linux_dsm_epyc7002/drivers/gpu/drm/i915/i915_debugfs.c

2224 lines
59 KiB
C
Raw Normal View History

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/seq_file.h>
#include <linux/debugfs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/export.h>
#include <drm/drmP.h>
#include "intel_drv.h"
#include "intel_ringbuffer.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define DRM_I915_RING_DEBUG 1
#if defined(CONFIG_DEBUG_FS)
enum {
ACTIVE_LIST,
INACTIVE_LIST,
PINNED_LIST,
};
static const char *yesno(int v)
{
return v ? "yes" : "no";
}
static int i915_capabilities(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
const struct intel_device_info *info = INTEL_INFO(dev);
seq_printf(m, "gen: %d\n", info->gen);
seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
#define DEV_INFO_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
#define DEV_INFO_SEP ;
DEV_INFO_FLAGS;
#undef DEV_INFO_FLAG
#undef DEV_INFO_SEP
return 0;
}
static const char *get_pin_flag(struct drm_i915_gem_object *obj)
{
if (obj->user_pin_count > 0)
return "P";
else if (obj->pin_count > 0)
return "p";
else
return " ";
}
static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (obj->tiling_mode) {
default:
case I915_TILING_NONE: return " ";
case I915_TILING_X: return "X";
case I915_TILING_Y: return "Y";
}
}
static const char *cache_level_str(int type)
{
switch (type) {
case I915_CACHE_NONE: return " uncached";
case I915_CACHE_LLC: return " snooped (LLC)";
case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
default: return "";
}
}
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
seq_printf(m, "%p: %s%s %8zdKiB %02x %02x %d %d %d%s%s%s",
&obj->base,
get_pin_flag(obj),
get_tiling_flag(obj),
obj->base.size / 1024,
obj->base.read_domains,
obj->base.write_domain,
obj->last_read_seqno,
obj->last_write_seqno,
obj->last_fenced_seqno,
cache_level_str(obj->cache_level),
obj->dirty ? " dirty" : "",
obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
seq_printf(m, " (name: %d)", obj->base.name);
if (obj->pin_count)
seq_printf(m, " (pinned x %d)", obj->pin_count);
if (obj->fence_reg != I915_FENCE_REG_NONE)
seq_printf(m, " (fence: %d)", obj->fence_reg);
if (obj->gtt_space != NULL)
seq_printf(m, " (gtt offset: %08x, size: %08x)",
obj->gtt_offset, (unsigned int)obj->gtt_space->size);
if (obj->stolen)
seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
if (obj->pin_mappable || obj->fault_mappable) {
char s[3], *t = s;
if (obj->pin_mappable)
*t++ = 'p';
if (obj->fault_mappable)
*t++ = 'f';
*t = '\0';
seq_printf(m, " (%s mappable)", s);
}
if (obj->ring != NULL)
seq_printf(m, " (%s)", obj->ring->name);
}
static int i915_gem_object_list_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct list_head *head;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
switch (list) {
case ACTIVE_LIST:
seq_printf(m, "Active:\n");
head = &dev_priv->mm.active_list;
break;
case INACTIVE_LIST:
seq_printf(m, "Inactive:\n");
head = &dev_priv->mm.inactive_list;
break;
default:
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, head, mm_list) {
seq_printf(m, " ");
describe_obj(m, obj);
seq_printf(m, "\n");
total_obj_size += obj->base.size;
total_gtt_size += obj->gtt_space->size;
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
#define count_objects(list, member) do { \
list_for_each_entry(obj, list, member) { \
size += obj->gtt_space->size; \
++count; \
if (obj->map_and_fenceable) { \
mappable_size += obj->gtt_space->size; \
++mappable_count; \
} \
} \
} while (0)
static int i915_gem_object_info(struct seq_file *m, void* data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 count, mappable_count, purgeable_count;
size_t size, mappable_size, purgeable_size;
struct drm_i915_gem_object *obj;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "%u objects, %zu bytes\n",
dev_priv->mm.object_count,
dev_priv->mm.object_memory);
size = count = mappable_size = mappable_count = 0;
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 16:40:46 +07:00
count_objects(&dev_priv->mm.bound_list, gtt_list);
seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.active_list, mm_list);
seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.inactive_list, mm_list);
seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = purgeable_size = purgeable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) {
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 16:40:46 +07:00
size += obj->base.size, ++count;
if (obj->madv == I915_MADV_DONTNEED)
purgeable_size += obj->base.size, ++purgeable_count;
}
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 16:40:46 +07:00
seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
size = count = mappable_size = mappable_count = 0;
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 16:40:46 +07:00
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
if (obj->fault_mappable) {
size += obj->gtt_space->size;
++count;
}
if (obj->pin_mappable) {
mappable_size += obj->gtt_space->size;
++mappable_count;
}
if (obj->madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
}
seq_printf(m, "%u purgeable objects, %zu bytes\n",
purgeable_count, purgeable_size);
seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
mappable_count, mappable_size);
seq_printf(m, "%u fault mappable objects, %zu bytes\n",
count, size);
seq_printf(m, "%zu [%zu] gtt total\n",
dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_gtt_info(struct seq_file *m, void* data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
total_obj_size = total_gtt_size = count = 0;
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 16:40:46 +07:00
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
if (list == PINNED_LIST && obj->pin_count == 0)
continue;
seq_printf(m, " ");
describe_obj(m, obj);
seq_printf(m, "\n");
total_obj_size += obj->base.size;
total_gtt_size += obj->gtt_space->size;
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
static int i915_gem_pageflip_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
unsigned long flags;
struct intel_crtc *crtc;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
const char pipe = pipe_name(crtc->pipe);
const char plane = plane_name(crtc->plane);
struct intel_unpin_work *work;
spin_lock_irqsave(&dev->event_lock, flags);
work = crtc->unpin_work;
if (work == NULL) {
seq_printf(m, "No flip due on pipe %c (plane %c)\n",
pipe, plane);
} else {
if (!work->pending) {
seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
pipe, plane);
} else {
seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
pipe, plane);
}
if (work->enable_stall_check)
seq_printf(m, "Stall check enabled, ");
else
seq_printf(m, "Stall check waiting for page flip ioctl, ");
seq_printf(m, "%d prepares\n", work->pending);
if (work->old_fb_obj) {
struct drm_i915_gem_object *obj = work->old_fb_obj;
if (obj)
seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
}
if (work->pending_flip_obj) {
struct drm_i915_gem_object *obj = work->pending_flip_obj;
if (obj)
seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
}
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
return 0;
}
static int i915_gem_request_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct drm_i915_gem_request *gem_request;
int ret, count, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
count = 0;
for_each_ring(ring, dev_priv, i) {
if (list_empty(&ring->request_list))
continue;
seq_printf(m, "%s requests:\n", ring->name);
list_for_each_entry(gem_request,
&ring->request_list,
list) {
seq_printf(m, " %d @ %d\n",
gem_request->seqno,
(int) (jiffies - gem_request->emitted_jiffies));
}
count++;
}
mutex_unlock(&dev->struct_mutex);
if (count == 0)
seq_printf(m, "No requests\n");
return 0;
}
static void i915_ring_seqno_info(struct seq_file *m,
struct intel_ring_buffer *ring)
{
if (ring->get_seqno) {
seq_printf(m, "Current sequence (%s): %u\n",
ring->name, ring->get_seqno(ring, false));
}
}
static int i915_gem_seqno_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for_each_ring(ring, dev_priv, i)
i915_ring_seqno_info(m, ring);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_interrupt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i, pipe;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (IS_VALLEYVIEW(dev)) {
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(pipe)
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
seq_printf(m, "Master IER:\t%08x\n",
I915_READ(VLV_MASTER_IER));
seq_printf(m, "Render IER:\t%08x\n",
I915_READ(GTIER));
seq_printf(m, "Render IIR:\t%08x\n",
I915_READ(GTIIR));
seq_printf(m, "Render IMR:\t%08x\n",
I915_READ(GTIMR));
seq_printf(m, "PM IER:\t\t%08x\n",
I915_READ(GEN6_PMIER));
seq_printf(m, "PM IIR:\t\t%08x\n",
I915_READ(GEN6_PMIIR));
seq_printf(m, "PM IMR:\t\t%08x\n",
I915_READ(GEN6_PMIMR));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
} else if (!HAS_PCH_SPLIT(dev)) {
seq_printf(m, "Interrupt enable: %08x\n",
I915_READ(IER));
seq_printf(m, "Interrupt identity: %08x\n",
I915_READ(IIR));
seq_printf(m, "Interrupt mask: %08x\n",
I915_READ(IMR));
for_each_pipe(pipe)
seq_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
seq_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
seq_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
seq_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
seq_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
seq_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
seq_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
seq_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
seq_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
seq_printf(m, "Interrupts received: %d\n",
atomic_read(&dev_priv->irq_received));
for_each_ring(ring, dev_priv, i) {
if (IS_GEN6(dev) || IS_GEN7(dev)) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
ring->name, I915_READ_IMR(ring));
}
i915_ring_seqno_info(m, ring);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
drm/i915: Track unbound pages When dealing with a working set larger than the GATT, or even the mappable aperture when touching through the GTT, we end up with evicting objects only to rebind them at a new offset again later. Moving an object into and out of the GTT requires clflushing the pages, thus causing a double-clflush penalty for rebinding. To avoid having to clflush on rebinding, we can track the pages as they are evicted from the GTT and only relinquish those pages on memory pressure. As usual, if it were not for the handling of out-of-memory condition and having to manually shrink our own bo caches, it would be a net reduction of code. Alas. Note: The patch also contains a few changes to the last-hope evict_everything logic in i916_gem_execbuffer.c - we no longer try to only evict the purgeable stuff in a first try (since that's superflous and only helps in OOM corner-cases, not fragmented-gtt trashing situations). Also, the extraction of the get_pages retry loop from bind_to_gtt (and other callsites) to get_pages should imo have been a separate patch. v2: Ditch the newly added put_pages (for unbound objects only) in i915_gem_reset. A quick irc discussion hasn't revealed any important reason for this, so if we need this, I'd like to have a git blame'able explanation for it. v3: Undo the s/drm_malloc_ab/kmalloc/ in get_pages that Chris noticed. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> [danvet: Split out code movements and rant a bit in the commit message with a few Notes. Done v2] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-08-20 16:40:46 +07:00
