mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 21:17:50 +07:00
Merge branch '10GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next-queue
Jeff Kirsher says: ==================== 10GbE Intel Wired LAN Driver Updates 2017-10-09 This series contains updates to ixgbe only. Emil fixes an issue where the semaphore bits could be stuck after a reset or a crash, by adding the clearing of software resource bits in the software/firmware synchronization register. Added error checks when we attempt to identify and initialize the PHY to prevent a crash. Fixed a few issues in the logic of ixgbe_clean_test_rings() which was exposed by a previous commit that was causing a crash in ethtool diagnostics. Bhumika Goyal fixes a couple of instances which were overlooked when we made ixgbe_mac_operations constant. Shannon Nelson fixes an issue to restore normal operations after the last MACVLAN offload is removed, otherwise we get stuck in a single queue operations. The infamous Jesper Dangaard Brouer adds a counter which counts the number of times the recycle fails and the real page allocator is invoked. Alex updates the adaptive ITR algorithm to better support the needs of the network. This attempt to make it so that our ITR algorithm will try to prevent either starving a socket buffer for memory in the case of transmit, or overrunning an receive socket buffer on receive. We should function better with new features like XDP which can handle small packets at high rates without needing to lock us into NAPI polling mode. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
commit
0349a86c85
@ -275,6 +275,7 @@ struct ixgbe_rx_queue_stats {
|
||||
u64 rsc_count;
|
||||
u64 rsc_flush;
|
||||
u64 non_eop_descs;
|
||||
u64 alloc_rx_page;
|
||||
u64 alloc_rx_page_failed;
|
||||
u64 alloc_rx_buff_failed;
|
||||
u64 csum_err;
|
||||
@ -434,8 +435,15 @@ static inline unsigned int ixgbe_rx_pg_order(struct ixgbe_ring *ring)
|
||||
}
|
||||
#define ixgbe_rx_pg_size(_ring) (PAGE_SIZE << ixgbe_rx_pg_order(_ring))
|
||||
|
||||
#define IXGBE_ITR_ADAPTIVE_MIN_INC 2
|
||||
#define IXGBE_ITR_ADAPTIVE_MIN_USECS 10
|
||||
#define IXGBE_ITR_ADAPTIVE_MAX_USECS 126
|
||||
#define IXGBE_ITR_ADAPTIVE_LATENCY 0x80
|
||||
#define IXGBE_ITR_ADAPTIVE_BULK 0x00
|
||||
|
||||
struct ixgbe_ring_container {
|
||||
struct ixgbe_ring *ring; /* pointer to linked list of rings */
|
||||
unsigned long next_update; /* jiffies value of last update */
|
||||
unsigned int total_bytes; /* total bytes processed this int */
|
||||
unsigned int total_packets; /* total packets processed this int */
|
||||
u16 work_limit; /* total work allowed per interrupt */
|
||||
@ -655,6 +663,7 @@ struct ixgbe_adapter {
|
||||
u64 rsc_total_count;
|
||||
u64 rsc_total_flush;
|
||||
u64 non_eop_descs;
|
||||
u32 alloc_rx_page;
|
||||
u32 alloc_rx_page_failed;
|
||||
u32 alloc_rx_buff_failed;
|
||||
|
||||
|
@ -3800,10 +3800,10 @@ s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
|
||||
fw_cmd.ver_build = build;
|
||||
fw_cmd.ver_sub = sub;
|
||||
fw_cmd.hdr.checksum = 0;
|
||||
fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
|
||||
(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
