mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
443 lines
12 KiB
C
443 lines
12 KiB
C
|
/* bnx2x_init_ops.h: Broadcom Everest network driver.
|
||
|
* Static functions needed during the initialization.
|
||
|
* This file is "included" in bnx2x_main.c.
|
||
|
*
|
||
|
* Copyright (c) 2007-2009 Broadcom Corporation
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation.
|
||
|
*
|
||
|
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
|
||
|
* Written by: Vladislav Zolotarov <vladz@broadcom.com>
|
||
|
*/
|
||
|
#ifndef BNX2X_INIT_OPS_H
|
||
|
#define BNX2X_INIT_OPS_H
|
||
|
|
||
|
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
|
||
|
static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
|
||
|
|
||
|
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
|
||
|
u32 len)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < len; i++) {
|
||
|
REG_WR(bp, addr + i*4, data[i]);
|
||
|
if (!(i % 10000)) {
|
||
|
touch_softlockup_watchdog();
|
||
|
cpu_relax();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
|
||
|
u16 len)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < len; i++) {
|
||
|
REG_WR_IND(bp, addr + i*4, data[i]);
|
||
|
if (!(i % 10000)) {
|
||
|
touch_softlockup_watchdog();
|
||
|
cpu_relax();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
|
||
|
{
|
||
|
int offset = 0;
|
||
|
|
||
|
if (bp->dmae_ready) {
|
||
|
while (len > DMAE_LEN32_WR_MAX) {
|
||
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
||
|
addr + offset, DMAE_LEN32_WR_MAX);
|
||
|
offset += DMAE_LEN32_WR_MAX * 4;
|
||
|
len -= DMAE_LEN32_WR_MAX;
|
||
|
}
|
||
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
||
|
addr + offset, len);
|
||
|
} else
|
||
|
bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
|
||
|
}
|
||
|
|
||
|
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
|
||
|
{
|
||
|
u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4));
|
||
|
u32 buf_len32 = buf_len / 4;
|
||
|
int i;
|
||
|
|
||
|
memset(bp->gunzip_buf, fill, buf_len);
|
||
|
|
||
|
for (i = 0; i < len; i += buf_len32) {
|
||
|
u32 cur_len = min(buf_len32, len - i);
|
||
|
|
||
|
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
|
||
|
u32 len64)
|
||
|
{
|
||
|
u32 buf_len32 = FW_BUF_SIZE / 4;
|
||
|
u32 len = len64 * 2;
|
||
|
u64 data64 = 0;
|
||
|
int i;
|
||
|
|
||
|
/* 64 bit value is in a blob: first low DWORD, then high DWORD */
|
||
|
data64 = HILO_U64((*(data + 1)), (*data));
|
||
|
len64 = min((u32)(FW_BUF_SIZE/8), len64);
|
||
|
for (i = 0; i < len64; i++) {
|
||
|
u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
|
||
|
|
||
|
*pdata = data64;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < len; i += buf_len32) {
|
||
|
u32 cur_len = min(buf_len32, len - i);
|
||
|
|
||
|
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*********************************************************
|
||
|
There are different blobs for each PRAM section.
|
||
|
In addition, each blob write operation is divided into a few operations
|
||
|
in order to decrease the amount of phys. contiguous buffer needed.
|
||
|
Thus, when we select a blob the address may be with some offset
|
||
|
from the beginning of PRAM section.
|
||
|
The same holds for the INT_TABLE sections.
|
||
|
**********************************************************/
|
||
|
#define IF_IS_INT_TABLE_ADDR(base, addr) \
|
||
|
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
|
||
|
|
||
|
#define IF_IS_PRAM_ADDR(base, addr) \
|
||
|
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
|
||
|
|
||
|
static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
|
||
|
{
|
||
|
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
|
||
|
data = bp->tsem_int_table_data;
|
||
|
else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
|
||
|
data = bp->csem_int_table_data;
|
||
|
else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
|
||
|
data = bp->usem_int_table_data;
|
||
|
else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
|
||
|
data = bp->xsem_int_table_data;
|
||
|
else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
|
||
|
data = bp->tsem_pram_data;
|
||
|
else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
|
||
|
data = bp->csem_pram_data;
|
||
|
else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
|
||
|
data = bp->usem_pram_data;
|
||
|
else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
|
||
|
data = bp->xsem_pram_data;
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
|
||
|
{
|
||
|
int offset = 0;
|
||
|
|
||
|
if (bp->dmae_ready) {
|
||
|
while (len > DMAE_LEN32_WR_MAX) {
|
||
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
