linux_dsm_epyc7002/arch/arm64/crypto/sha512-armv8.pl

779 lines
21 KiB
Perl
Raw Normal View History

#! /usr/bin/env perl
# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
#
# Permission to use under GPLv2 terms is granted.
# ====================================================================
#
# SHA256/512 for ARMv8.
#
# Performance in cycles per processed byte and improvement coefficient
# over code generated with "default" compiler:
#
# SHA256-hw SHA256(*) SHA512
# Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
# Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
# Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
# Denver 2.01 10.5 (+26%) 6.70 (+8%)
# X-Gene 20.0 (+100%) 12.8 (+300%(***))
# Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
#
# (*) Software SHA256 results are of lesser relevance, presented
# mostly for informational purposes.
# (**) The result is a trade-off: it's possible to improve it by
# 10% (or by 1 cycle per round), but at the cost of 20% loss
# on Cortex-A53 (or by 4 cycles per round).
# (***) Super-impressive coefficients over gcc-generated code are
# indication of some compiler "pathology", most notably code
# generated with -mgeneral-regs-only is significanty faster
# and the gap is only 40-90%.
#
# October 2016.
#
# Originally it was reckoned that it makes no sense to implement NEON
# version of SHA256 for 64-bit processors. This is because performance
# improvement on most wide-spread Cortex-A5x processors was observed
# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
# observed that 32-bit NEON SHA256 performs significantly better than
# 64-bit scalar version on *some* of the more recent processors. As
# result 64-bit NEON version of SHA256 was added to provide best
# all-round performance. For example it executes ~30% faster on X-Gene
# and Mongoose. [For reference, NEON version of SHA512 is bound to
# deliver much less improvement, likely *negative* on Cortex-A5x.
# Which is why NEON support is limited to SHA256.]
$output=pop;
$flavour=pop;
if ($flavour && $flavour ne "void") {
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
} else {
open STDOUT,">$output";
}
if ($output =~ /512/) {
$BITS=512;
$SZ=8;
@Sigma0=(28,34,39);
@Sigma1=(14,18,41);
@sigma0=(1, 8, 7);
@sigma1=(19,61, 6);
$rounds=80;
$reg_t="x";
} else {
$BITS=256;
$SZ=4;
@Sigma0=( 2,13,22);
@Sigma1=( 6,11,25);
@sigma0=( 7,18, 3);
@sigma1=(17,19,10);
$rounds=64;
$reg_t="w";
}
$func="sha${BITS}_block_data_order";
($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
@X=map("$reg_t$_",(3..15,0..2));
@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
sub BODY_00_xx {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
my $j=($i+1)&15;
my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
$T0=@X[$i+3] if ($i<11);
$code.=<<___ if ($i<16);
#ifndef __AARCH64EB__
rev @X[$i],@X[$i] // $i
#endif
___
$code.=<<___ if ($i<13 && ($i&1));
ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
___
$code.=<<___ if ($i==13);
ldp @X[14],@X[15],[$inp]
___
$code.=<<___ if ($i>=14);
ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
___
$code.=<<___ if ($i>0 && $i<16);
add $a,$a,$t1 // h+=Sigma0(a)
___
$code.=<<___ if ($i>=11);