seq_printf(m, "Fence %d, pin count = %d, object = ",
i, dev_priv->fence_regs[i].pin_count);
if (obj == NULL)
seq_printf(m, "unused");
else
describe_obj(m, obj);
seq_printf(m, "\n");
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_hws_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
const u32 *hws;
int i;
ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
hws = ring->status_page.page_addr;
if (hws == NULL)
return 0;
for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4,
hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
}
return 0;
}
static const char *ring_str(int ring)
{
switch (ring) {
case RCS: return "render";
case VCS: return "bsd";
case BCS: return "blt";
default: return "";
}
}
static const char *pin_flag(int pinned)
{
if (pinned > 0)
return " P";
else if (pinned < 0)
return " p";
else
return "";
}
static const char *tiling_flag(int tiling)
{
switch (tiling) {
default:
case I915_TILING_NONE: return "";
case I915_TILING_X: return " X";
case I915_TILING_Y: return " Y";
}
}
static const char *dirty_flag(int dirty)
{
return dirty ? " dirty" : "";
}
static const char *purgeable_flag(int purgeable)
{
return purgeable ? " purgeable" : "";
}
static void print_error_buffers(struct seq_file *m,
const char *name,
struct drm_i915_error_buffer *err,
int count)
{
seq_printf(m, "%s [%d]:\n", name, count);
while (count--) {
seq_printf(m, " %08x %8u %02x %02x %x %x%s%s%s%s%s%s%s",
err->gtt_offset,
err->size,
err->read_domains,
err->write_domain,
err->rseqno, err->wseqno,
pin_flag(err->pinned),
tiling_flag(err->tiling),
dirty_flag(err->dirty),
purgeable_flag(err->purgeable),
err->ring != -1 ? " " : "",
ring_str(err->ring),
cache_level_str(err->cache_level));
if (err->name)
seq_printf(m, " (name: %d)", err->name);
if (err->fence_reg != I915_FENCE_REG_NONE)
seq_printf(m, " (fence: %d)", err->fence_reg);
seq_printf(m, "\n");
err++;
}
}
static void i915_ring_error_state(struct seq_file *m,
struct drm_device *dev,
struct drm_i915_error_state *error,
unsigned ring)
{
BUG_ON(ring >= I915_NUM_RINGS); /* shut up confused gcc */
seq_printf(m, "%s command stream:\n", ring_str(ring));
seq_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
seq_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
seq_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
if (ring == RCS && INTEL_INFO(dev)->gen >= 4)
seq_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr);
if (INTEL_INFO(dev)->gen >= 4)
seq_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
seq_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
seq_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
if (INTEL_INFO(dev)->gen >= 6) {
seq_printf(m, " RC PSMI: 0x%08x\n", error->rc_psmi[ring]);
seq_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
seq_printf(m, " SYNC_0: 0x%08x [last synced 0x%08x]\n",
error->semaphore_mboxes[ring][0],
error->semaphore_seqno[ring][0]);
seq_printf(m, " SYNC_1: 0x%08x [last synced 0x%08x]\n",
error->semaphore_mboxes[ring][1],
error->semaphore_seqno[ring][1]);
}
seq_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
seq_printf(m, " waiting: %s\n", yesno(error->waiting[ring]));
seq_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
seq_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
}
struct i915_error_state_file_priv {
struct drm_device *dev;
struct drm_i915_error_state *error;
};
static int i915_error_state(struct seq_file *m, void *unused)
{
struct i915_error_state_file_priv *error_priv = m->private;
struct drm_device *dev = error_priv->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_error_state *error = error_priv->error;
struct intel_ring_buffer *ring;
int i, j, page, offset, elt;
if (!error) {
seq_printf(m, "no error state collected\n");
return 0;
}
seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
error->time.tv_usec);
seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
seq_printf(m, "EIR: 0x%08x\n", error->eir);
seq_printf(m, "IER: 0x%08x\n", error->ier);
seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
seq_printf(m, "CCID: 0x%08x\n", error->ccid);
for (i = 0; i < dev_priv->num_fence_regs; i++)
seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]);
for (i = 0; i < ARRAY_SIZE(error->extra_instdone); i++)
seq_printf(m, " INSTDONE_%d: 0x%08x\n", i, error->extra_instdone[i]);
if (INTEL_INFO(dev)->gen >= 6) {
seq_printf(m, "ERROR: 0x%08x\n", error->error);
seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
}
if (INTEL_INFO(dev)->gen == 7)
seq_printf(m, "ERR_INT: 0x%08x\n", error->err_int);
for_each_ring(ring, dev_priv, i)
