linux_dsm_epyc7002/drivers/infiniband/hw/hfi1/file_ops.c

1502 lines
40 KiB
C
Raw Normal View History

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/poll.h>
#include <linux/cdev.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <rdma/ib.h>
#include "hfi.h"
#include "pio.h"
#include "device.h"
#include "common.h"
#include "trace.h"
#include "user_sdma.h"
#include "user_exp_rcv.h"
#include "eprom.h"
staging/rdma/hfi1: Add support for enabling/disabling PCIe ASPM hfi1 HW has a high PCIe ASPM L1 exit latency and also advertises an acceptable latency less than actual ASPM latencies. Additional mechanisms than those provided by BIOS/OS are therefore required to enable/disable ASPM for hfi1 to provide acceptable power/performance trade offs. This patch adds this support. By means of a module parameter ASPM can be either (a) always enabled (power save mode) (b) always disabled (performance mode) (c) enabled/disabled dynamically. The dynamic mode implements two heuristics to alleviate possible problems with high ASPM L1 exit latency. ASPM is normally enabled but is disabled if (a) there are any active user space PSM contexts, or (b) for verbs, ASPM is disabled as interrupt activity for a context starts to increase. A few more points about the verbs implementation. In order to reduce lock/cache contention between multiple verbs contexts, some processing is done at the context layer before contending for device layer locks. ASPM is disabled when two interrupts for a context happen within 1 millisec. A timer is scheduled which will re-enable ASPM after 1 second should the interrupt activity cease. Normally, every interrupt, or interrupt-pair should push the timer out further. However, since this might increase the processing load per interrupt, pushing the timer out is postponed for half a second. If after half a second we get two interrupts within 1 millisec the timer is pushed out by another second. Finally, the kernel ASPM API is not used in this patch. This is because this patch does several non-standard things as SW workarounds for HW issues. As mentioned above, it enables ASPM even when advertised actual latencies are greater than acceptable latencies. Also, whereas the kernel API only allows drivers to disable ASPM from driver probe, this patch enables/disables ASPM directly from interrupt context. Due to these reasons the kernel ASPM API was not used. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dean Luick <dean.luick@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-04 05:33:06 +07:00
#include "aspm.h"
#include "mmu_rb.h"
#undef pr_fmt
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
/*
* File operation functions
*/
static int hfi1_file_open(struct inode *, struct file *);
static int hfi1_file_close(struct inode *, struct file *);
static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *);
static unsigned int hfi1_poll(struct file *, struct poll_table_struct *);
static int hfi1_file_mmap(struct file *, struct vm_area_struct *);
static u64 kvirt_to_phys(void *);
static int assign_ctxt(struct file *, struct hfi1_user_info *);
static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *);
static int user_init(struct file *);
static int get_ctxt_info(struct file *, void __user *, __u32);
static int get_base_info(struct file *, void __user *, __u32);
static int setup_ctxt(struct file *);
static int setup_subctxt(struct hfi1_ctxtdata *);
static int get_user_context(struct file *, struct hfi1_user_info *, int);
static int find_shared_ctxt(struct file *, const struct hfi1_user_info *);
static int allocate_ctxt(struct file *, struct hfi1_devdata *,
struct hfi1_user_info *);
static unsigned int poll_urgent(struct file *, struct poll_table_struct *);