str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
___
# While ARMv8 specifies merged rotate-n-logical operation such as
# 'eor x,y,z,ror#n', it was found to negatively affect performance
# on Apple A7. The reason seems to be that it requires even 'y' to
# be available earlier. This means that such merged instruction is
# not necessarily best choice on critical path... On the other hand
# Cortex-A5x handles merged instructions much better than disjoint
# rotate and logical... See (**) footnote above.
$code.=<<___ if ($i<15);
ror $t0,$e,#$Sigma1[0]
add $h,$h,$t2 // h+=K[i]
eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
and $t1,$f,$e
bic $t2,$g,$e
add $h,$h,@X[$i&15] // h+=X[i]
orr $t1,$t1,$t2 // Ch(e,f,g)
eor $t2,$a,$b // a^b, b^c in next round
eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
ror $T0,$a,#$Sigma0[0]
add $h,$h,$t1 // h+=Ch(e,f,g)
eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
add $h,$h,$t0 // h+=Sigma1(e)
and $t3,$t3,$t2 // (b^c)&=(a^b)
add $d,$d,$h // d+=h
eor $t3,$t3,$b // Maj(a,b,c)
eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
add $h,$h,$t3 // h+=Maj(a,b,c)
ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
//add $h,$h,$t1 // h+=Sigma0(a)
___
$code.=<<___ if ($i>=15);
ror $t0,$e,#$Sigma1[0]
add $h,$h,$t2 // h+=K[i]
ror $T1,@X[($j+1)&15],#$sigma0[0]
and $t1,$f,$e
ror $T2,@X[($j+14)&15],#$sigma1[0]
bic $t2,$g,$e
ror $T0,$a,#$Sigma0[0]
add $h,$h,@X[$i&15] // h+=X[i]
eor $t0,$t0,$e,ror#$Sigma1[1]
eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
orr $t1,$t1,$t2 // Ch(e,f,g)
eor $t2,$a,$b // a^b, b^c in next round
eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
eor $T0,$T0,$a,ror#$Sigma0[1]
add $h,$h,$t1 // h+=Ch(e,f,g)
and $t3,$t3,$t2 // (b^c)&=(a^b)
eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
add $h,$h,$t0 // h+=Sigma1(e)
eor $t3,$t3,$b // Maj(a,b,c)
eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
add @X[$j],@X[$j],@X[($j+9)&15]
add $d,$d,$h // d+=h
add $h,$h,$t3 // h+=Maj(a,b,c)
ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
add @X[$j],@X[$j],$T1
add $h,$h,$t1 // h+=Sigma0(a)
add @X[$j],@X[$j],$T2
___
($t2,$t3)=($t3,$t2);
}
$code.=<<___;
#ifndef __KERNEL__
# include "arm_arch.h"
#endif
.text
.extern OPENSSL_armcap_P
.globl $func
.type $func,%function
.align 6
$func:
___
$code.=<<___ if ($SZ==4);
#ifndef __KERNEL__
# ifdef __ILP32__
ldrsw x16,.LOPENSSL_armcap_P
# else
ldr x16,.LOPENSSL_armcap_P
# endif
adr x17,.LOPENSSL_armcap_P
add x16,x16,x17
ldr w16,[x16]
tst w16,#ARMV8_SHA256
b.ne .Lv8_entry
tst w16,#ARMV7_NEON
b.ne .Lneon_entry
#endif
___
$code.=<<___;
stp x29,x30,[sp,#-128]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
sub sp,sp,#4*$SZ
ldp $A,$B,[$ctx] // load context
ldp $C,$D,[$ctx,#2*$SZ]
ldp $E,$F,[$ctx,#4*$SZ]
add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
ldp $G,$H,[$ctx,#6*$SZ]
adr $Ktbl,.LK$BITS
stp $ctx,$num,[x29,#96]
.Loop:
ldp @X[0],@X[1],[$inp],#2*$SZ
ldr $t2,[$Ktbl],#$SZ // *K++
eor $t3,$B,$C // magic seed
str $inp,[x29,#112]
___
for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
$code.=".Loop_16_xx:\n";
for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
cbnz $t2,.Loop_16_xx
ldp $ctx,$num,[x29,#96]
ldr $inp,[x29,#112]
sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
ldp @X[0],@X[1],[$ctx]
ldp @X[2],@X[3],[$ctx,#2*$SZ]
add $inp,$inp,#14*$SZ // advance input pointer
