mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 12:16:19 +07:00
Merge branch 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RAS changes from Ingo Molnar: "The main changes in this cycle were: - Simplify the CMCI storm logic on Intel CPUs after yet another report about a race in the code (Borislav Petkov) - Enable the MCE threshold irq on AMD CPUs by default (Aravind Gopalakrishnan) - Add AMD-specific MCE-severity grading function. Further error recovery actions will be based on its output (Aravind Gopalakrishnan) - Documentation updates (Borislav Petkov) - ... assorted fixes and cleanups" * 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce/severity: Fix warning about indented braces x86/mce: Define mce_severity function pointer x86/mce: Add an AMD severities-grading function x86/mce: Reindent __mcheck_cpu_apply_quirks() properly x86/mce: Use safe MSR accesses for AMD quirk x86/MCE/AMD: Enable thresholding interrupts by default if supported x86/MCE: Make mce_panic() fatal machine check msg in the same pattern x86/MCE/intel: Cleanup CMCI storm logic Documentation/acpi/einj: Correct and streamline text x86/MCE/AMD: Drop bogus const modifier from AMD's bank4_names()
This commit is contained in:
commit
07f2d8c63f
@ -1,129 +1,177 @@
|
||||
APEI Error INJection
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
EINJ provides a hardware error injection mechanism
|
||||
It is very useful for debugging and testing of other APEI and RAS features.
|
||||
EINJ provides a hardware error injection mechanism. It is very useful
|
||||
for debugging and testing APEI and RAS features in general.
|
||||
|
||||
To use EINJ, make sure the following are enabled in your kernel
|
||||
You need to check whether your BIOS supports EINJ first. For that, look
|
||||
for early boot messages similar to this one:
|
||||
|
||||
ACPI: EINJ 0x000000007370A000 000150 (v01 INTEL 00000001 INTL 00000001)
|
||||
|
||||
which shows that the BIOS is exposing an EINJ table - it is the
|
||||
mechanism through which the injection is done.
|
||||
|
||||
Alternatively, look in /sys/firmware/acpi/tables for an "EINJ" file,
|
||||
which is a different representation of the same thing.
|
||||
|
||||
It doesn't necessarily mean that EINJ is not supported if those above
|
||||
don't exist: before you give up, go into BIOS setup to see if the BIOS
|
||||
has an option to enable error injection. Look for something called WHEA
|
||||
or similar. Often, you need to enable an ACPI5 support option prior, in
|
||||
order to see the APEI,EINJ,... functionality supported and exposed by
|
||||
the BIOS menu.
|
||||
|
||||
To use EINJ, make sure the following are options enabled in your kernel
|
||||
configuration:
|
||||
|
||||
CONFIG_DEBUG_FS
|
||||
CONFIG_ACPI_APEI
|
||||
CONFIG_ACPI_APEI_EINJ
|
||||
|
||||
The user interface of EINJ is debug file system, under the
|
||||
directory apei/einj. The following files are provided.
|
||||
The EINJ user interface is in <debugfs mount point>/apei/einj.
|
||||
|
||||
The following files belong to it:
|
||||
|
||||
- available_error_type
|
||||
Reading this file returns the error injection capability of the
|
||||
platform, that is, which error types are supported. The error type
|
||||
definition is as follow, the left field is the error type value, the
|
||||
right field is error description.
|
||||
|
||||
0x00000001 Processor Correctable
|
||||
0x00000002 Processor Uncorrectable non-fatal
|
||||
0x00000004 Processor Uncorrectable fatal
|
||||
0x00000008 Memory Correctable
|
||||
0x00000010 Memory Uncorrectable non-fatal
|
||||
0x00000020 Memory Uncorrectable fatal
|
||||
0x00000040 PCI Express Correctable
|
||||
0x00000080 PCI Express Uncorrectable fatal
|
||||
0x00000100 PCI Express Uncorrectable non-fatal
|
||||
0x00000200 Platform Correctable
|
||||
0x00000400 Platform Uncorrectable non-fatal
|
||||
0x00000800 Platform Uncorrectable fatal
|
||||
This file shows which error types are supported:
|
||||
|
||||
The format of file contents are as above, except there are only the
|
||||
available error type lines.
|
||||
Error Type Value Error Description
|
||||
================ =================
|
||||
0x00000001 Processor Correctable
|
||||
0x00000002 Processor Uncorrectable non-fatal
|
||||
0x00000004 Processor Uncorrectable fatal
|
||||
0x00000008 Memory Correctable
|
||||
0x00000010 Memory Uncorrectable non-fatal
|
||||
0x00000020 Memory Uncorrectable fatal
|
||||
0x00000040 PCI Express Correctable
|
||||
0x00000080 PCI Express Uncorrectable fatal
|
||||
0x00000100 PCI Express Uncorrectable non-fatal
|
||||
0x00000200 Platform Correctable
|
||||
0x00000400 Platform Uncorrectable non-fatal
|
||||
0x00000800 Platform Uncorrectable fatal
|
||||
|
||||
The format of the file contents are as above, except present are only
|
||||
the available error types.
|
||||
|
||||
- error_type
|
||||
This file is used to set the error type value. The error type value
|
||||
is defined in "available_error_type" description.
|
||||
|
||||
Set the value of the error type being injected. Possible error types
|
||||
are defined in the file available_error_type above.