|
||||
fw_cmd.pad = 0;
|
||||
fw_cmd.pad2 = 0;
|
||||
fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
|
||||
(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
|
||||
|
||||
for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
|
||||
ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
|
||||
@ -4100,8 +4100,8 @@ bool ixgbe_mng_present(struct ixgbe_hw *hw)
|
||||
return false;
|
||||
|
||||
fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
|
||||
fwsm &= IXGBE_FWSM_MODE_MASK;
|
||||
return fwsm == IXGBE_FWSM_FW_MODE_PT;
|
||||
|
||||
return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -104,6 +104,7 @@ static const struct ixgbe_stats ixgbe_gstrings_stats[] = {
|
||||
{"tx_flow_control_xoff", IXGBE_STAT(stats.lxofftxc)},
|
||||
{"rx_flow_control_xoff", IXGBE_STAT(stats.lxoffrxc)},
|
||||
{"rx_csum_offload_errors", IXGBE_STAT(hw_csum_rx_error)},
|
||||
{"alloc_rx_page", IXGBE_STAT(alloc_rx_page)},
|
||||
{"alloc_rx_page_failed", IXGBE_STAT(alloc_rx_page_failed)},
|
||||
{"alloc_rx_buff_failed", IXGBE_STAT(alloc_rx_buff_failed)},
|
||||
{"rx_no_dma_resources", IXGBE_STAT(hw_rx_no_dma_resources)},
|
||||
@ -1916,8 +1917,6 @@ static u16 ixgbe_clean_test_rings(struct ixgbe_ring *rx_ring,
|
||||
unsigned int size)
|
||||
{
|
||||
union ixgbe_adv_rx_desc *rx_desc;
|
||||
struct ixgbe_rx_buffer *rx_buffer;
|
||||
struct ixgbe_tx_buffer *tx_buffer;
|
||||
u16 rx_ntc, tx_ntc, count = 0;
|
||||
|
||||
/* initialize next to clean and descriptor values */
|
||||
@ -1925,25 +1924,15 @@ static u16 ixgbe_clean_test_rings(struct ixgbe_ring *rx_ring,
|
||||
tx_ntc = tx_ring->next_to_clean;
|
||||
rx_desc = IXGBE_RX_DESC(rx_ring, rx_ntc);
|
||||
|
||||
while (rx_desc->wb.upper.length) {
|
||||
/* check Rx buffer */
|
||||
rx_buffer = &rx_ring->rx_buffer_info[rx_ntc];
|
||||
while (tx_ntc != tx_ring->next_to_use) {
|
||||
union ixgbe_adv_tx_desc *tx_desc;
|
||||
struct ixgbe_tx_buffer *tx_buffer;
|
||||
|
||||
/* sync Rx buffer for CPU read */
|
||||
dma_sync_single_for_cpu(rx_ring->dev,
|
||||
rx_buffer->dma,
|
||||
ixgbe_rx_bufsz(rx_ring),
|
||||
DMA_FROM_DEVICE);
|
||||
tx_desc = IXGBE_TX_DESC(tx_ring, tx_ntc);
|
||||
|
||||
/* verify contents of skb */
|
||||
if (ixgbe_check_lbtest_frame(rx_buffer, size))
|
||||
count++;
|
||||
|
||||
/* sync Rx buffer for device write */
|
||||
dma_sync_single_for_device(rx_ring->dev,
|
||||
rx_buffer->dma,
|
||||
ixgbe_rx_bufsz(rx_ring),
|
||||
DMA_FROM_DEVICE);
|
||||
/* if DD is not set transmit has not completed */
|
||||
if (!(tx_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
|
||||
return count;
|
||||
|
||||
/* unmap buffer on Tx side */
|
||||
tx_buffer = &tx_ring->tx_buffer_info[tx_ntc];
|
||||
@ -1958,13 +1947,40 @@ static u16 ixgbe_clean_test_rings(struct ixgbe_ring *rx_ring,
|
||||
DMA_TO_DEVICE);
|
||||
dma_unmap_len_set(tx_buffer, len, 0);
|
||||
|
||||
/* increment Rx/Tx next to clean counters */
|
||||
rx_ntc++;
|
||||
if (rx_ntc == rx_ring->count)
|
||||
rx_ntc = 0;
|
||||
/* increment Tx next to clean counter */
|
||||
tx_ntc++;
|
||||
if (tx_ntc == tx_ring->count)
|
||||
tx_ntc = 0;
|
||||
}
|
||||
|
||||
while (rx_desc->wb.upper.length) {
|
||||