ldp @X[4],@X[5],[$ctx,#4*$SZ]
add $A,$A,@X[0]
ldp @X[6],@X[7],[$ctx,#6*$SZ]
add $B,$B,@X[1]
add $C,$C,@X[2]
add $D,$D,@X[3]
stp $A,$B,[$ctx]
add $E,$E,@X[4]
add $F,$F,@X[5]
stp $C,$D,[$ctx,#2*$SZ]
add $G,$G,@X[6]
add $H,$H,@X[7]
cmp $inp,$num
stp $E,$F,[$ctx,#4*$SZ]
stp $G,$H,[$ctx,#6*$SZ]
b.ne .Loop
ldp x19,x20,[x29,#16]
add sp,sp,#4*$SZ
ldp x21,x22,[x29,#32]
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldp x29,x30,[sp],#128
ret
.size $func,.-$func
.align 6
.type .LK$BITS,%object
.LK$BITS:
___
$code.=<<___ if ($SZ==8);
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
.quad 0x3956c25bf348b538,0x59f111f1b605d019
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
.quad 0xd807aa98a3030242,0x12835b0145706fbe
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
.quad 0x06ca6351e003826f,0x142929670a0e6e70
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
.quad 0x81c2c92e47edaee6,0x92722c851482353b
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
.quad 0xd192e819d6ef5218,0xd69906245565a910
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
.quad 0x90befffa23631e28,0xa4506cebde82bde9
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
.quad 0xca273eceea26619c,0xd186b8c721c0c207
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
.quad 0x113f9804bef90dae,0x1b710b35131c471b
.quad 0x28db77f523047d84,0x32caab7b40c72493
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
.quad 0 // terminator
___
$code.=<<___ if ($SZ==4);
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.long 0 //terminator
___
$code.=<<___;
.size .LK$BITS,.-.LK$BITS
#ifndef __KERNEL__
.align 3
.LOPENSSL_armcap_P:
# ifdef __ILP32__
.long OPENSSL_armcap_P-.
# else
.quad OPENSSL_armcap_P-.
# endif
#endif
.asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
___
if ($SZ==4) {
my $Ktbl="x3";
my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
my @MSG=map("v$_.16b",(4..7));
my ($W0,$W1)=("v16.4s","v17.4s");
my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
$code.=<<___;
#ifndef __KERNEL__
.type sha256_block_armv8,%function
.align 6
sha256_block_armv8:
.Lv8_entry:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ld1.32 {$ABCD,$EFGH},[$ctx]
adr $Ktbl,.LK256
.Loop_hw:
ld1 {@MSG[0]-@MSG[3]},[$inp],#64
sub $num,$num,#1
ld1.32 {$W0},[$Ktbl],#16
rev32 @MSG[0],@MSG[0]
rev32 @MSG[1],@MSG[1]
rev32 @MSG[2],@MSG[2]
rev32 @MSG[3],@MSG[3]
orr $ABCD_SAVE,$ABCD,$ABCD // offload
orr $EFGH_SAVE,$EFGH,$EFGH
___
for($i=0;$i<12;$i++) {
$code.=<<___;
ld1.32 {$W1},[$Ktbl],#16
add.i32 $W0,$W0,@MSG[0]
sha256su0 @MSG[0],@MSG[1]
orr $abcd,$ABCD,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
sha256su1 @MSG[0],@MSG[2],@MSG[3]
___
($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
}
$code.=<<___;
ld1.32 {$W1},[$Ktbl],#16
add.i32 $W0,$W0,@MSG[0]
orr $abcd,$ABCD,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
ld1.32 {$W0},[$Ktbl],#16
add.i32 $W1,$W1,@MSG[1]
orr $abcd,$ABCD,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
ld1.32 {$W1},[$Ktbl]
add.i32 $W0,$W0,@MSG[2]
sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
orr $abcd,$ABCD,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
add.i32 $W1,$W1,@MSG[3]
orr $abcd,$ABCD,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
add.i32 $ABCD,$ABCD,$ABCD_SAVE
add.i32 $EFGH,$EFGH,$EFGH_SAVE
cbnz $num,.Loop_hw
st1.32 {$ABCD,$EFGH},[$ctx]
