_loc = klp_get_ftrace_location(func->old_addr);
|
||||
if (!ftrace_loc) {
|
||||
pr_err("failed to find location for function '%s'\n",
|
||||
func->old_name);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
|
||||
if (!ops)
|
||||
return -ENOMEM;
|
||||
@ -352,7 +416,7 @@ static int klp_enable_func(struct klp_func *func)
|
||||
INIT_LIST_HEAD(&ops->func_stack);
|
||||
list_add_rcu(&func->stack_node, &ops->func_stack);
|
||||
|
||||
ret = ftrace_set_filter_ip(&ops->fops, func->old_addr, 0, 0);
|
||||
ret = ftrace_set_filter_ip(&ops->fops, ftrace_loc, 0, 0);
|
||||
if (ret) {
|
||||
pr_err("failed to set ftrace filter for function '%s' (%d)\n",
|
||||
func->old_name, ret);
|
||||
@ -363,7 +427,7 @@ static int klp_enable_func(struct klp_func *func)
|
||||
if (ret) {
|
||||
pr_err("failed to register ftrace handler for function '%s' (%d)\n",
|
||||
func->old_name, ret);
|
||||
ftrace_set_filter_ip(&ops->fops, func->old_addr, 1, 0);
|
||||
ftrace_set_filter_ip(&ops->fops, ftrace_loc, 1, 0);
|
||||
goto err;
|
||||
}
|
||||
|
||||
@ -683,6 +747,9 @@ static void klp_free_patch(struct klp_patch *patch)
|
||||
|
||||
static int klp_init_func(struct klp_object *obj, struct klp_func *func)
|
||||
{
|
||||
if (!func->old_name || !func->new_func)
|
||||
return -EINVAL;
|
||||
|
||||
INIT_LIST_HEAD(&func->stack_node);
|
||||
func->state = KLP_DISABLED;
|
||||
|
||||
@ -703,11 +770,9 @@ static int klp_init_object_loaded(struct klp_patch *patch,
|
||||
struct klp_func *func;
|
||||
int ret;
|
||||
|
||||
if (obj->relocs) {
|
||||
ret = klp_write_object_relocations(patch->mod, obj);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
klp_for_each_func(obj, func) {
|
||||
ret = klp_find_object_symbol(obj->name, func->old_name,
|
||||
@ -842,12 +907,18 @@ int klp_register_patch(struct klp_patch *patch)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!klp_initialized())
|
||||
return -ENODEV;
|
||||
|
||||
if (!patch || !patch->mod)
|
||||
return -EINVAL;
|
||||
|
||||
if (!is_livepatch_module(patch->mod)) {
|
||||
pr_err("module %s is not marked as a livepatch module",
|
||||
patch->mod->name);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!klp_initialized())
|
||||
return -ENODEV;
|
||||
|
||||
/*
|
||||
* A reference is taken on the patch module to prevent it from being
|
||||
* unloaded. Right now, we don't allow patch modules to unload since
|
||||
|
125
kernel/module.c
125
kernel/module.c
@ -1973,6 +1973,83 @@ static void module_enable_nx(const struct module *mod) { }
|
||||
static void module_disable_nx(const struct module *mod) { }
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
/*
|
||||
* Persist Elf information about a module. Copy the Elf header,
|
||||
* section header table, section string table, and symtab section
|
||||
* index from info to mod->klp_info.