||
|
addr + offset, DMAE_LEN32_WR_MAX);
|
||
|
offset += DMAE_LEN32_WR_MAX * 4;
|
||
|
len -= DMAE_LEN32_WR_MAX;
|
||
|
}
|
||
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
||
|
addr + offset, len);
|
||
|
} else
|
||
|
bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
|
||
|
}
|
||
|
|
||
|
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
|
||
|
u32 len)
|
||
|
{
|
||
|
/* This is needed for NO_ZIP mode, currently supported
|
||
|
in little endian mode only */
|
||
|
data = (const u32*)bnx2x_sel_blob(bp, addr, (const u8*)data);
|
||
|
|
||
|
if ((len * 4) > FW_BUF_SIZE) {
|
||
|
BNX2X_ERR("LARGE DMAE OPERATION ! "
|
||
|
"addr 0x%x len 0x%x\n", addr, len*4);
|
||
|
return;
|
||
|
}
|
||
|
memcpy(bp->gunzip_buf, data, len * 4);
|
||
|
|
||
|
bnx2x_write_big_buf_wb(bp, addr, len);
|
||
|
}
|
||
|
|
||
|
static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr,
|
||
|
u32 len, u32 blob_off)
|
||
|
{
|
||
|
int rc, i;
|
||
|
const u8 *data = NULL;
|
||
|
|
||
|
data = bnx2x_sel_blob(bp, addr, data) + 4*blob_off;
|
||
|
|
||
|
if (data == NULL) {
|
||
|
panic("Blob not found for addr 0x%x\n", addr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
rc = bnx2x_gunzip(bp, data, len);
|
||
|
if (rc) {
|
||
|
BNX2X_ERR("gunzip failed ! addr 0x%x rc %d\n", addr, rc);
|
||
|
BNX2X_ERR("blob_offset=0x%x\n", blob_off);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* gunzip_outlen is in dwords */
|
||
|
len = bp->gunzip_outlen;
|
||
|
for (i = 0; i < len; i++)
|
||
|
((u32 *)bp->gunzip_buf)[i] =
|
||
|
cpu_to_le32(((u32 *)bp->gunzip_buf)[i]);
|
||
|
|
||
|
bnx2x_write_big_buf_wb(bp, addr, len);
|
||
|
}
|
||
|
|
||
|
static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
|
||
|
{
|
||
|
int hw_wr, i;
|
||
|
u16 op_start =
|
||
|
bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_START)];
|
||
|
u16 op_end =
|
||
|
bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_END)];
|
||
|
union init_op *op;
|
||
|
u32 op_type, addr, len;
|
||
|
const u32 *data, *data_base;
|
||
|
|
||
|
/* If empty block */
|
||
|
if (op_start == op_end)
|
||
|
return;
|
||
|
|
||
|
if (CHIP_REV_IS_FPGA(bp))
|
||
|
hw_wr = OP_WR_FPGA;
|
||
|
else if (CHIP_REV_IS_EMUL(bp))
|
||
|
hw_wr = OP_WR_EMUL;
|
||
|
else
|
||
|
hw_wr = OP_WR_ASIC;
|
||
|
|
||
|
data_base = bp->init_data;
|
||
|
|
||
|
for (i = op_start; i < op_end; i++) {
|
||
|
|
||
|
op = (union init_op *)&(bp->init_ops[i]);
|
||
|
|
||
|
op_type = op->str_wr.op;
|
||
|
addr = op->str_wr.offset;
|
||
|
len = op->str_wr.data_len;
|
||
|
data = data_base + op->str_wr.data_off;
|
||
|
|
||
|
/* HW/EMUL specific */
|
||
|
if (unlikely((op_type > OP_WB) && (op_type == hw_wr)))
|
||
|
op_type = OP_WR;
|
||
|
|
||
|
switch (op_type) {
|
||
|
case OP_RD:
|
||
|
REG_RD(bp, addr);
|
||
|
break;
|
||
|
case OP_WR:
|
||
|
REG_WR(bp, addr, op->write.val);
|
||
|
break;
|
||
|
case OP_SW:
|
||
|
bnx2x_init_str_wr(bp, addr, data, len);
|
||
|
break;
|
||
|
case OP_WB:
|
||
|
bnx2x_init_wr_wb(bp, addr, data, len);
|
||
|
break;
|
||
|
case OP_SI:
|
||
|
bnx2x_init_ind_wr(bp, addr, data, len);
|
||
|
break;
|
||
|
case OP_ZR:
|
||
|
bnx2x_init_fill(bp, addr, 0, op->zero.len);
|
||
|
break;
|
||
|
case OP_ZP:
|
||
|
bnx2x_init_wr_zp(bp, addr, len,
|
||
|
op->str_wr.data_off);
|
||
|
break;
|
||
|
case OP_WR_64:
|
||
|
bnx2x_init_wr_64(bp, addr, data, len);
|
||
|
break;
|
||
|
default:
|
||
|
/* happens whenever an op is of a diff HW */
|
||
|
#if 0
|
||
|
DP(NETIF_MSG_HW, "skipping init operation "
|
||
|
"index %d[%d:%d]: type %d addr 0x%x "
|
||
|
"len %d(0x%x)\n",
|
||
|
i, op_start, op_end, op_type, addr, len, len);
|
||
|
#endif
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* PXP */
|
||
|
static void bnx2x_init_pxp(struct bnx2x *bp)
|
||
|
{
|
||
|
u16 devctl;
|
||
|
int r_order, w_order;
|
||
|
u32 val, i;
|
||
|
|
||
|
pci_read_config_word(bp->pdev,
|
||
|
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
|
||
|
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
|
||
|
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
|
||
|
if (bp->mrrs == -1)
|
||
|
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
|
||
|
else {
|
||
|
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
|
||
|
r_order = bp->mrrs;
|
||
|
}
|
||
|
|
||
|
if (r_order > MAX_RD_ORD) {
|
||
|
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
|
||
|
r_order, MAX_RD_ORD);
|
||
|
r_order = MAX_RD_ORD;
|
||
|
}
|
||
|
if (w_order > MAX_WR_ORD) {
|
||
|
DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
|
||
|
w_order, MAX_WR_ORD);
|
||
|
w_order = MAX_WR_ORD;
|
||
|
}
|
||
|
if (CHIP_REV_IS_FPGA(bp)) {