|
||||
|
||||
- error_inject
|
||||
Write any integer to this file to trigger the error
|
||||
injection. Before this, please specify all necessary error
|
||||
parameters.
|
||||
|
||||
Write any integer to this file to trigger the error injection. Make
|
||||
sure you have specified all necessary error parameters, i.e. this
|
||||
write should be the last step when injecting errors.
|
||||
|
||||
- flags
|
||||
Present for kernel version 3.13 and above. Used to specify which
|
||||
of param{1..4} are valid and should be used by BIOS during injection.
|
||||
Value is a bitmask as specified in ACPI5.0 spec for the
|
||||
|
||||
Present for kernel versions 3.13 and above. Used to specify which
|
||||
of param{1..4} are valid and should be used by the firmware during
|
||||
injection. Value is a bitmask as specified in ACPI5.0 spec for the
|
||||
SET_ERROR_TYPE_WITH_ADDRESS data structure:
|
||||
Bit 0 - Processor APIC field valid (see param3 below)
|
||||
Bit 1 - Memory address and mask valid (param1 and param2)
|
||||
Bit 2 - PCIe (seg,bus,dev,fn) valid (param4 below)
|
||||
If set to zero, legacy behaviour is used where the type of injection
|
||||
specifies just one bit set, and param1 is multiplexed.
|
||||
|
||||
Bit 0 - Processor APIC field valid (see param3 below).
|
||||
Bit 1 - Memory address and mask valid (param1 and param2).
|
||||
Bit 2 - PCIe (seg,bus,dev,fn) valid (see param4 below).
|
||||
|
||||
If set to zero, legacy behavior is mimicked where the type of
|
||||
injection specifies just one bit set, and param1 is multiplexed.
|
||||
|
||||
- param1
|
||||
This file is used to set the first error parameter value. Effect of
|
||||
parameter depends on error_type specified. For example, if error
|
||||
type is memory related type, the param1 should be a valid physical
|
||||
memory address. [Unless "flag" is set - see above]
|
||||
|
||||
This file is used to set the first error parameter value. Its effect
|
||||
depends on the error type specified in error_type. For example, if
|
||||
error type is memory related type, the param1 should be a valid
|
||||
physical memory address. [Unless "flag" is set - see above]
|
||||
|
||||
- param2
|
||||
This file is used to set the second error parameter value. Effect of
|
||||
parameter depends on error_type specified. For example, if error
|
||||
type is memory related type, the param2 should be a physical memory
|
||||
address mask. Linux requires page or narrower granularity, say,
|
||||
0xfffffffffffff000.
|
||||
|
||||
Same use as param1 above. For example, if error type is of memory
|
||||
related type, then param2 should be a physical memory address mask.
|
||||
Linux requires page or narrower granularity, say, 0xfffffffffffff000.
|
||||
|
||||
- param3
|
||||
Used when the 0x1 bit is set in "flag" to specify the APIC id
|
||||
|
||||
Used when the 0x1 bit is set in "flags" to specify the APIC id
|
||||
|
||||
- param4
|
||||
Used when the 0x4 bit is set in "flag" to specify target PCIe device
|
||||
Used when the 0x4 bit is set in "flags" to specify target PCIe device
|
||||
|
||||
- notrigger
|
||||
The EINJ mechanism is a two step process. First inject the error, then
|
||||
perform some actions to trigger it. Setting "notrigger" to 1 skips the
|
||||
trigger phase, which *may* allow the user to cause the error in some other
|
||||
context by a simple access to the cpu, memory location, or device that is
|
||||
the target of the error injection. Whether this actually works depends
|
||||
on what operations the BIOS actually includes in the trigger phase.
|
||||
|
||||
BIOS versions based in the ACPI 4.0 specification have limited options
|
||||
to control where the errors are injected. Your BIOS may support an
|
||||
extension (enabled with the param_extension=1 module parameter, or
|
||||
boot command line einj.param_extension=1). This allows the address
|
||||
and mask for memory injections to be specified by the param1 and
|
||||
param2 files in apei/einj.
|
||||
The error injection mechanism is a two-step process. First inject the
|
||||
error, then perform some actions to trigger it. Setting "notrigger"
|
||||
to 1 skips the trigger phase, which *may* allow the user to cause the
|
||||
error in some other context by a simple access to the CPU, memory
|
||||
location, or device that is the target of the error injection. Whether
|
||||
this actually works depends on what operations the BIOS actually
|
||||
includes in the trigger phase.
|
||||
|
||||
BIOS versions using the ACPI 5.0 specification have more control over
|
||||
the target of the injection. For processor related errors (type 0x1,
|
||||
0x2 and 0x4) the APICID of the target should be provided using the
|
||||
param1 file in apei/einj. For memory errors (type 0x8, 0x10 and 0x20)
|
||||
the address is set using param1 with a mask in param2 (0x0 is equivalent
|
||||
to all ones). For PCI express errors (type 0x40, 0x80 and 0x100) the
|
||||
segment, bus, device and function are specified using param1:
|
||||
BIOS versions based on the ACPI 4.0 specification have limited options
|
||||
in controlling where the errors are injected. Your BIOS may support an
|
||||
extension (enabled with the param_extension=1 module parameter, or boot
|
||||
command line einj.param_extension=1). This allows the address and mask
|
||||
for memory injections to be specified by the param1 and param2 files in
|
||||
apei/einj.