struct ixgbe_rx_buffer *rx_buffer;
|
||||
|
||||
/* check Rx buffer */
|
||||
rx_buffer = &rx_ring->rx_buffer_info[rx_ntc];
|
||||
|
||||
/* sync Rx buffer for CPU read */
|
||||
dma_sync_single_for_cpu(rx_ring->dev,
|
||||
rx_buffer->dma,
|
||||
ixgbe_rx_bufsz(rx_ring),
|
||||
DMA_FROM_DEVICE);
|
||||
|
||||
/* verify contents of skb */
|
||||
if (ixgbe_check_lbtest_frame(rx_buffer, size))
|
||||
count++;
|
||||
else
|
||||
break;
|
||||
|
||||
/* sync Rx buffer for device write */
|
||||
dma_sync_single_for_device(rx_ring->dev,
|
||||
rx_buffer->dma,
|
||||
ixgbe_rx_bufsz(rx_ring),
|
||||
DMA_FROM_DEVICE);
|
||||
|
||||
/* increment Rx next to clean counter */
|
||||
rx_ntc++;
|
||||
if (rx_ntc == rx_ring->count)
|
||||
rx_ntc = 0;
|
||||
|
||||
/* fetch next descriptor */
|
||||
rx_desc = IXGBE_RX_DESC(rx_ring, rx_ntc);
|
||||
|
@ -806,6 +806,7 @@ static void ixgbe_add_ring(struct ixgbe_ring *ring,
|
||||
ring->next = head->ring;
|
||||
head->ring = ring;
|
||||
head->count++;
|
||||
head->next_update = jiffies + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -879,8 +880,11 @@ static int ixgbe_alloc_q_vector(struct ixgbe_adapter *adapter,
|
||||
/* initialize work limits */
|
||||
q_vector->tx.work_limit = adapter->tx_work_limit;
|
||||
|
||||
/* initialize pointer to rings */
|
||||
ring = q_vector->ring;
|
||||
/* Initialize setting for adaptive ITR */
|
||||
q_vector->tx.itr = IXGBE_ITR_ADAPTIVE_MAX_USECS |
|
||||
IXGBE_ITR_ADAPTIVE_LATENCY;
|
||||
q_vector->rx.itr = IXGBE_ITR_ADAPTIVE_MAX_USECS |
|
||||
IXGBE_ITR_ADAPTIVE_LATENCY;
|
||||
|
||||
/* intialize ITR */
|
||||
if (txr_count && !rxr_count) {
|
||||
@ -897,6 +901,9 @@ static int ixgbe_alloc_q_vector(struct ixgbe_adapter *adapter,
|
||||
q_vector->itr = adapter->rx_itr_setting;
|
||||
}
|
||||
|
||||
/* initialize pointer to rings */
|
||||
ring = q_vector->ring;
|
||||
|
||||
while (txr_count) {
|
||||
/* assign generic ring traits */
|
||||
ring->dev = &adapter->pdev->dev;
|
||||
|
@ -1620,6 +1620,7 @@ static bool ixgbe_alloc_mapped_page(struct ixgbe_ring *rx_ring,
|
||||
bi->page = page;
|
||||
bi->page_offset = ixgbe_rx_offset(rx_ring);
|
||||
bi->pagecnt_bias = 1;
|
||||
rx_ring->rx_stats.alloc_rx_page++;
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -2539,50 +2540,174 @@ enum latency_range {
|
||||
static void ixgbe_update_itr(struct ixgbe_q_vector *q_vector,
|
||||
struct ixgbe_ring_container *ring_container)
|
||||
{
|
||||
int bytes = ring_container->total_bytes;
|
||||
int packets = ring_container->total_packets;
|
||||
u32 timepassed_us;
|
||||
u64 bytes_perint;
|
||||
u8 itr_setting = ring_container->itr;
|
||||
unsigned int itr = IXGBE_ITR_ADAPTIVE_MIN_USECS |
|
||||
IXGBE_ITR_ADAPTIVE_LATENCY;
|
||||
unsigned int avg_wire_size, packets, bytes;
|
||||
unsigned long next_update = jiffies;
|
||||
|
||||
if (packets == 0)
|
||||
return;
|
||||
|
||||
/* simple throttlerate management
|
||||
* 0-10MB/s lowest (100000 ints/s)
|
||||
* 10-20MB/s low (20000 ints/s)
|
||||
* 20-1249MB/s bulk (12000 ints/s)
|
||||
/* If we don't have any rings just leave ourselves set for maximum
|
||||
* possible latency so we take ourselves out of the equation.