i915_ring_error_state(m, dev, error, i);
if (error->active_bo)
print_error_buffers(m, "Active",
error->active_bo,
error->active_bo_count);
if (error->pinned_bo)
print_error_buffers(m, "Pinned",
error->pinned_bo,
error->pinned_bo_count);
for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
struct drm_i915_error_object *obj;
if ((obj = error->ring[i].batchbuffer)) {
seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
dev_priv->ring[i].name,
obj->gtt_offset);
offset = 0;
for (page = 0; page < obj->page_count; page++) {
for (elt = 0; elt < PAGE_SIZE/4; elt++) {
seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]);
offset += 4;
}
}
}
if (error->ring[i].num_requests) {
seq_printf(m, "%s --- %d requests\n",
dev_priv->ring[i].name,
error->ring[i].num_requests);
for (j = 0; j < error->ring[i].num_requests; j++) {
seq_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
error->ring[i].requests[j].seqno,
error->ring[i].requests[j].jiffies,
error->ring[i].requests[j].tail);
}
}
if ((obj = error->ring[i].ringbuffer)) {
seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
dev_priv->ring[i].name,
obj->gtt_offset);
offset = 0;
for (page = 0; page < obj->page_count; page++) {
for (elt = 0; elt < PAGE_SIZE/4; elt++) {
seq_printf(m, "%08x : %08x\n",
offset,
obj->pages[page][elt]);
offset += 4;
}
}
}
}
if (error->overlay)
intel_overlay_print_error_state(m, error->overlay);
if (error->display)
intel_display_print_error_state(m, dev, error->display);
return 0;
}
static ssize_t
i915_error_state_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct seq_file *m = filp->private_data;
struct i915_error_state_file_priv *error_priv = m->private;
struct drm_device *dev = error_priv->dev;
int ret;
DRM_DEBUG_DRIVER("Resetting error state\n");
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
i915_destroy_error_state(dev);
mutex_unlock(&dev->struct_mutex);
return cnt;
}
static int i915_error_state_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
drm_i915_private_t *dev_priv = dev->dev_private;
struct i915_error_state_file_priv *error_priv;
unsigned long flags;
error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
if (!error_priv)
return -ENOMEM;
error_priv->dev = dev;
spin_lock_irqsave(&dev_priv->error_lock, flags);
error_priv->error = dev_priv->first_error;
if (error_priv->error)
kref_get(&error_priv->error->ref);
spin_unlock_irqrestore(&dev_priv->error_lock, flags);
return single_open(file, i915_error_state, error_priv);
}
static int i915_error_state_release(struct inode *inode, struct file *file)
{
struct seq_file *m = file->private_data;
struct i915_error_state_file_priv *error_priv = m->private;
if (error_priv->error)
kref_put(&error_priv->error->ref, i915_error_state_free);
kfree(error_priv);
return single_release(inode, file);
}
static const struct file_operations i915_error_state_fops = {
.owner = THIS_MODULE,
.open = i915_error_state_open,
.read = seq_read,
.write = i915_error_state_write,
.llseek = default_llseek,
.release = i915_error_state_release,
};
static ssize_t
i915_next_seqno_read(struct file *filp,
char __user *ubuf,
size_t max,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
drm_i915_private_t *dev_priv = dev->dev_private;
char buf[80];
int len;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
len = snprintf(buf, sizeof(buf),
"next_seqno : 0x%x\n",
dev_priv->next_seqno);
mutex_unlock(&dev->struct_mutex);
if (len > sizeof(buf))
len = sizeof(buf);
return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}
static ssize_t
i915_next_seqno_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
drm_i915_private_t *dev_priv = dev->dev_private;
char buf[20];
u32 val = 1;
int ret;
if (cnt > 0) {
if (cnt > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
ret = kstrtouint(buf, 0, &val);
if (ret < 0)
return ret;
}
if (val == 0)
return -EINVAL;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (i915_seqno_passed(val, dev_priv->next_seqno)) {
dev_priv->next_seqno = val;
DRM_DEBUG_DRIVER("Advancing seqno to %u\n", val);
} else {
ret = -EINVAL;
}
mutex_unlock(&dev->struct_mutex);
return ret ?: cnt;
}
static const struct file_operations i915_next_seqno_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = i915_next_seqno_read,
.write = i915_next_seqno_write,
.llseek = default_llseek,
};
static int i915_rstdby_delays(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u16 crstanddelay;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
crstanddelay = I915_READ16(CRSTANDVID);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
return 0;
}
static int i915_cur_delayinfo(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (IS_GEN5(dev)) {
u16 rgvswctl = I915_READ16(MEMSWCTL);
u16 rgvstat = I915_READ16(MEMSTAT_ILK);
seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
seq_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
u32 rpstat;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
int max_freq;
/* RPSTAT1 is in the GT power well */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
gen6_gt_force_wake_get(dev_priv);
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
rpcurup = I915_READ(GEN6_RP_CUR_UP);
rpprevup = I915_READ(GEN6_RP_PREV_UP);
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
gen6_gt_force_wake_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
seq_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & 0xff00) >> 8);