|
||||
|
||||
BIOS versions based on the ACPI 5.0 specification have more control over
|
||||
the target of the injection. For processor-related errors (type 0x1, 0x2
|
||||
and 0x4), you can set flags to 0x3 (param3 for bit 0, and param1 and
|
||||
param2 for bit 1) so that you have more information added to the error
|
||||
signature being injected. The actual data passed is this:
|
||||
|
||||
memory_address = param1;
|
||||
memory_address_range = param2;
|
||||
apicid = param3;
|
||||
pcie_sbdf = param4;
|
||||
|
||||
For memory errors (type 0x8, 0x10 and 0x20) the address is set using
|
||||
param1 with a mask in param2 (0x0 is equivalent to all ones). For PCI
|
||||
express errors (type 0x40, 0x80 and 0x100) the segment, bus, device and
|
||||
function are specified using param1:
|
||||
|
||||
31 24 23 16 15 11 10 8 7 0
|
||||
+-------------------------------------------------+
|
||||
| segment | bus | device | function | reserved |
|
||||
+-------------------------------------------------+
|
||||
|
||||
An ACPI 5.0 BIOS may also allow vendor specific errors to be injected.
|
||||
Anyway, you get the idea, if there's doubt just take a look at the code
|
||||
in drivers/acpi/apei/einj.c.
|
||||
|
||||
An ACPI 5.0 BIOS may also allow vendor-specific errors to be injected.
|
||||
In this case a file named vendor will contain identifying information
|
||||
from the BIOS that hopefully will allow an application wishing to use
|
||||
the vendor specific extension to tell that they are running on a BIOS
|
||||
the vendor-specific extension to tell that they are running on a BIOS
|
||||
that supports it. All vendor extensions have the 0x80000000 bit set in
|
||||
error_type. A file vendor_flags controls the interpretation of param1
|
||||
and param2 (1 = PROCESSOR, 2 = MEMORY, 4 = PCI). See your BIOS vendor
|
||||
documentation for details (and expect changes to this API if vendors
|
||||
creativity in using this feature expands beyond our expectations).
|
||||
|
||||
Example:
|
||||
|
||||
An error injection example:
|
||||
|
||||
# cd /sys/kernel/debug/apei/einj
|
||||
# cat available_error_type # See which errors can be injected
|
||||
0x00000002 Processor Uncorrectable non-fatal
|
||||
0x00000008 Memory Correctable
|
||||
0x00000010 Memory Uncorrectable non-fatal
|
||||
# echo 0x12345000 > param1 # Set memory address for injection
|
||||
# echo 0xfffffffffffff000 > param2 # Mask - anywhere in this page
|
||||
# echo $((-1 << 12)) > param2 # Mask 0xfffffffffffff000 - anywhere in this page
|
||||
# echo 0x8 > error_type # Choose correctable memory error
|
||||
# echo 1 > error_inject # Inject now
|
||||
|
||||
You should see something like this in dmesg:
|
||||
|
||||
[22715.830801] EDAC sbridge MC3: HANDLING MCE MEMORY ERROR
|
||||
[22715.834759] EDAC sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090
|
||||
[22715.834759] EDAC sbridge MC3: TSC 0
|
||||
[22715.834759] EDAC sbridge MC3: ADDR 12345000 EDAC sbridge MC3: MISC 144780c86
|
||||
[22715.834759] EDAC sbridge MC3: PROCESSOR 0:306e7 TIME 1422553404 SOCKET 0 APIC 0
|
||||
[22716.616173] EDAC MC3: 1 CE memory read error on CPU_SrcID#0_Channel#0_DIMM#0 (channel:0 slot:0 page:0x12345 offset:0x0 grain:32 syndrome:0x0 - area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0)
|
||||
|
||||
For more information about EINJ, please refer to ACPI specification
|
||||
version 4.0, section 17.5 and ACPI 5.0, section 18.6.