|
||||
*/
|
||||
/* what was last interrupt timeslice? */
|
||||
timepassed_us = q_vector->itr >> 2;
|
||||
if (timepassed_us == 0)
|
||||
if (!ring_container->ring)
|
||||
return;
|
||||
|
||||
bytes_perint = bytes / timepassed_us; /* bytes/usec */
|
||||
/* If we didn't update within up to 1 - 2 jiffies we can assume
|
||||
* that either packets are coming in so slow there hasn't been
|
||||
* any work, or that there is so much work that NAPI is dealing
|
||||
* with interrupt moderation and we don't need to do anything.
|
||||
*/
|
||||
if (time_after(next_update, ring_container->next_update))
|
||||
goto clear_counts;
|
||||
|
||||
switch (itr_setting) {
|
||||
case lowest_latency:
|
||||
if (bytes_perint > 10)
|
||||
itr_setting = low_latency;
|
||||
packets = ring_container->total_packets;
|
||||
|
||||
/* We have no packets to actually measure against. This means
|
||||
* either one of the other queues on this vector is active or
|
||||
* we are a Tx queue doing TSO with too high of an interrupt rate.
|
||||
*
|
||||
* When this occurs just tick up our delay by the minimum value
|
||||
* and hope that this extra delay will prevent us from being called
|
||||
* without any work on our queue.
|
||||
*/
|
||||
if (!packets) {
|
||||
itr = (q_vector->itr >> 2) + IXGBE_ITR_ADAPTIVE_MIN_INC;
|
||||
if (itr > IXGBE_ITR_ADAPTIVE_MAX_USECS)
|
||||
itr = IXGBE_ITR_ADAPTIVE_MAX_USECS;
|
||||
itr += ring_container->itr & IXGBE_ITR_ADAPTIVE_LATENCY;
|
||||
goto clear_counts;
|
||||
}
|
||||
|
||||
bytes = ring_container->total_bytes;
|
||||
|
||||
/* If packets are less than 4 or bytes are less than 9000 assume
|
||||
* insufficient data to use bulk rate limiting approach. We are
|
||||
* likely latency driven.
|
||||
*/
|
||||
if (packets < 4 && bytes < 9000) {
|
||||
itr = IXGBE_ITR_ADAPTIVE_LATENCY;
|
||||
goto adjust_by_size;
|
||||
}
|
||||
|
||||
/* Between 4 and 48 we can assume that our current interrupt delay
|
||||
* is only slightly too low. As such we should increase it by a small
|
||||
* fixed amount.
|
||||
*/
|
||||
if (packets < 48) {
|
||||
itr = (q_vector->itr >> 2) + IXGBE_ITR_ADAPTIVE_MIN_INC;
|
||||
if (itr > IXGBE_ITR_ADAPTIVE_MAX_USECS)
|
||||
itr = IXGBE_ITR_ADAPTIVE_MAX_USECS;
|
||||
goto clear_counts;
|
||||
}
|
||||
|
||||
/* Between 48 and 96 is our "goldilocks" zone where we are working
|
||||
* out "just right". Just report that our current ITR is good for us.
|
||||
*/
|
||||
if (packets < 96) {
|
||||
itr = q_vector->itr >> 2;
|
||||
goto clear_counts;
|
||||
}
|
||||
|
||||
/* If packet count is 96 or greater we are likely looking at a slight
|
||||
* overrun of the delay we want. Try halving our delay to see if that
|
||||
* will cut the number of packets in half per interrupt.