ldr x29,[sp],#16
ret
.size sha256_block_armv8,.-sha256_block_armv8
#endif
___
}
if ($SZ==4) { ######################################### NEON stuff #
# You'll surely note a lot of similarities with sha256-armv4 module,
# and of course it's not a coincidence. sha256-armv4 was used as
# initial template, but was adapted for ARMv8 instruction set and
# extensively re-tuned for all-round performance.
my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
my $Ktbl="x16";
my $Xfer="x17";
my @X = map("q$_",(0..3));
my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
my $j=0;
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
my $arg = pop;
$arg = "#$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
}
sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
sub Xupdate()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
&ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
eval(shift(@insns));
eval(shift(@insns));
&mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
eval(shift(@insns));
eval(shift(@insns));
&ushr_32 ($T2,$T0,$sigma0[0]);
eval(shift(@insns));
&ushr_32 ($T1,$T0,$sigma0[2]);
eval(shift(@insns));
&add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
eval(shift(@insns));
&sli_32 ($T2,$T0,32-$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&ushr_32 ($T3,$T0,$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&eor_8 ($T1,$T1,$T2);
eval(shift(@insns));
eval(shift(@insns));
&sli_32 ($T3,$T0,32-$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&ushr_32 ($T4,$T7,$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&sli_32 ($T4,$T7,32-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&ushr_32 ($T5,$T7,$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&ushr_32 ($T3,$T7,$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&sli_u32 ($T3,$T7,32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&eor_8 ($T5,$T5,$T4);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&ushr_32 ($T6,@X[0],$sigma1[0]);
eval(shift(@insns));
&ushr_32 ($T7,@X[0],$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&sli_32 ($T6,@X[0],32-$sigma1[0]);
eval(shift(@insns));
&ushr_32 ($T5,@X[0],$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&eor_8 ($T7,$T7,$T6);
eval(shift(@insns));
eval(shift(@insns));
&sli_32 ($T5,@X[0],32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&ld1_32 ("{$T0}","[$Ktbl], #16");
eval(shift(@insns));
&eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
&eor_8 ($T5,$T5,$T5);
eval(shift(@insns));
eval(shift(@insns));
&mov (&Dhi($T5), &Dlo($T7));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&add_32 ($T0,$T0,@X[0]);
while($#insns>=1) { eval(shift(@insns)); }
&st1_32 ("{$T0}","[$Xfer], #16");
eval(shift(@insns));
push(@X,shift(@X)); # "rotate" X[]
}
sub Xpreload()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
eval(shift(@insns));
eval(shift(@insns));
&ld1_8 ("{@X[0]}","[$inp],#16");
eval(shift(@insns));
eval(shift(@insns));
&ld1_32 ("{$T0}","[$Ktbl],#16");
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&rev32 (@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&add_32 ($T0,$T0,@X[0]);
foreach (@insns) { eval; } # remaining instructions
&st1_32 ("{$T0}","[$Xfer], #16");
push(@X,shift(@X)); # "rotate" X[]
}
sub body_00_15 () {
(
'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
'&add ($h,$h,$t1)', # h+=X[i]+K[i]
'&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
'&and ($t1,$f,$e)',
'&bic ($t4,$g,$e)',
'&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
'&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
'&orr ($t1,$t1,$t4)', # Ch(e,f,g)
'&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
'&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
'&add ($h,$h,$t1)', # h+=Ch(e,f,g)
'&ror ($t0,$t0,"#$Sigma1[0]")',
'&eor ($t2,$a,$b)', # a^b, b^c in next round
'&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
'&add ($h,$h,$t0)', # h+=Sigma1(e)
'&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
'&ldr ($t1,"[$Ktbl]") if ($j==15);'.