|
||||
|
@ -116,6 +116,12 @@ struct mca_config {
|
||||
u32 rip_msr;
|
||||
};
|
||||
|
||||
struct mce_vendor_flags {
|
||||
__u64 overflow_recov : 1, /* cpuid_ebx(80000007) */
|
||||
__reserved_0 : 63;
|
||||
};
|
||||
extern struct mce_vendor_flags mce_flags;
|
||||
|
||||
extern struct mca_config mca_cfg;
|
||||
extern void mce_register_decode_chain(struct notifier_block *nb);
|
||||
extern void mce_unregister_decode_chain(struct notifier_block *nb);
|
||||
@ -128,9 +134,11 @@ extern int mce_p5_enabled;
|
||||
#ifdef CONFIG_X86_MCE
|
||||
int mcheck_init(void);
|
||||
void mcheck_cpu_init(struct cpuinfo_x86 *c);
|
||||
void mcheck_vendor_init_severity(void);
|
||||
#else
|
||||
static inline int mcheck_init(void) { return 0; }
|
||||
static inline void mcheck_cpu_init(struct cpuinfo_x86 *c) {}
|
||||
static inline void mcheck_vendor_init_severity(void) {}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_ANCIENT_MCE
|
||||
@ -183,11 +191,11 @@ typedef DECLARE_BITMAP(mce_banks_t, MAX_NR_BANKS);
|
||||
DECLARE_PER_CPU(mce_banks_t, mce_poll_banks);
|
||||
|
||||
enum mcp_flags {
|
||||
MCP_TIMESTAMP = (1 << 0), /* log time stamp */
|
||||
MCP_UC = (1 << 1), /* log uncorrected errors */
|
||||
MCP_DONTLOG = (1 << 2), /* only clear, don't log */
|
||||
MCP_TIMESTAMP = BIT(0), /* log time stamp */
|
||||
MCP_UC = BIT(1), /* log uncorrected errors */
|
||||
MCP_DONTLOG = BIT(2), /* only clear, don't log */
|
||||
};
|
||||
void machine_check_poll(enum mcp_flags flags, mce_banks_t *b);
|
||||
bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b);
|
||||
|
||||
int mce_notify_irq(void);
|
||||
|
||||
|
@ -14,6 +14,7 @@ enum severity_level {
|
||||
};
|
||||
|
||||
#define ATTR_LEN 16
|
||||
#define INITIAL_CHECK_INTERVAL 5 * 60 /* 5 minutes */
|
||||
|
||||
/* One object for each MCE bank, shared by all CPUs */
|
||||
struct mce_bank {
|
||||
@ -23,20 +24,20 @@ struct mce_bank {
|
||||
char attrname[ATTR_LEN]; /* attribute name */
|
||||
};
|
||||
|
||||
int mce_severity(struct mce *a, int tolerant, char **msg, bool is_excp);
|
||||
extern int (*mce_severity)(struct mce *a, int tolerant, char **msg, bool is_excp);
|
||||
struct dentry *mce_get_debugfs_dir(void);
|
||||
|
||||
extern struct mce_bank *mce_banks;
|
||||
extern mce_banks_t mce_banks_ce_disabled;
|
||||
|
||||
#ifdef CONFIG_X86_MCE_INTEL
|
||||
unsigned long mce_intel_adjust_timer(unsigned long interval);
|
||||
void mce_intel_cmci_poll(void);
|
||||
unsigned long cmci_intel_adjust_timer(unsigned long interval);
|
||||
bool mce_intel_cmci_poll(void);
|
||||
void mce_intel_hcpu_update(unsigned long cpu);
|
||||
void cmci_disable_bank(int bank);
|
||||
#else
|
||||
# define mce_intel_adjust_timer mce_adjust_timer_default
|
||||
static inline void mce_intel_cmci_poll(void) { }
|
||||
# define cmci_intel_adjust_timer mce_adjust_timer_default
|
||||
static inline bool mce_intel_cmci_poll(void) { return false; }
|
||||
static inline void mce_intel_hcpu_update(unsigned long cpu) { }
|
||||
static inline void cmci_disable_bank(int bank) { }
|
||||
#endif
|
||||
|
@ -186,7 +186,61 @@ static int error_context(struct mce *m)
|
||||
return ((m->cs & 3) == 3) ? IN_USER : IN_KERNEL;
|
||||
}
|
||||
|
||||
int mce_severity(struct mce *m, int tolerant, char **msg, bool is_excp)
|
||||
/*
|
||||
* See AMD Error Scope Hierarchy table in a newer BKDG. For example
|
||||
* 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features"
|
||||
*/
|
||||
static int mce_severity_amd(struct mce *m, int tolerant, char **msg, bool is_excp)
|
||||
{
|
||||
enum context ctx = error_context(m);
|
||||
|
||||
/* Processor Context Corrupt, no need to fumble too much, die! */
|
||||
if (m->status & MCI_STATUS_PCC)
|
||||
return MCE_PANIC_SEVERITY;
|
||||
|
||||
if (m->status & MCI_STATUS_UC) {
|
||||
|
||||
/*
|
||||
* On older systems where overflow_recov flag is not present, we
|
||||
* should simply panic if an error overflow occurs. If
|
||||
* overflow_recov flag is present and set, then software can try
|
||||
* to at least kill process to prolong system operation.
|
||||
*/
|
||||
if (mce_flags.overflow_recov) {
|
||||
/* software can try to contain */
|
||||
if (!(m->mcgstatus & MCG_STATUS_RIPV) && (ctx == IN_KERNEL))
|
||||
return MCE_PANIC_SEVERITY;
|
||||
|
||||
/* kill current process */
|
||||
return MCE_AR_SEVERITY;
|
||||
} else {
|
||||
/* at least one error was not logged */
|
||||
if (m->status & MCI_STATUS_OVER)
|
||||
return MCE_PANIC_SEVERITY;
|
||||
}
|
||||
|
||||
/*
|
||||
* For any other case, return MCE_UC_SEVERITY so that we log the
|
||||
* error and exit #MC handler.
|
||||
*/
|
||||
return MCE_UC_SEVERITY;
|
||||
}
|
||||
|
||||
/*
|
||||
* deferred error: poll handler catches these and adds to mce_ring so
|
||||
* memory-failure can take recovery actions.