seq_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
seq_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
GEN6_CAGF_SHIFT) * GT_FREQUENCY_MULTIPLIER);
seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
GEN6_CURICONT_MASK);
seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
GEN6_CURIAVG_MASK);
seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
GEN6_CURBSYTAVG_MASK);
max_freq = (rp_state_cap & 0xff0000) >> 16;
seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
max_freq = (rp_state_cap & 0xff00) >> 8;
seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
max_freq = rp_state_cap & 0xff;
seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
} else {
seq_printf(m, "no P-state info available\n");
}
return 0;
}
static int i915_delayfreq_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 delayfreq;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for (i = 0; i < 16; i++) {
delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
(delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static inline int MAP_TO_MV(int map)
{
return 1250 - (map * 25);
}
static int i915_inttoext_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 inttoext;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for (i = 1; i <= 32; i++) {
inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int ironlake_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 rgvmodectl, rstdbyctl;
u16 crstandvid;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
rgvmodectl = I915_READ(MEMMODECTL);
rstdbyctl = I915_READ(RSTDBYCTL);
crstandvid = I915_READ16(CRSTANDVID);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
"yes" : "no");
seq_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
seq_printf(m, "HW control enabled: %s\n",
rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
seq_printf(m, "SW control enabled: %s\n",
rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
seq_printf(m, "Gated voltage change: %s\n",
rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
seq_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
seq_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
seq_printf(m, "Render standby enabled: %s\n",
(rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
seq_printf(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
seq_printf(m, "on\n");
break;
case RSX_STATUS_RC1:
seq_printf(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
seq_printf(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
seq_printf(m, "RS1\n");
break;
case RSX_STATUS_RS2:
seq_printf(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
seq_printf(m, "RC3 (RC6+)\n");
break;
default:
seq_printf(m, "unknown\n");
break;
}
return 0;
}
static int gen6_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
unsigned forcewake_count;
int count=0, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
spin_lock_irq(&dev_priv->gt_lock);
forcewake_count = dev_priv->forcewake_count;
spin_unlock_irq(&dev_priv->gt_lock);
if (forcewake_count) {
seq_printf(m, "RC information inaccurate because somebody "
"holds a forcewake reference \n");
} else {
/* NB: we cannot use forcewake, else we read the wrong values */
while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
udelay(10);
seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
}
gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
mutex_unlock(&dev->struct_mutex);
mutex_lock(&dev_priv->rps.hw_lock);
sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
mutex_unlock(&dev_priv->rps.hw_lock);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "RC1e Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
seq_printf(m, "Deep RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
seq_printf(m, "Deepest RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
seq_printf(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
seq_printf(m, "Core Power Down\n");
else
seq_printf(m, "on\n");
break;
case GEN6_RC3:
seq_printf(m, "RC3\n");
break;
case GEN6_RC6:
seq_printf(m, "RC6\n");
break;
case GEN6_RC7:
seq_printf(m, "RC7\n");
break;
default:
seq_printf(m, "Unknown\n");
break;
}
seq_printf(m, "Core Power Down: %s\n",
yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
/* Not exactly sure what this is */
seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6_LOCKED));
seq_printf(m, "RC6 residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6));
seq_printf(m, "RC6+ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6p));
seq_printf(m, "RC6++ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6pp));
seq_printf(m, "RC6 voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
seq_printf(m, "RC6+ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
seq_printf(m, "RC6++ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
return 0;
}
static int i915_drpc_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
if (IS_GEN6(dev) || IS_GEN7(dev))
return gen6_drpc_info(m);
else
return ironlake_drpc_info(m);
}
static int i915_fbc_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
if (!I915_HAS_FBC(dev)) {
seq_printf(m, "FBC unsupported on this chipset\n");
return 0;
}
if (intel_fbc_enabled(dev)) {
seq_printf(m, "FBC enabled\n");
} else {
seq_printf(m, "FBC disabled: ");
switch (dev_priv->no_fbc_reason) {
case FBC_NO_OUTPUT:
seq_printf(m, "no outputs");
break;
case FBC_STOLEN_TOO_SMALL:
seq_printf(m, "not enough stolen memory");
break;
case FBC_UNSUPPORTED_MODE:
seq_printf(m, "mode not supported");
break;
case FBC_MODE_TOO_LARGE:
seq_printf(m, "mode too large");
break;
case FBC_BAD_PLANE:
seq_printf(m, "FBC unsupported on plane");
break;
case FBC_NOT_TILED:
seq_printf(m, "scanout buffer not tiled");
break;
case FBC_MULTIPLE_PIPES:
seq_printf(m, "multiple pipes are enabled");
break;
case FBC_MODULE_PARAM:
seq_printf(m, "disabled per module param (default off)");
break;
default:
seq_printf(m, "unknown reason");
}
seq_printf(m, "\n");
}
return 0;
}
static int i915_sr_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
bool sr_enabled = false;
if (HAS_PCH_SPLIT(dev))
sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
else if (IS_I915GM(dev))
sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
else if (IS_PINEVIEW(dev))
sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
seq_printf(m, "self-refresh: %s\n",
sr_enabled ? "enabled" : "disabled");
return 0;
}
static int i915_emon_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
unsigned long temp, chipset, gfx;
int ret;
if (!IS_GEN5(dev))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
temp = i915_mch_val(dev_priv);
chipset = i915_chipset_val(dev_priv);
gfx = i915_gfx_val(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GMCH temp: %ld\n", temp);
seq_printf(m, "Chipset power: %ld\n", chipset);
seq_printf(m, "GFX power: %ld\n", gfx);
seq_printf(m, "Total power: %ld\n", chipset + gfx);
return 0;
}
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
int gpu_freq, ia_freq;
if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
seq_printf(m, "unsupported on this chipset\n");
return 0;
}
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
for (gpu_freq = dev_priv->rps.min_delay;
gpu_freq <= dev_priv->rps.max_delay;
gpu_freq++) {
ia_freq = gpu_freq;
sandybridge_pcode_read(dev_priv,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq);
seq_printf(m, "%d\t\t%d\n", gpu_freq * GT_FREQUENCY_MULTIPLIER, ia_freq * 100);
}
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
static int i915_gfxec(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_opregion(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_opregion *opregion = &dev_priv->opregion;
void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
int ret;
if (data == NULL)
return -ENOMEM;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
if (opregion->header) {
memcpy_fromio(data, opregion->header, OPREGION_SIZE);
seq_write(m, data, OPREGION_SIZE);
}
mutex_unlock(&dev->struct_mutex);
out:
kfree(data);
return 0;
}
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_fbdev *ifbdev;
struct intel_framebuffer *fb;
int ret;
ret = mutex_lock_interruptible(&dev->mode_config.mutex);
if (ret)
return ret;
ifbdev = dev_priv->fbdev;
fb = to_intel_framebuffer(ifbdev->helper.fb);
seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel);
describe_obj(m, fb->obj);
seq_printf(m, "\n");
list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
if (&fb->base == ifbdev->helper.fb)
continue;
seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel);
describe_obj(m, fb->obj);
seq_printf(m, "\n");
}
mutex_unlock(&dev->mode_config.mutex);
return 0;
}
static int i915_context_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->mode_config.mutex);
if (ret)
return ret;
if (dev_priv->ips.pwrctx) {
seq_printf(m, "power context ");
describe_obj(m, dev_priv->ips.pwrctx);
seq_printf(m, "\n");
}
if (dev_priv->ips.renderctx) {
seq_printf(m, "render context ");
describe_obj(m, dev_priv->ips.renderctx);
seq_printf(m, "\n");
}
mutex_unlock(&dev->mode_config.mutex);
return 0;
}
static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned forcewake_count;
spin_lock_irq(&dev_priv->gt_lock);
forcewake_count = dev_priv->forcewake_count;
spin_unlock_irq(&dev_priv->gt_lock);
seq_printf(m, "forcewake count = %u\n", forcewake_count);
return 0;
}
static const char *swizzle_string(unsigned swizzle)
{
switch(swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unkown";
}
return "bug";
}
static int i915_swizzle_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_x));
seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_y));
if (IS_GEN3(dev) || IS_GEN4(dev)) {
seq_printf(m, "DDC = 0x%08x\n",
I915_READ(DCC));
seq_printf(m, "C0DRB3 = 0x%04x\n",
I915_READ16(C0DRB3));
seq_printf(m, "C1DRB3 = 0x%04x\n",
I915_READ16(C1DRB3));
} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
I915_READ(MAD_DIMM_C0));
seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
I915_READ(MAD_DIMM_C1));
seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
I915_READ(MAD_DIMM_C2));
seq_printf(m, "TILECTL = 0x%08x\n",
I915_READ(TILECTL));
seq_printf(m, "ARB_MODE = 0x%08x\n",
I915_READ(ARB_MODE));
seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
I915_READ(DISP_ARB_CTL));
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_ppgtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (INTEL_INFO(dev)->gen == 6)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for_each_ring(ring, dev_priv, i) {
seq_printf(m, "%s\n", ring->name);
if (INTEL_INFO(dev)->gen == 7)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
seq_printf(m, "aliasing PPGTT:\n");
seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
}
seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_dpio_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (!IS_VALLEYVIEW(dev)) {
seq_printf(m, "unsupported\n");
return 0;
}
ret = mutex_lock_interruptible(&dev_priv->dpio_lock);
if (ret)
return ret;
seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_DIV_A));
seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_DIV_B));
seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_REFSFR_A));
seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_REFSFR_B));
seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_CORE_CLK_A));
seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_CORE_CLK_B));
seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_A));
seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n",
intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_B));
seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
intel_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE));
mutex_unlock(&dev_priv->dpio_lock);
return 0;
}
static ssize_t
i915_wedged_read(struct file *filp,
char __user *ubuf,
size_t max,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
drm_i915_private_t *dev_priv = dev->dev_private;
char buf[80];
int len;
len = snprintf(buf, sizeof(buf),
"wedged : %d\n",
atomic_read(&dev_priv->mm.wedged));
if (len > sizeof(buf))
len = sizeof(buf);
return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}
static ssize_t
i915_wedged_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
char buf[20];
int val = 1;
if (cnt > 0) {
if (cnt > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
val = simple_strtoul(buf, NULL, 0);
}
DRM_INFO("Manually setting wedged to %d\n", val);
i915_handle_error(dev, val);
return cnt;
}
static const struct file_operations i915_wedged_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = i915_wedged_read,
.write = i915_wedged_write,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 23:52:59 +07:00
.llseek = default_llseek,
};
2012-05-03 19:48:16 +07:00
static ssize_t
i915_ring_stop_read(struct file *filp,
char __user *ubuf,
size_t max,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
drm_i915_private_t *dev_priv = dev->dev_private;
char buf[20];
int len;
len = snprintf(buf, sizeof(buf),
"0x%08x\n", dev_priv->stop_rings);
if (len > sizeof(buf))
len = sizeof(buf);
return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}
static ssize_t
i915_ring_stop_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
struct drm_i915_private *dev_priv = dev->dev_private;
char buf[20];
int val = 0, ret;
2012-05-03 19:48:16 +07:00
if (cnt > 0) {
if (cnt > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
val = simple_strtoul(buf, NULL, 0);
}
DRM_DEBUG_DRIVER("Stopping rings 0x%08x\n", val);
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
2012-05-03 19:48:16 +07:00
dev_priv->stop_rings = val;
mutex_unlock(&dev->struct_mutex);
return cnt;
}
static const struct file_operations i915_ring_stop_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = i915_ring_stop_read,
.write = i915_ring_stop_write,
.llseek = default_llseek,
};
static ssize_t
i915_max_freq_read(struct file *filp,
char __user *ubuf,
size_t max,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
drm_i915_private_t *dev_priv = dev->dev_private;
char buf[80];
int len, ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
len = snprintf(buf, sizeof(buf),
"max freq: %d\n", dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER);
mutex_unlock(&dev_priv->rps.hw_lock);
if (len > sizeof(buf))
len = sizeof(buf);
return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}
static ssize_t
i915_max_freq_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
struct drm_i915_private *dev_priv = dev->dev_private;
char buf[20];
int val = 1, ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
if (cnt > 0) {
if (cnt > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
val = simple_strtoul(buf, NULL, 0);
}
DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go above the set value.
*/
dev_priv->rps.max_delay = val / GT_FREQUENCY_MULTIPLIER;
gen6_set_rps(dev, val / GT_FREQUENCY_MULTIPLIER);
mutex_unlock(&dev_priv->rps.hw_lock);
return cnt;
}
static const struct file_operations i915_max_freq_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = i915_max_freq_read,
.write = i915_max_freq_write,
.llseek = default_llseek,
};
static ssize_t
i915_min_freq_read(struct file *filp, char __user *ubuf, size_t max,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
drm_i915_private_t *dev_priv = dev->dev_private;
char buf[80];
int len, ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
len = snprintf(buf, sizeof(buf),
"min freq: %d\n", dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER);
mutex_unlock(&dev_priv->rps.hw_lock);
if (len > sizeof(buf))
len = sizeof(buf);
return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}
static ssize_t
i915_min_freq_write(struct file *filp, const char __user *ubuf, size_t cnt,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
struct drm_i915_private *dev_priv = dev->dev_private;
char buf[20];
int val = 1, ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
if (cnt > 0) {
if (cnt > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
val = simple_strtoul(buf, NULL, 0);
}
DRM_DEBUG_DRIVER("Manually setting min freq to %d\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go below the set value.