|
||||
*/
|
||||
static int copy_module_elf(struct module *mod, struct load_info *info)
|
||||
{
|
||||
unsigned int size, symndx;
|
||||
int ret;
|
||||
|
||||
size = sizeof(*mod->klp_info);
|
||||
mod->klp_info = kmalloc(size, GFP_KERNEL);
|
||||
if (mod->klp_info == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Elf header */
|
||||
size = sizeof(mod->klp_info->hdr);
|
||||
memcpy(&mod->klp_info->hdr, info->hdr, size);
|
||||
|
||||
/* Elf section header table */
|
||||
size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
|
||||
mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
|
||||
if (mod->klp_info->sechdrs == NULL) {
|
||||
ret = -ENOMEM;
|
||||
goto free_info;
|
||||
}
|
||||
memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
|
||||
|
||||
/* Elf section name string table */
|
||||
size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
|
||||
mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
|
||||
if (mod->klp_info->secstrings == NULL) {
|
||||
ret = -ENOMEM;
|
||||
goto free_sechdrs;
|
||||
}
|
||||
memcpy(mod->klp_info->secstrings, info->secstrings, size);
|
||||
|
||||
/* Elf symbol section index */
|
||||
symndx = info->index.sym;
|
||||
mod->klp_info->symndx = symndx;
|
||||
|
||||
/*
|
||||
* For livepatch modules, core_kallsyms.symtab is a complete
|
||||
* copy of the original symbol table. Adjust sh_addr to point
|
||||
* to core_kallsyms.symtab since the copy of the symtab in module
|
||||
* init memory is freed at the end of do_init_module().
|
||||
*/
|
||||
mod->klp_info->sechdrs[symndx].sh_addr = \
|
||||
(unsigned long) mod->core_kallsyms.symtab;
|
||||
|
||||
return 0;
|
||||
|
||||
free_sechdrs:
|
||||
kfree(mod->klp_info->sechdrs);
|
||||
free_info:
|
||||
kfree(mod->klp_info);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void free_module_elf(struct module *mod)
|
||||
{
|
||||
kfree(mod->klp_info->sechdrs);
|
||||
kfree(mod->klp_info->secstrings);
|
||||
kfree(mod->klp_info);
|
||||
}
|
||||
#else /* !CONFIG_LIVEPATCH */
|
||||
static int copy_module_elf(struct module *mod, struct load_info *info)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void free_module_elf(struct module *mod)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_LIVEPATCH */
|
||||
|
||||
void __weak module_memfree(void *module_region)
|
||||
{
|
||||
vfree(module_region);
|
||||
@ -2011,6 +2088,9 @@ static void free_module(struct module *mod)
|
||||
/* Free any allocated parameters. */
|
||||
destroy_params(mod->kp, mod->num_kp);
|
||||
|
||||
if (is_livepatch_module(mod))
|
||||
free_module_elf(mod);
|
||||
|
||||
/* Now we can delete it from the lists */
|
||||
mutex_lock(&module_mutex);
|
||||
/* Unlink carefully: kallsyms could be walking list. */
|
||||
@ -2126,6 +2206,10 @@ static int simplify_symbols(struct module *mod, const struct load_info *info)
|
||||
(long)sym[i].st_value);
|
||||
break;
|
||||
|
||||
case SHN_LIVEPATCH:
|
||||
/* Livepatch symbols are resolved by livepatch */
|
||||
break;
|
||||
|
||||
case SHN_UNDEF:
|
||||
ksym = resolve_symbol_wait(mod, info, name);
|
||||
/* Ok if resolved. */
|
||||
@ -2174,6 +2258,10 @@ static int apply_relocations(struct module *mod, const struct load_info *info)
|
||||
if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
|
||||
continue;
|
||||
|
||||
/* Livepatch relocation sections are applied by livepatch */
|
||||
if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
|
||||
continue;
|
||||
|
||||
if (info->sechdrs[i].sh_type == SHT_REL)
|
||||
err = apply_relocate(info->sechdrs, info->strtab,
|
||||
info->index.sym, i, mod);
|
||||
@ -2469,7 +2557,7 @@ static void layout_symtab(struct module *mod, struct load_info *info)
|
||||
|
||||
/* Compute total space required for the core symbols' strtab. */
|
||||
for (ndst = i = 0; i < nsrc; i++) {
|
||||
if (i == 0 ||
|
||||
if (i == 0 || is_livepatch_module(mod) ||
|
||||