|
||||
*/
|
||||
if (m->status & MCI_STATUS_DEFERRED)
|
||||
return MCE_DEFERRED_SEVERITY;
|
||||
|
||||
/*
|
||||
* corrected error: poll handler catches these and passes responsibility
|
||||
* of decoding the error to EDAC
|
||||
*/
|
||||
return MCE_KEEP_SEVERITY;
|
||||
}
|
||||
|
||||
static int mce_severity_intel(struct mce *m, int tolerant, char **msg, bool is_excp)
|
||||
{
|
||||
enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP);
|
||||
enum context ctx = error_context(m);
|
||||
@ -216,6 +270,16 @@ int mce_severity(struct mce *m, int tolerant, char **msg, bool is_excp)
|
||||
}
|
||||
}
|
||||
|
||||
/* Default to mce_severity_intel */
|
||||
int (*mce_severity)(struct mce *m, int tolerant, char **msg, bool is_excp) =
|
||||
mce_severity_intel;
|
||||
|
||||
void __init mcheck_vendor_init_severity(void)
|
||||
{
|
||||
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
|
||||
mce_severity = mce_severity_amd;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
static void *s_start(struct seq_file *f, loff_t *pos)
|
||||
{
|
||||
|
@ -60,11 +60,12 @@ static DEFINE_MUTEX(mce_chrdev_read_mutex);
|
||||
#define CREATE_TRACE_POINTS
|
||||
#include <trace/events/mce.h>
|
||||
|
||||
#define SPINUNIT 100 /* 100ns */
|
||||
#define SPINUNIT 100 /* 100ns */
|
||||
|
||||
DEFINE_PER_CPU(unsigned, mce_exception_count);
|
||||
|
||||
struct mce_bank *mce_banks __read_mostly;
|
||||
struct mce_vendor_flags mce_flags __read_mostly;
|
||||
|
||||
struct mca_config mca_cfg __read_mostly = {
|
||||
.bootlog = -1,
|
||||
@ -89,9 +90,6 @@ static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
|
||||
static DEFINE_PER_CPU(struct mce, mces_seen);
|
||||
static int cpu_missing;
|
||||
|
||||
/* CMCI storm detection filter */
|
||||
static DEFINE_PER_CPU(unsigned long, mce_polled_error);
|
||||
|
||||
/*
|
||||
* MCA banks polled by the period polling timer for corrected events.
|
||||
* With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
|
||||
@ -622,8 +620,9 @@ DEFINE_PER_CPU(unsigned, mce_poll_count);
|
||||
* is already totally * confused. In this case it's likely it will
|
||||
* not fully execute the machine check handler either.
|
||||
*/
|
||||
void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
|
||||
bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
|
||||
{
|
||||
bool error_logged = false;
|
||||
struct mce m;
|
||||
int severity;
|
||||
int i;
|
||||
@ -646,7 +645,7 @@ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
|
||||
if (!(m.status & MCI_STATUS_VAL))
|
||||
continue;
|
||||
|
||||
this_cpu_write(mce_polled_error, 1);
|
||||
|
||||
/*
|
||||
* Uncorrected or signalled events are handled by the exception
|
||||
* handler when it is enabled, so don't process those here.
|
||||
@ -679,8 +678,10 @@ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
|
||||
* Don't get the IP here because it's unlikely to
|
||||
* have anything to do with the actual error location.
|
||||
*/
|
||||
if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
|
||||
if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) {
|
||||
error_logged = true;
|
||||
mce_log(&m);
|
||||
}
|
||||
|
||||
/*
|
||||
* Clear state for this bank.
|
||||
@ -694,6 +695,8 @@ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
|
||||
*/
|
||||
|
||||
sync_core();
|
||||
|
||||
return error_logged;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(machine_check_poll);
|
||||
|
||||
@ -813,7 +816,7 @@ static void mce_reign(void)
|
||||
* other CPUs.
|
||||
*/
|
||||
if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
|
||||
mce_panic("Fatal Machine check", m, msg);
|
||||
mce_panic("Fatal machine check", m, msg);
|
||||
|
||||
/*
|
||||
* For UC somewhere we let the CPU who detects it handle it.
|
||||
@ -826,7 +829,7 @@ static void mce_reign(void)
|
||||
* source or one CPU is hung. Panic.
|
||||
*/
|
||||
if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
|
||||
mce_panic("Machine check from unknown source", NULL, NULL);
|
||||
mce_panic("Fatal machine check from unknown source", NULL, NULL);
|
||||
|
||||
/*
|
||||
* Now clear all the mces_seen so that they don't reappear on
|
||||
@ -1258,7 +1261,7 @@ void mce_log_therm_throt_event(__u64 status)
|
||||
* poller finds an MCE, poll 2x faster. When the poller finds no more
|
||||
* errors, poll 2x slower (up to check_interval seconds).
|
||||
*/
|
||||
static unsigned long check_interval = 5 * 60; /* 5 minutes */
|
||||
static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
|
||||
|
||||
static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
|
||||
static DEFINE_PER_CPU(struct timer_list, mce_timer);
|
||||
@ -1268,59 +1271,14 @@ static unsigned long mce_adjust_timer_default(unsigned long interval)
|
||||
return interval;
|
||||
}
|
||||
|
||||
static unsigned long (*mce_adjust_timer)(unsigned long interval) =
|
||||
mce_adjust_timer_default;
|
||||
static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
|
||||
|
||||
static int cmc_error_seen(void)
|
||||
static void __restart_timer(struct timer_list *t, unsigned long interval)
|
||||
{
|
||||
unsigned long *v = this_cpu_ptr(&mce_polled_error);
|
||||
|
||||
return test_and_clear_bit(0, v);
|
||||
}
|
||||
|
||||
static void mce_timer_fn(unsigned long data)
|
||||
{
|
||||
struct timer_list *t = this_cpu_ptr(&mce_timer);
|
||||
unsigned long iv;
|
||||
int notify;
|
||||
|
||||
WARN_ON(smp_processor_id() != data);
|
||||
|
||||
if (mce_available(this_cpu_ptr(&cpu_info))) {
|
||||
machine_check_poll(MCP_TIMESTAMP,
|
||||
this_cpu_ptr(&mce_poll_banks));
|
||||
mce_intel_cmci_poll();
|
||||
}
|
||||
|
||||
/*
|
||||
* Alert userspace if needed. If we logged an MCE, reduce the
|
||||
* polling interval, otherwise increase the polling interval.