*/
dev_priv->rps.min_delay = val / GT_FREQUENCY_MULTIPLIER;
gen6_set_rps(dev, val / GT_FREQUENCY_MULTIPLIER);
mutex_unlock(&dev_priv->rps.hw_lock);
return cnt;
}
static const struct file_operations i915_min_freq_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = i915_min_freq_read,
.write = i915_min_freq_write,
.llseek = default_llseek,
};
static ssize_t
i915_cache_sharing_read(struct file *filp,
char __user *ubuf,
size_t max,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
drm_i915_private_t *dev_priv = dev->dev_private;
char buf[80];
u32 snpcr;
int len, ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
mutex_unlock(&dev_priv->dev->struct_mutex);
len = snprintf(buf, sizeof(buf),
"%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
GEN6_MBC_SNPCR_SHIFT);
if (len > sizeof(buf))
len = sizeof(buf);
return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}
static ssize_t
i915_cache_sharing_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct drm_device *dev = filp->private_data;
struct drm_i915_private *dev_priv = dev->dev_private;
char buf[20];
u32 snpcr;
int val = 1;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
if (cnt > 0) {
if (cnt > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
val = simple_strtoul(buf, NULL, 0);
}
if (val < 0 || val > 3)
return -EINVAL;
DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
return cnt;
}
static const struct file_operations i915_cache_sharing_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = i915_cache_sharing_read,
.write = i915_cache_sharing_write,
.llseek = default_llseek,
};
/* As the drm_debugfs_init() routines are called before dev->dev_private is
* allocated we need to hook into the minor for release. */
static int
drm_add_fake_info_node(struct drm_minor *minor,
struct dentry *ent,
const void *key)
{
struct drm_info_node *node;
node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
if (node == NULL) {
debugfs_remove(ent);
return -ENOMEM;
}
node->minor = minor;
node->dent = ent;
node->info_ent = (void *) key;
mutex_lock(&minor->debugfs_lock);
list_add(&node->list, &minor->debugfs_list);
mutex_unlock(&minor->debugfs_lock);
return 0;
}
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 6)
return 0;
gen6_gt_force_wake_get(dev_priv);
return 0;
}
static int i915_forcewake_release(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 6)
return 0;
gen6_gt_force_wake_put(dev_priv);
return 0;
}
static const struct file_operations i915_forcewake_fops = {
.owner = THIS_MODULE,
.open = i915_forcewake_open,
.release = i915_forcewake_release,
};
static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file("i915_forcewake_user",
S_IRUSR,
root, dev,
&i915_forcewake_fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
}
static int i915_debugfs_create(struct dentry *root,
struct drm_minor *minor,
const char *name,
const struct file_operations *fops)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file(name,
S_IRUGO | S_IWUSR,
root, dev,
fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
return drm_add_fake_info_node(minor, ent, fops);
}
static struct drm_info_list i915_debugfs_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_gtt", i915_gem_gtt_info, 0},
{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
{"i915_gem_request", i915_gem_request_info, 0},
{"i915_gem_seqno", i915_gem_seqno_info, 0},
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
{"i915_rstdby_delays", i915_rstdby_delays, 0},
{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
{"i915_delayfreq_table", i915_delayfreq_table, 0},
{"i915_inttoext_table", i915_inttoext_table, 0},
{"i915_drpc_info", i915_drpc_info, 0},
{"i915_emon_status", i915_emon_status, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_gfxec", i915_gfxec, 0},
{"i915_fbc_status", i915_fbc_status, 0},
{"i915_sr_status", i915_sr_status, 0},
{"i915_opregion", i915_opregion, 0},
{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_ppgtt_info", i915_ppgtt_info, 0},
{"i915_dpio", i915_dpio_info, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
int i915_debugfs_init(struct drm_minor *minor)
{
int ret;
ret = i915_debugfs_create(minor->debugfs_root, minor,
"i915_wedged",
&i915_wedged_fops);
if (ret)
return ret;
ret = i915_forcewake_create(minor->debugfs_root, minor);
if (ret)
return ret;
ret = i915_debugfs_create(minor->debugfs_root, minor,
"i915_max_freq",
&i915_max_freq_fops);
if (ret)
return ret;
ret = i915_debugfs_create(minor->debugfs_root, minor,
"i915_min_freq",
&i915_min_freq_fops);
if (ret)
return ret;
ret = i915_debugfs_create(minor->debugfs_root, minor,
"i915_cache_sharing",
&i915_cache_sharing_fops);
if (ret)
return ret;
2012-05-03 19:48:16 +07:00
ret = i915_debugfs_create(minor->debugfs_root, minor,
"i915_ring_stop",
&i915_ring_stop_fops);
if (ret)
return ret;
ret = i915_debugfs_create(minor->debugfs_root, minor,
"i915_error_state",
&i915_error_state_fops);
if (ret)
return ret;
ret = i915_debugfs_create(minor->debugfs_root, minor,
"i915_next_seqno",
&i915_next_seqno_fops);
if (ret)
return ret;
return drm_debugfs_create_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES,
minor->debugfs_root, minor);
}
void i915_debugfs_cleanup(struct drm_minor *minor)
{
drm_debugfs_remove_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
1, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
1, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
1, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_min_freq_fops,
1, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
1, minor);
2012-05-03 19:48:16 +07:00
drm_debugfs_remove_files((struct drm_info_list *) &i915_ring_stop_fops,
1, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_error_state_fops,
1, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_next_seqno_fops,
1, minor);
}
#endif /* CONFIG_DEBUG_FS */