is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
|
||||
info->index.pcpu)) {
|
||||
strtab_size += strlen(&info->strtab[src[i].st_name])+1;
|
||||
@ -2528,7 +2616,7 @@ static void add_kallsyms(struct module *mod, const struct load_info *info)
|
||||
mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
|
||||
src = mod->kallsyms->symtab;
|
||||
for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
|
||||
if (i == 0 ||
|
||||
if (i == 0 || is_livepatch_module(mod) ||
|
||||
is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
|
||||
info->index.pcpu)) {
|
||||
dst[ndst] = src[i];
|
||||
@ -2667,6 +2755,26 @@ static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned l
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_LIVEPATCH
|
||||
static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
|
||||
{
|
||||
mod->klp = get_modinfo(info, "livepatch") ? true : false;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#else /* !CONFIG_LIVEPATCH */
|
||||
static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
|
||||
{
|
||||
if (get_modinfo(info, "livepatch")) {
|
||||
pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
|
||||
mod->name);
|
||||
return -ENOEXEC;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* CONFIG_LIVEPATCH */
|
||||
|
||||
/* Sets info->hdr and info->len. */
|
||||
static int copy_module_from_user(const void __user *umod, unsigned long len,
|
||||
struct load_info *info)
|
||||
@ -2821,6 +2929,10 @@ static int check_modinfo(struct module *mod, struct load_info *info, int flags)
|
||||
"is unknown, you have been warned.\n", mod->name);
|
||||
}
|
||||
|
||||
err = find_livepatch_modinfo(mod, info);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
/* Set up license info based on the info section */
|
||||
set_license(mod, get_modinfo(info, "license"));
|
||||
|
||||
@ -3494,6 +3606,12 @@ static int load_module(struct load_info *info, const char __user *uargs,
|
||||
if (err < 0)
|
||||
goto coming_cleanup;
|
||||
|
||||
if (is_livepatch_module(mod)) {
|
||||
err = copy_module_elf(mod, info);
|
||||
if (err < 0)
|
||||
goto sysfs_cleanup;
|
||||
}
|
||||
|
||||
/* Get rid of temporary copy. */
|
||||
free_copy(info);
|
||||
|
||||
@ -3502,11 +3620,12 @@ static int load_module(struct load_info *info, const char __user *uargs,
|
||||
|
||||
return do_init_module(mod);
|
||||
|
||||
sysfs_cleanup:
|
||||
mod_sysfs_teardown(mod);
|
||||
coming_cleanup:
|
||||
blocking_notifier_call_chain(&module_notify_list,
|
||||
MODULE_STATE_GOING, mod);
|
||||
klp_module_going(mod);
|
||||
|
||||
bug_cleanup:
|
||||
/* module_bug_cleanup needs module_mutex protection */
|
||||
mutex_lock(&module_mutex);
|
||||
|
@ -1530,7 +1530,19 @@ static int ftrace_cmp_recs(const void *a, const void *b)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned long ftrace_location_range(unsigned long start, unsigned long end)
|
||||
/**
|
||||
* ftrace_location_range - return the first address of a traced location
|
||||
* if it touches the given ip range
|
||||
* @start: start of range to search.
|
||||
* @end: end of range to search (inclusive). @end points to the last byte
|
||||
* to check.
|
||||
*
|
||||
* Returns rec->ip if the related ftrace location is a least partly within
|
||||
* the given address range. That is, the first address of the instruction
|
||||
* that is either a NOP or call to the function tracer. It checks the ftrace
|
||||
* internal tables to determine if the address belongs or not.
|
||||
*/
|
||||
unsigned long ftrace_location_range(unsigned long start, unsigned long end)
|
||||
{
|
||||
struct ftrace_page *pg;
|
||||
struct dyn_ftrace *rec;
|
||||
|
@ -89,3 +89,4 @@ static void livepatch_exit(void)
|
||||
module_init(livepatch_init);
|
||||
module_exit(livepatch_exit);
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_INFO(livepatch, "Y");
|
||||
|
Loading…
Reference in New Issue
Block a user