|
||
|
DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
|
||
|
w_order = 0;
|
||
|
}
|
||
|
DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
|
||
|
|
||
|
for (i = 0; i < NUM_RD_Q-1; i++) {
|
||
|
REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
|
||
|
REG_WR(bp, read_arb_addr[i].add,
|
||
|
read_arb_data[i][r_order].add);
|
||
|
REG_WR(bp, read_arb_addr[i].ubound,
|
||
|
read_arb_data[i][r_order].ubound);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < NUM_WR_Q-1; i++) {
|
||
|
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
|
||
|
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
|
||
|
|
||
|
REG_WR(bp, write_arb_addr[i].l,
|
||
|
write_arb_data[i][w_order].l);
|
||
|
|
||
|
REG_WR(bp, write_arb_addr[i].add,
|
||
|
write_arb_data[i][w_order].add);
|
||
|
|
||
|
REG_WR(bp, write_arb_addr[i].ubound,
|
||
|
write_arb_data[i][w_order].ubound);
|
||
|
} else {
|
||
|
|
||
|
val = REG_RD(bp, write_arb_addr[i].l);
|
||
|
REG_WR(bp, write_arb_addr[i].l,
|
||
|
val | (write_arb_data[i][w_order].l << 10));
|
||
|
|
||
|
val = REG_RD(bp, write_arb_addr[i].add);
|
||
|
REG_WR(bp, write_arb_addr[i].add,
|
||
|
val | (write_arb_data[i][w_order].add << 10));
|
||
|
|
||
|
val = REG_RD(bp, write_arb_addr[i].ubound);
|
||
|
REG_WR(bp, write_arb_addr[i].ubound,
|
||
|
val | (write_arb_data[i][w_order].ubound << 7));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
val = write_arb_data[NUM_WR_Q-1][w_order].add;
|
||
|
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
|
||
|
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
|
||
|
REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
|
||
|
|
||
|
val = read_arb_data[NUM_RD_Q-1][r_order].add;
|
||
|
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
|
||
|
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
|
||
|
REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
|
||
|
|
||
|
REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
|
||
|
REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
|
||
|
REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
|
||
|
REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
|
||
|
|
||
|
if (r_order == MAX_RD_ORD)
|
||
|
REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
|
||
|
|
||
|
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
|
||
|
|
||
|
if (CHIP_IS_E1H(bp)) {
|
||
|
val = ((w_order == 0) ? 2 : 3);
|
||
|
REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
|
||
|
REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
|
||
|
REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* Description:
|
||
|
* Calculates crc 8 on a word value: polynomial 0-1-2-8
|
||
|
* Code was translated from Verilog.
|
||
|
****************************************************************************/
|
||
|
static u8 calc_crc8(u32 data, u8 crc)
|
||
|
{
|
||
|
u8 D[32];
|
||
|
u8 NewCRC[8];
|
||
|
u8 C[8];
|
||
|
u8 crc_res;
|
||
|
u8 i;
|
||
|
|
||
|
/* split the data into 31 bits */
|
||
|
for (i = 0; i < 32; i++) {
|
||
|
D[i] = data & 1;
|
||
|
data = data >> 1;
|
||
|
}
|
||
|
|
||
|
/* split the crc into 8 bits */
|
||
|
for (i = 0; i < 8; i++) {
|
||
|
C[i] = crc & 1;
|
||
|
crc = crc >> 1;
|
||
|
}
|
||
|
|
||
|
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
|
||
|
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
|
||
|
C[6] ^ C[7];
|
||
|
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
|
||
|
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
|
||
|
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
|
||
|
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
|
||
|
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
|
||
|
C[0] ^ C[1] ^ C[4] ^ C[5];
|
||
|
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
|
||
|
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
|
||
|
C[1] ^ C[2] ^ C[5] ^ C[6];
|
||
|
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
|
||
|
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
|
||
|
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
|
||
|
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
|
||
|
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
|
||
|
C[3] ^ C[4] ^ C[7];
|
||
|
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
|
||
|
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
|
||
|
C[5];
|
||
|
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
|
||
|
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
|
||
|
C[6];
|
||
|
|
||
|
crc_res = 0;
|
||
|
for (i = 0; i < 8; i++)
|
||
|
crc_res |= (NewCRC[i] << i);
|
||
|
|
||
|
return crc_res;
|
||
|
}
|
||
|
|
||
|
#endif /* BNX2X_INIT_OPS_H */
|