|
||||
*/
|
||||
if (packets < 256) {
|
||||
itr = q_vector->itr >> 3;
|
||||
if (itr < IXGBE_ITR_ADAPTIVE_MIN_USECS)
|
||||
itr = IXGBE_ITR_ADAPTIVE_MIN_USECS;
|
||||
goto clear_counts;
|
||||
}
|
||||
|
||||
/* The paths below assume we are dealing with a bulk ITR since number
|
||||
* of packets is 256 or greater. We are just going to have to compute
|
||||
* a value and try to bring the count under control, though for smaller
|
||||
* packet sizes there isn't much we can do as NAPI polling will likely
|
||||
* be kicking in sooner rather than later.
|
||||
*/
|
||||
itr = IXGBE_ITR_ADAPTIVE_BULK;
|
||||
|
||||
adjust_by_size:
|
||||
/* If packet counts are 256 or greater we can assume we have a gross
|
||||
* overestimation of what the rate should be. Instead of trying to fine
|
||||
* tune it just use the formula below to try and dial in an exact value
|
||||
* give the current packet size of the frame.
|
||||
*/
|
||||
avg_wire_size = bytes / packets;
|
||||
|
||||
/* The following is a crude approximation of:
|
||||
* wmem_default / (size + overhead) = desired_pkts_per_int
|
||||
* rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
|
||||
* (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
|
||||
*
|
||||
* Assuming wmem_default is 212992 and overhead is 640 bytes per
|
||||
* packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
|
||||
* formula down to
|
||||
*
|
||||
* (170 * (size + 24)) / (size + 640) = ITR
|
||||
*
|
||||
* We first do some math on the packet size and then finally bitshift
|
||||
* by 8 after rounding up. We also have to account for PCIe link speed
|
||||
* difference as ITR scales based on this.
|
||||
*/
|
||||
if (avg_wire_size <= 60) {
|
||||
/* Start at 50k ints/sec */
|
||||
avg_wire_size = 5120;
|
||||
} else if (avg_wire_size <= 316) {
|
||||
/* 50K ints/sec to 16K ints/sec */
|
||||
avg_wire_size *= 40;
|
||||
avg_wire_size += 2720;
|
||||
} else if (avg_wire_size <= 1084) {
|
||||
/* 16K ints/sec to 9.2K ints/sec */
|
||||
avg_wire_size *= 15;
|
||||
avg_wire_size += 11452;
|
||||
} else if (avg_wire_size <= 1980) {
|
||||
/* 9.2K ints/sec to 8K ints/sec */
|
||||
avg_wire_size *= 5;
|
||||
avg_wire_size += 22420;
|
||||
} else {
|
||||
/* plateau at a limit of 8K ints/sec */
|
||||
avg_wire_size = 32256;
|
||||
}
|
||||
|
||||
/* If we are in low latency mode half our delay which doubles the rate
|
||||
* to somewhere between 100K to 16K ints/sec
|
||||
*/
|
||||
if (itr & IXGBE_ITR_ADAPTIVE_LATENCY)
|
||||
avg_wire_size >>= 1;
|
||||
|
||||
/* Resultant value is 256 times larger than it needs to be. This
|
||||
* gives us room to adjust the value as needed to either increase
|
||||
* or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
|
||||
*
|
||||
* Use addition as we have already recorded the new latency flag
|
||||
* for the ITR value.