'&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
'&ror ($t4,$t4,"#$Sigma0[0]")',
'&add ($d,$d,$h)', # d+=h
'&eor ($t3,$t3,$b)', # Maj(a,b,c)
'$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
)
}
$code.=<<___;
#ifdef __KERNEL__
.globl sha256_block_neon
#endif
.type sha256_block_neon,%function
.align 4
sha256_block_neon:
.Lneon_entry:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp,sp,#16*4
adr $Ktbl,.LK256
add $num,$inp,$num,lsl#6 // len to point at the end of inp
ld1.8 {@X[0]},[$inp], #16
ld1.8 {@X[1]},[$inp], #16
ld1.8 {@X[2]},[$inp], #16
ld1.8 {@X[3]},[$inp], #16
ld1.32 {$T0},[$Ktbl], #16
ld1.32 {$T1},[$Ktbl], #16
ld1.32 {$T2},[$Ktbl], #16
ld1.32 {$T3},[$Ktbl], #16
rev32 @X[0],@X[0] // yes, even on
rev32 @X[1],@X[1] // big-endian
rev32 @X[2],@X[2]
rev32 @X[3],@X[3]
mov $Xfer,sp
add.32 $T0,$T0,@X[0]
add.32 $T1,$T1,@X[1]
add.32 $T2,$T2,@X[2]
st1.32 {$T0-$T1},[$Xfer], #32
add.32 $T3,$T3,@X[3]
st1.32 {$T2-$T3},[$Xfer]
sub $Xfer,$Xfer,#32
ldp $A,$B,[$ctx]
ldp $C,$D,[$ctx,#8]
ldp $E,$F,[$ctx,#16]
ldp $G,$H,[$ctx,#24]
ldr $t1,[sp,#0]
mov $t2,wzr
eor $t3,$B,$C
mov $t4,wzr
b .L_00_48
.align 4
.L_00_48:
___
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
$code.=<<___;
cmp $t1,#0 // check for K256 terminator
ldr $t1,[sp,#0]
sub $Xfer,$Xfer,#64
bne .L_00_48
sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
cmp $inp,$num
mov $Xfer, #64
csel $Xfer, $Xfer, xzr, eq
sub $inp,$inp,$Xfer // avoid SEGV
mov $Xfer,sp
___
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
$code.=<<___;
add $A,$A,$t4 // h+=Sigma0(a) from the past
ldp $t0,$t1,[$ctx,#0]
add $A,$A,$t2 // h+=Maj(a,b,c) from the past
ldp $t2,$t3,[$ctx,#8]
add $A,$A,$t0 // accumulate
add $B,$B,$t1
ldp $t0,$t1,[$ctx,#16]
add $C,$C,$t2
add $D,$D,$t3
ldp $t2,$t3,[$ctx,#24]
add $E,$E,$t0
add $F,$F,$t1
ldr $t1,[sp,#0]
stp $A,$B,[$ctx,#0]
add $G,$G,$t2
mov $t2,wzr
stp $C,$D,[$ctx,#8]
add $H,$H,$t3
stp $E,$F,[$ctx,#16]
eor $t3,$B,$C
stp $G,$H,[$ctx,#24]
mov $t4,wzr
mov $Xfer,sp
b.ne .L_00_48
ldr x29,[x29]
add sp,sp,#16*4+16
ret
.size sha256_block_neon,.-sha256_block_neon
___
}
$code.=<<___;
#ifndef __KERNEL__
.comm OPENSSL_armcap_P,4,4
#endif
___
{ my %opcode = (
"sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
"sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
sub unsha256 {
my ($mnemonic,$arg)=@_;
$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
&&
sprintf ".inst\t0x%08x\t//%s %s",
$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
$mnemonic,$arg;
}
}
open SELF,$0;
while(<SELF>) {
next if (/^#!/);
last if (!s/^#/\/\// and !/^$/);
print;
}
close SELF;
foreach(split("\n",$code)) {
s/\`([^\`]*)\`/eval($1)/ge;
s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
s/\.[ui]?8(\s)/$1/;
s/\.\w?32\b// and s/\.16b/\.4s/g;
m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
print $_,"\n";
}
close STDOUT;