static unsigned int poll_next(struct file *, struct poll_table_struct *);
static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long);
static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16);
static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int);
static int vma_fault(struct vm_area_struct *, struct vm_fault *);
static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
unsigned long arg);
static const struct file_operations hfi1_file_ops = {
.owner = THIS_MODULE,
.write_iter = hfi1_write_iter,
.open = hfi1_file_open,
.release = hfi1_file_close,
.unlocked_ioctl = hfi1_file_ioctl,
.poll = hfi1_poll,
.mmap = hfi1_file_mmap,
.llseek = noop_llseek,
};
static struct vm_operations_struct vm_ops = {
.fault = vma_fault,
};
/*
* Types of memories mapped into user processes' space
*/
enum mmap_types {
PIO_BUFS = 1,
PIO_BUFS_SOP,
PIO_CRED,
RCV_HDRQ,
RCV_EGRBUF,
UREGS,
EVENTS,
STATUS,
RTAIL,
SUBCTXT_UREGS,
SUBCTXT_RCV_HDRQ,
SUBCTXT_EGRBUF,
SDMA_COMP
};
/*
* Masks and offsets defining the mmap tokens
*/
#define HFI1_MMAP_OFFSET_MASK 0xfffULL
#define HFI1_MMAP_OFFSET_SHIFT 0
#define HFI1_MMAP_SUBCTXT_MASK 0xfULL
#define HFI1_MMAP_SUBCTXT_SHIFT 12
#define HFI1_MMAP_CTXT_MASK 0xffULL
#define HFI1_MMAP_CTXT_SHIFT 16
#define HFI1_MMAP_TYPE_MASK 0xfULL
#define HFI1_MMAP_TYPE_SHIFT 24
#define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
#define HFI1_MMAP_MAGIC_SHIFT 32
#define HFI1_MMAP_MAGIC 0xdabbad00
#define HFI1_MMAP_TOKEN_SET(field, val) \
(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
#define HFI1_MMAP_TOKEN_GET(field, token) \
(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
HFI1_MMAP_TOKEN_SET(TYPE, type) | \
HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
#define dbg(fmt, ...) \
pr_info(fmt, ##__VA_ARGS__)
static inline int is_valid_mmap(u64 token)
{
return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
}
static int hfi1_file_open(struct inode *inode, struct file *fp)
{
struct hfi1_devdata *dd = container_of(inode->i_cdev,
struct hfi1_devdata,
user_cdev);
/* Just take a ref now. Not all opens result in a context assign */
kobject_get(&dd->kobj);
/* The real work is performed later in assign_ctxt() */
fp->private_data = kzalloc(sizeof(struct hfi1_filedata), GFP_KERNEL);
if (fp->private_data) /* no cpu affinity by default */
((struct hfi1_filedata *)fp->private_data)->rec_cpu_num = -1;
return fp->private_data ? 0 : -ENOMEM;
}
static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
unsigned long arg)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_user_info uinfo;
struct hfi1_tid_info tinfo;
int ret = 0;
unsigned long addr;
int uval = 0;
unsigned long ul_uval = 0;
u16 uval16 = 0;
hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
cmd != HFI1_IOCTL_GET_VERS &&
!uctxt)
return -EINVAL;
switch (cmd) {
case HFI1_IOCTL_ASSIGN_CTXT:
if (uctxt)
return -EINVAL;
if (copy_from_user(&uinfo,
(struct hfi1_user_info __user *)arg,
sizeof(uinfo)))
return -EFAULT;
ret = assign_ctxt(fp, &uinfo);
if (ret < 0)
return ret;
setup_ctxt(fp);
if (ret)
return ret;
ret = user_init(fp);
break;
case HFI1_IOCTL_CTXT_INFO:
ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg,
sizeof(struct hfi1_ctxt_info));
break;
case HFI1_IOCTL_USER_INFO:
ret = get_base_info(fp, (void __user *)(unsigned long)arg,
sizeof(struct hfi1_base_info));
break;
case HFI1_IOCTL_CREDIT_UPD:
if (uctxt && uctxt->sc)
sc_return_credits(uctxt->sc);
break;
case HFI1_IOCTL_TID_UPDATE:
if (copy_from_user(&tinfo,
(struct hfi11_tid_info __user *)arg,
sizeof(tinfo)))
return -EFAULT;
ret = hfi1_user_exp_rcv_setup(fp, &tinfo);
if (!ret) {
/*
* Copy the number of tidlist entries we used
* and the length of the buffer we registered.
* These fields are adjacent in the structure so
* we can copy them at the same time.