|
||||
*/
|
||||
switch (q_vector->adapter->link_speed) {
|
||||
case IXGBE_LINK_SPEED_10GB_FULL:
|
||||
case IXGBE_LINK_SPEED_100_FULL:
|
||||
default:
|
||||
itr += DIV_ROUND_UP(avg_wire_size,
|
||||
IXGBE_ITR_ADAPTIVE_MIN_INC * 256) *
|
||||
IXGBE_ITR_ADAPTIVE_MIN_INC;
|
||||
break;
|
||||
case low_latency:
|
||||
if (bytes_perint > 20)
|
||||
itr_setting = bulk_latency;
|
||||
else if (bytes_perint <= 10)
|
||||
itr_setting = lowest_latency;
|
||||
break;
|
||||
case bulk_latency:
|
||||
if (bytes_perint <= 20)
|
||||
itr_setting = low_latency;
|
||||
case IXGBE_LINK_SPEED_2_5GB_FULL:
|
||||
case IXGBE_LINK_SPEED_1GB_FULL:
|
||||
case IXGBE_LINK_SPEED_10_FULL:
|
||||
itr += DIV_ROUND_UP(avg_wire_size,
|
||||
IXGBE_ITR_ADAPTIVE_MIN_INC * 64) *
|
||||
IXGBE_ITR_ADAPTIVE_MIN_INC;
|
||||
break;
|
||||
}
|
||||
|
||||
/* clear work counters since we have the values we need */
|
||||
clear_counts:
|
||||
/* write back value */
|
||||
ring_container->itr = itr;
|
||||
|
||||
/* next update should occur within next jiffy */
|
||||
ring_container->next_update = next_update + 1;
|
||||
|
||||
ring_container->total_bytes = 0;
|
||||
ring_container->total_packets = 0;
|
||||
|
||||
/* write updated itr to ring container */
|
||||
ring_container->itr = itr_setting;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -2624,34 +2749,19 @@ void ixgbe_write_eitr(struct ixgbe_q_vector *q_vector)
|
||||
|
||||
static void ixgbe_set_itr(struct ixgbe_q_vector *q_vector)
|
||||
{
|
||||
u32 new_itr = q_vector->itr;
|
||||
u8 current_itr;
|
||||
u32 new_itr;
|
||||
|
||||
ixgbe_update_itr(q_vector, &q_vector->tx);
|
||||
ixgbe_update_itr(q_vector, &q_vector->rx);
|
||||
|
||||
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
|
||||
/* use the smallest value of new ITR delay calculations */
|
||||
new_itr = min(q_vector->rx.itr, q_vector->tx.itr);
|
||||
|
||||
switch (current_itr) {
|
||||
/* counts and packets in update_itr are dependent on these numbers */
|
||||
case lowest_latency:
|
||||
new_itr = IXGBE_100K_ITR;
|
||||
break;
|
||||
case low_latency:
|
||||
new_itr = IXGBE_20K_ITR;
|
||||
break;
|
||||
case bulk_latency:
|
||||
new_itr = IXGBE_12K_ITR;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
/* Clear latency flag if set, shift into correct position */
|
||||
new_itr &= ~IXGBE_ITR_ADAPTIVE_LATENCY;
|
||||
new_itr <<= 2;
|
||||
|
||||
if (new_itr != q_vector->itr) {
|
||||
/* do an exponential smoothing */
|
||||
new_itr = (10 * new_itr * q_vector->itr) /
|
||||
((9 * new_itr) + q_vector->itr);
|
||||
|
||||
/* save the algorithm value here */
|
||||
q_vector->itr = new_itr;
|
||||
|
||||
@ -6794,6 +6904,7 @@ void ixgbe_update_stats(struct ixgbe_adapter *adapter)
|
||||
u32 i, missed_rx = 0, mpc, bprc, lxon, lxoff, xon_off_tot;
|
||||
u64 non_eop_descs = 0, restart_queue = 0, tx_busy = 0;
|
||||
u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
|
||||
u64 alloc_rx_page = 0;
|
||||
u64 bytes = 0, packets = 0, hw_csum_rx_error = 0;
|
||||
|
||||
if (test_bit(__IXGBE_DOWN, &adapter->state) ||
|
||||
@ -6814,6 +6925,7 @@ void ixgbe_update_stats(struct ixgbe_adapter *adapter)
|
||||
for (i = 0; i < adapter->num_rx_queues; i++) {
|
||||
struct ixgbe_ring *rx_ring = adapter->rx_ring[i];
|
||||