|
||||
*/
|
||||
iv = __this_cpu_read(mce_next_interval);
|
||||
notify = mce_notify_irq();
|
||||
notify |= cmc_error_seen();
|
||||
if (notify) {
|
||||
iv = max(iv / 2, (unsigned long) HZ/100);
|
||||
} else {
|
||||
iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
|
||||
iv = mce_adjust_timer(iv);
|
||||
}
|
||||
__this_cpu_write(mce_next_interval, iv);
|
||||
/* Might have become 0 after CMCI storm subsided */
|
||||
if (iv) {
|
||||
t->expires = jiffies + iv;
|
||||
add_timer_on(t, smp_processor_id());
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Ensure that the timer is firing in @interval from now.
|
||||
*/
|
||||
void mce_timer_kick(unsigned long interval)
|
||||
{
|
||||
struct timer_list *t = this_cpu_ptr(&mce_timer);
|
||||
unsigned long when = jiffies + interval;
|
||||
unsigned long iv = __this_cpu_read(mce_next_interval);
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
if (timer_pending(t)) {
|
||||
if (time_before(when, t->expires))
|
||||
@ -1329,6 +1287,53 @@ void mce_timer_kick(unsigned long interval)
|
||||
t->expires = round_jiffies(when);
|
||||
add_timer_on(t, smp_processor_id());
|
||||
}
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static void mce_timer_fn(unsigned long data)
|
||||
{
|
||||
struct timer_list *t = this_cpu_ptr(&mce_timer);
|
||||
int cpu = smp_processor_id();
|
||||
unsigned long iv;
|
||||
|
||||
WARN_ON(cpu != data);
|
||||
|
||||
iv = __this_cpu_read(mce_next_interval);
|
||||
|
||||
if (mce_available(this_cpu_ptr(&cpu_info))) {
|
||||
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_poll_banks));
|
||||
|
||||
if (mce_intel_cmci_poll()) {
|
||||
iv = mce_adjust_timer(iv);
|
||||
goto done;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Alert userspace if needed. If we logged an MCE, reduce the polling
|
||||
* interval, otherwise increase the polling interval.
|
||||
*/
|
||||
if (mce_notify_irq())
|
||||
iv = max(iv / 2, (unsigned long) HZ/100);
|
||||
else
|
||||
iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
|
||||
|
||||
done:
|
||||
__this_cpu_write(mce_next_interval, iv);
|
||||
__restart_timer(t, iv);
|
||||
}
|
||||
|
||||
/*
|
||||
* Ensure that the timer is firing in @interval from now.
|
||||
*/
|
||||
void mce_timer_kick(unsigned long interval)
|
||||
{
|
||||
struct timer_list *t = this_cpu_ptr(&mce_timer);
|
||||
unsigned long iv = __this_cpu_read(mce_next_interval);
|
||||
|
||||
__restart_timer(t, interval);
|
||||
|
||||
if (interval < iv)
|
||||
__this_cpu_write(mce_next_interval, interval);
|
||||
}
|
||||
@ -1525,45 +1530,46 @@ static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
|
||||
* Various K7s with broken bank 0 around. Always disable
|
||||
* by default.
|
||||
*/
|
||||
if (c->x86 == 6 && cfg->banks > 0)
|
||||
if (c->x86 == 6 && cfg->banks > 0)
|
||||
mce_banks[0].ctl = 0;
|
||||
|
||||
/*
|
||||
* Turn off MC4_MISC thresholding banks on those models since
|
||||
* they're not supported there.
|
||||
*/
|
||||
if (c->x86 == 0x15 &&
|
||||
(c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
|
||||
int i;
|
||||
u64 val, hwcr;
|
||||
bool need_toggle;
|
||||
u32 msrs[] = {
|
||||
/*
|
||||
* overflow_recov is supported for F15h Models 00h-0fh
|
||||
* even though we don't have a CPUID bit for it.
|
||||
*/
|
||||
if (c->x86 == 0x15 && c->x86_model <= 0xf)
|
||||
mce_flags.overflow_recov = 1;
|
||||
|
||||
/*
|
||||
* Turn off MC4_MISC thresholding banks on those models since
|
||||
* they're not supported there.