non_eop_descs += rx_ring->rx_stats.non_eop_descs;
|
||||
alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
|
||||
alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
|
||||
alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
|
||||
hw_csum_rx_error += rx_ring->rx_stats.csum_err;
|
||||
@ -6821,6 +6933,7 @@ void ixgbe_update_stats(struct ixgbe_adapter *adapter)
|
||||
packets += rx_ring->stats.packets;
|
||||
}
|
||||
adapter->non_eop_descs = non_eop_descs;
|
||||
adapter->alloc_rx_page = alloc_rx_page;
|
||||
adapter->alloc_rx_page_failed = alloc_rx_page_failed;
|
||||
adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
|
||||
adapter->hw_csum_rx_error = hw_csum_rx_error;
|
||||
@ -9758,6 +9871,17 @@ static void ixgbe_fwd_del(struct net_device *pdev, void *priv)
|
||||
limit = find_last_bit(&adapter->fwd_bitmask, 32);
|
||||
adapter->ring_feature[RING_F_VMDQ].limit = limit + 1;
|
||||
ixgbe_fwd_ring_down(fwd_adapter->netdev, fwd_adapter);
|
||||
|
||||
/* go back to full RSS if we're done with our VMQs */
|
||||
if (adapter->ring_feature[RING_F_VMDQ].limit == 1) {
|
||||
int rss = min_t(int, ixgbe_max_rss_indices(adapter),
|
||||
num_online_cpus());
|
||||
|
||||
adapter->flags &= ~IXGBE_FLAG_VMDQ_ENABLED;
|
||||
adapter->flags &= ~IXGBE_FLAG_SRIOV_ENABLED;
|
||||
adapter->ring_feature[RING_F_RSS].limit = rss;
|
||||
}
|
||||
|
||||
ixgbe_setup_tc(pdev, netdev_get_num_tc(pdev));
|
||||
netdev_dbg(pdev, "pool %i:%i queues %i:%i VSI bitmask %lx\n",
|
||||
fwd_adapter->pool, adapter->num_rx_pools,
|
||||
@ -10737,6 +10861,9 @@ static pci_ers_result_t ixgbe_io_error_detected(struct pci_dev *pdev,
|
||||
if (!test_bit(__IXGBE_SERVICE_INITED, &adapter->state))
|
||||
return PCI_ERS_RESULT_DISCONNECT;
|
||||
|
||||
if (!netif_device_present(netdev))
|
||||
return PCI_ERS_RESULT_DISCONNECT;
|
||||
|
||||
rtnl_lock();
|
||||
netif_device_detach(netdev);
|
||||
|
||||
|
@ -619,12 +619,6 @@ s32 ixgbe_acquire_swfw_sync_X540(struct ixgbe_hw *hw, u32 mask)
|
||||
usleep_range(5000, 10000);
|
||||
}
|
||||
|
||||
/* Failed to get SW only semaphore */
|
||||
if (swmask == IXGBE_GSSR_SW_MNG_SM) {
|
||||
hw_dbg(hw, "Failed to get SW only semaphore\n");
|
||||
return IXGBE_ERR_SWFW_SYNC;
|
||||
}
|
||||
|
||||
/* If the resource is not released by the FW/HW the SW can assume that
|
||||
* the FW/HW malfunctions. In that case the SW should set the SW bit(s)
|
||||
* of the requested resource(s) while ignoring the corresponding FW/HW
|
||||
@ -647,7 +641,8 @@ s32 ixgbe_acquire_swfw_sync_X540(struct ixgbe_hw *hw, u32 mask)
|
||||
*/
|
||||
if (swfw_sync & swmask) {
|
||||
u32 rmask = IXGBE_GSSR_EEP_SM | IXGBE_GSSR_PHY0_SM |
|
||||
IXGBE_GSSR_PHY1_SM | IXGBE_GSSR_MAC_CSR_SM;
|
||||
IXGBE_GSSR_PHY1_SM | IXGBE_GSSR_MAC_CSR_SM |
|
||||
IXGBE_GSSR_SW_MNG_SM;
|
||||
|
||||
if (swi2c_mask)
|
||||
rmask |= IXGBE_GSSR_I2C_MASK;
|
||||
@ -763,6 +758,8 @@ static void ixgbe_release_swfw_sync_semaphore(struct ixgbe_hw *hw)
|
||||
**/
|
||||
void ixgbe_init_swfw_sync_X540(struct ixgbe_hw *hw)
|
||||
{
|
||||
u32 rmask;
|
||||
|
||||
/* First try to grab the semaphore but we don't need to bother
|
||||
* looking to see whether we got the lock or not since we do
|
||||
* the same thing regardless of whether we got the lock or not.