|
||||
*/
|
||||
if (c->x86 == 0x15 &&
|
||||
(c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
|
||||
int i;
|
||||
u64 hwcr;
|
||||
bool need_toggle;
|
||||
u32 msrs[] = {
|
||||
0x00000413, /* MC4_MISC0 */
|
||||
0xc0000408, /* MC4_MISC1 */
|
||||
};
|
||||
};
|
||||
|
||||
rdmsrl(MSR_K7_HWCR, hwcr);
|
||||
rdmsrl(MSR_K7_HWCR, hwcr);
|
||||
|
||||
/* McStatusWrEn has to be set */
|
||||
need_toggle = !(hwcr & BIT(18));
|
||||
/* McStatusWrEn has to be set */
|
||||
need_toggle = !(hwcr & BIT(18));
|
||||
|
||||
if (need_toggle)
|
||||
wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
|
||||
if (need_toggle)
|
||||
wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(msrs); i++) {
|
||||
rdmsrl(msrs[i], val);
|
||||
/* Clear CntP bit safely */
|
||||
for (i = 0; i < ARRAY_SIZE(msrs); i++)
|
||||
msr_clear_bit(msrs[i], 62);
|
||||
|
||||
/* CntP bit set? */
|
||||
if (val & BIT_64(62)) {
|
||||
val &= ~BIT_64(62);
|
||||
wrmsrl(msrs[i], val);
|
||||
}
|
||||
}
|
||||
|
||||
/* restore old settings */
|
||||
if (need_toggle)
|
||||
wrmsrl(MSR_K7_HWCR, hwcr);
|
||||
}
|
||||
/* restore old settings */
|
||||
if (need_toggle)
|
||||
wrmsrl(MSR_K7_HWCR, hwcr);
|
||||
}
|
||||
}
|
||||
|
||||
if (c->x86_vendor == X86_VENDOR_INTEL) {
|
||||
@ -1629,10 +1635,11 @@ static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
|
||||
switch (c->x86_vendor) {
|
||||
case X86_VENDOR_INTEL:
|
||||
mce_intel_feature_init(c);
|
||||
mce_adjust_timer = mce_intel_adjust_timer;
|
||||
mce_adjust_timer = cmci_intel_adjust_timer;
|
||||
break;
|
||||
case X86_VENDOR_AMD:
|
||||
mce_amd_feature_init(c);
|
||||
mce_flags.overflow_recov = cpuid_ebx(0x80000007) & 0x1;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
@ -2017,6 +2024,7 @@ __setup("mce", mcheck_enable);
|
||||
int __init mcheck_init(void)
|
||||
{
|
||||
mcheck_intel_therm_init();
|
||||
mcheck_vendor_init_severity();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -79,7 +79,7 @@ static inline bool is_shared_bank(int bank)
|
||||
return (bank == 4);
|
||||
}
|
||||
|
||||
static const char * const bank4_names(struct threshold_block *b)
|
||||
static const char *bank4_names(const struct threshold_block *b)
|
||||
{
|
||||
switch (b->address) {
|
||||
/* MSR4_MISC0 */
|
||||
@ -250,6 +250,7 @@ void mce_amd_feature_init(struct cpuinfo_x86 *c)
|
||||
if (!b.interrupt_capable)
|
||||
goto init;
|
||||
|
||||
b.interrupt_enable = 1;
|
||||
new = (high & MASK_LVTOFF_HI) >> 20;
|
||||
offset = setup_APIC_mce(offset, new);
|
||||
|
||||
@ -322,6 +323,8 @@ static void amd_threshold_interrupt(void)
|
||||
log:
|
||||
mce_setup(&m);
|
||||
rdmsrl(MSR_IA32_MCx_STATUS(bank), m.status);
|
||||
if (!(m.status & MCI_STATUS_VAL))
|
||||
return;
|
||||
m.misc = ((u64)high << 32) | low;
|
||||
m.bank = bank;
|
||||
mce_log(&m);
|
||||
@ -497,10 +500,12 @@ static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
|
||||
b->interrupt_capable = lvt_interrupt_supported(bank, high);
|
||||
b->threshold_limit = THRESHOLD_MAX;
|
||||
|
||||
if (b->interrupt_capable)
|
||||
if (b->interrupt_capable) {
|
||||
threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
|
||||
else
|
||||
b->interrupt_enable = 1;
|
||||
} else {
|
||||
threshold_ktype.default_attrs[2] = NULL;
|
||||
}
|
||||
|
||||
INIT_LIST_HEAD(&b->miscj);
|
||||
|
||||
|
@ -38,6 +38,15 @@
|
||||
*/
|
||||
static DEFINE_PER_CPU(mce_banks_t, mce_banks_owned);
|
||||
|
||||
/*
|
||||
* CMCI storm detection backoff counter
|
||||
*
|
||||
* During storm, we reset this counter to INITIAL_CHECK_INTERVAL in case we've
|
||||
* encountered an error. If not, we decrement it by one. We signal the end of
|
||||
* the CMCI storm when it reaches 0.
|
||||
*/
|
||||
static DEFINE_PER_CPU(int, cmci_backoff_cnt);
|
||||
|
||||
/*
|
||||
* cmci_discover_lock protects against parallel discovery attempts
|
||||
* which could race against each other.