|
||||
@ -771,6 +768,14 @@ void ixgbe_init_swfw_sync_X540(struct ixgbe_hw *hw)
|
||||
*/
|
||||
ixgbe_get_swfw_sync_semaphore(hw);
|
||||
ixgbe_release_swfw_sync_semaphore(hw);
|
||||
|
||||
/* Acquire and release all software resources. */
|
||||
rmask = IXGBE_GSSR_EEP_SM | IXGBE_GSSR_PHY0_SM |
|
||||
IXGBE_GSSR_PHY1_SM | IXGBE_GSSR_MAC_CSR_SM |
|
||||
IXGBE_GSSR_SW_MNG_SM | IXGBE_GSSR_I2C_MASK;
|
||||
|
||||
ixgbe_acquire_swfw_sync_X540(hw, rmask);
|
||||
ixgbe_release_swfw_sync_X540(hw, rmask);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -900,6 +900,8 @@ static s32 ixgbe_read_ee_hostif_buffer_X550(struct ixgbe_hw *hw,
|
||||
/* convert offset from words to bytes */
|
||||
buffer.address = cpu_to_be32((offset + current_word) * 2);
|
||||
buffer.length = cpu_to_be16(words_to_read * 2);
|
||||
buffer.pad2 = 0;
|
||||
buffer.pad3 = 0;
|
||||
|
||||
status = ixgbe_hic_unlocked(hw, (u32 *)&buffer, sizeof(buffer),
|
||||
IXGBE_HI_COMMAND_TIMEOUT);
|
||||
@ -3192,6 +3194,9 @@ static s32 ixgbe_init_phy_ops_X550em(struct ixgbe_hw *hw)
|
||||
|
||||
/* Identify the PHY or SFP module */
|
||||
ret_val = phy->ops.identify(hw);
|
||||
if (ret_val == IXGBE_ERR_SFP_NOT_SUPPORTED ||
|
||||
ret_val == IXGBE_ERR_PHY_ADDR_INVALID)
|
||||
return ret_val;
|
||||
|
||||
/* Setup function pointers based on detected hardware */
|
||||
ixgbe_init_mac_link_ops_X550em(hw);
|
||||
@ -3394,9 +3399,10 @@ static s32 ixgbe_reset_hw_X550em(struct ixgbe_hw *hw)
|
||||
ixgbe_clear_tx_pending(hw);
|
||||
|
||||
/* PHY ops must be identified and initialized prior to reset */
|
||||
|
||||
/* Identify PHY and related function pointers */
|
||||
status = hw->phy.ops.init(hw);
|
||||
if (status == IXGBE_ERR_SFP_NOT_SUPPORTED ||
|
||||
status == IXGBE_ERR_PHY_ADDR_INVALID)
|
||||
return status;
|
||||
|
||||
/* start the external PHY */
|
||||
if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
|
||||
@ -3884,7 +3890,7 @@ static const struct ixgbe_mac_operations mac_ops_X550EM_x_fw = {
|
||||
.write_iosf_sb_reg = ixgbe_write_iosf_sb_reg_x550,
|
||||
};
|
||||
|
||||
static struct ixgbe_mac_operations mac_ops_x550em_a = {
|
||||
static const struct ixgbe_mac_operations mac_ops_x550em_a = {
|
||||
X550_COMMON_MAC
|
||||
.led_on = ixgbe_led_on_t_x550em,
|
||||
.led_off = ixgbe_led_off_t_x550em,
|
||||
@ -3905,7 +3911,7 @@ static struct ixgbe_mac_operations mac_ops_x550em_a = {
|
||||
.write_iosf_sb_reg = ixgbe_write_iosf_sb_reg_x550a,
|
||||
};
|
||||
|
||||
static struct ixgbe_mac_operations mac_ops_x550em_a_fw = {
|
||||
static const struct ixgbe_mac_operations mac_ops_x550em_a_fw = {
|
||||
X550_COMMON_MAC
|
||||
.led_on = ixgbe_led_on_generic,
|
||||
.led_off = ixgbe_led_off_generic,
|
||||
|
Loading…
Reference in New Issue
Block a user