|
||||
@ -46,7 +55,7 @@ static DEFINE_RAW_SPINLOCK(cmci_discover_lock);
|
||||
|
||||
#define CMCI_THRESHOLD 1
|
||||
#define CMCI_POLL_INTERVAL (30 * HZ)
|
||||
#define CMCI_STORM_INTERVAL (1 * HZ)
|
||||
#define CMCI_STORM_INTERVAL (HZ)
|
||||
#define CMCI_STORM_THRESHOLD 15
|
||||
|
||||
static DEFINE_PER_CPU(unsigned long, cmci_time_stamp);
|
||||
@ -82,11 +91,21 @@ static int cmci_supported(int *banks)
|
||||
return !!(cap & MCG_CMCI_P);
|
||||
}
|
||||
|
||||
void mce_intel_cmci_poll(void)
|
||||
bool mce_intel_cmci_poll(void)
|
||||
{
|
||||
if (__this_cpu_read(cmci_storm_state) == CMCI_STORM_NONE)
|
||||
return;
|
||||
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned));
|
||||
return false;
|
||||
|
||||
/*
|
||||
* Reset the counter if we've logged an error in the last poll
|
||||
* during the storm.
|
||||
*/
|
||||
if (machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned)))
|
||||
this_cpu_write(cmci_backoff_cnt, INITIAL_CHECK_INTERVAL);
|
||||
else
|
||||
this_cpu_dec(cmci_backoff_cnt);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void mce_intel_hcpu_update(unsigned long cpu)
|
||||
@ -97,31 +116,32 @@ void mce_intel_hcpu_update(unsigned long cpu)
|
||||
per_cpu(cmci_storm_state, cpu) = CMCI_STORM_NONE;
|
||||
}
|
||||
|
||||
unsigned long mce_intel_adjust_timer(unsigned long interval)
|
||||
unsigned long cmci_intel_adjust_timer(unsigned long interval)
|
||||
{
|
||||
int r;
|
||||
|
||||
if (interval < CMCI_POLL_INTERVAL)
|
||||
return interval;
|
||||
if ((this_cpu_read(cmci_backoff_cnt) > 0) &&
|
||||
(__this_cpu_read(cmci_storm_state) == CMCI_STORM_ACTIVE)) {
|
||||
mce_notify_irq();
|
||||
return CMCI_STORM_INTERVAL;
|
||||
}
|
||||
|
||||
switch (__this_cpu_read(cmci_storm_state)) {
|
||||
case CMCI_STORM_ACTIVE:
|
||||
|
||||
/*
|
||||
* We switch back to interrupt mode once the poll timer has
|
||||
* silenced itself. That means no events recorded and the
|
||||
* timer interval is back to our poll interval.
|
||||
* silenced itself. That means no events recorded and the timer
|
||||
* interval is back to our poll interval.
|
||||
*/
|
||||
__this_cpu_write(cmci_storm_state, CMCI_STORM_SUBSIDED);
|
||||
r = atomic_sub_return(1, &cmci_storm_on_cpus);
|
||||
if (r == 0)
|
||||
if (!atomic_sub_return(1, &cmci_storm_on_cpus))
|
||||
pr_notice("CMCI storm subsided: switching to interrupt mode\n");
|
||||
|
||||
/* FALLTHROUGH */
|
||||
|
||||
case CMCI_STORM_SUBSIDED:
|
||||
/*
|
||||
* We wait for all cpus to go back to SUBSIDED
|
||||
* state. When that happens we switch back to
|
||||
* interrupt mode.
|
||||
* We wait for all CPUs to go back to SUBSIDED state. When that
|
||||
* happens we switch back to interrupt mode.
|
||||
*/
|
||||
if (!atomic_read(&cmci_storm_on_cpus)) {
|
||||
__this_cpu_write(cmci_storm_state, CMCI_STORM_NONE);
|
||||
@ -130,10 +150,8 @@ unsigned long mce_intel_adjust_timer(unsigned long interval)
|
||||
}
|
||||
return CMCI_POLL_INTERVAL;
|
||||
default:
|
||||
/*
|
||||
* We have shiny weather. Let the poll do whatever it
|
||||
* thinks.
|
||||
*/
|
||||
|
||||
/* We have shiny weather. Let the poll do whatever it thinks. */
|
||||
return interval;
|
||||
}
|
||||
}
|
||||
@ -178,7 +196,8 @@ static bool cmci_storm_detect(void)
|
||||
cmci_storm_disable_banks();
|
||||
__this_cpu_write(cmci_storm_state, CMCI_STORM_ACTIVE);
|
||||
r = atomic_add_return(1, &cmci_storm_on_cpus);
|
||||
mce_timer_kick(CMCI_POLL_INTERVAL);
|
||||
mce_timer_kick(CMCI_STORM_INTERVAL);
|
||||
this_cpu_write(cmci_backoff_cnt, INITIAL_CHECK_INTERVAL);
|
||||
|
||||
if (r == 1)
|
||||
pr_notice("CMCI storm detected: switching to poll mode\n");
|
||||
@ -195,6 +214,7 @@ static void intel_threshold_interrupt(void)
|
||||
{
|
||||
if (cmci_storm_detect())
|
||||
return;
|
||||
|
||||
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned));
|
||||
mce_notify_irq();
|
||||
}
|
||||
@ -286,6 +306,7 @@ void cmci_recheck(void)
|
||||
|
||||
if (!mce_available(raw_cpu_ptr(&cpu_info)) || !cmci_supported(&banks))
|
||||
return;
|
||||
|
||||
local_irq_save(flags);
|
||||
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned));
|
||||
local_irq_restore(flags);
|
||||
|
Loading…
Reference in New Issue
Block a user