*/
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
sizeof(tinfo.tidcnt) +
sizeof(tinfo.length)))
ret = -EFAULT;
}
break;
case HFI1_IOCTL_TID_FREE:
if (copy_from_user(&tinfo,
(struct hfi11_tid_info __user *)arg,
sizeof(tinfo)))
return -EFAULT;
ret = hfi1_user_exp_rcv_clear(fp, &tinfo);
if (ret)
break;
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
sizeof(tinfo.tidcnt)))
ret = -EFAULT;
break;
case HFI1_IOCTL_TID_INVAL_READ:
if (copy_from_user(&tinfo,
(struct hfi11_tid_info __user *)arg,
sizeof(tinfo)))
return -EFAULT;
ret = hfi1_user_exp_rcv_invalid(fp, &tinfo);
if (ret)
break;
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
sizeof(tinfo.tidcnt)))
ret = -EFAULT;
break;
case HFI1_IOCTL_RECV_CTRL:
ret = get_user(uval, (int __user *)arg);
if (ret != 0)
return -EFAULT;
ret = manage_rcvq(uctxt, fd->subctxt, uval);
break;
case HFI1_IOCTL_POLL_TYPE:
ret = get_user(uval, (int __user *)arg);
if (ret != 0)
return -EFAULT;
uctxt->poll_type = (typeof(uctxt->poll_type))uval;
break;
case HFI1_IOCTL_ACK_EVENT:
ret = get_user(ul_uval, (unsigned long __user *)arg);
if (ret != 0)
return -EFAULT;
ret = user_event_ack(uctxt, fd->subctxt, ul_uval);
break;
case HFI1_IOCTL_SET_PKEY:
ret = get_user(uval16, (u16 __user *)arg);
if (ret != 0)
return -EFAULT;
if (HFI1_CAP_IS_USET(PKEY_CHECK))
ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16);
else
return -EPERM;
break;
case HFI1_IOCTL_CTXT_RESET: {
struct send_context *sc;
struct hfi1_devdata *dd;
if (!uctxt || !uctxt->dd || !uctxt->sc)
return -EINVAL;
/*
* There is no protection here. User level has to
* guarantee that no one will be writing to the send
* context while it is being re-initialized.
* If user level breaks that guarantee, it will break
* it's own context and no one else's.
*/
dd = uctxt->dd;
sc = uctxt->sc;
/*
* Wait until the interrupt handler has marked the
* context as halted or frozen. Report error if we time
* out.
*/
wait_event_interruptible_timeout(
sc->halt_wait, (sc->flags & SCF_HALTED),
msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
if (!(sc->flags & SCF_HALTED))
return -ENOLCK;
/*
* If the send context was halted due to a Freeze,
* wait until the device has been "unfrozen" before
* resetting the context.
*/
if (sc->flags & SCF_FROZEN) {
wait_event_interruptible_timeout(
dd->event_queue,
!(ACCESS_ONCE(dd->flags) & HFI1_FROZEN),
msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
if (dd->flags & HFI1_FROZEN)
return -ENOLCK;
if (dd->flags & HFI1_FORCED_FREEZE)
/*
* Don't allow context reset if we are into
* forced freeze
*/
return -ENODEV;
sc_disable(sc);
ret = sc_enable(sc);
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB,
uctxt->ctxt);
} else {
ret = sc_restart(sc);
}
if (!ret)
sc_return_credits(sc);
break;
}
case HFI1_IOCTL_GET_VERS:
uval = HFI1_USER_SWVERSION;
if (put_user(uval, (int __user *)arg))
return -EFAULT;
break;
default:
return -EINVAL;
}
return ret;
}
static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
{
struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
struct hfi1_user_sdma_pkt_q *pq = fd->pq;
struct hfi1_user_sdma_comp_q *cq = fd->cq;
int ret = 0, done = 0, reqs = 0;
unsigned long dim = from->nr_segs;
if (!cq || !pq) {
ret = -EIO;
goto done;
}
if (!iter_is_iovec(from) || !dim) {
ret = -EINVAL;
goto done;
}
hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)",
fd->uctxt->ctxt, fd->subctxt, dim);
if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
ret = -ENOSPC;
goto done;
}
while (dim) {
unsigned long count = 0;
ret = hfi1_user_sdma_process_request(
kiocb->ki_filp, (struct iovec *)(from->iov + done),
dim, &count);
if (ret)
goto done;
dim -= count;
done += count;
reqs++;
}
done:
return ret ? ret : reqs;
}
static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd;
unsigned long flags, pfn;
u64 token = vma->vm_pgoff << PAGE_SHIFT,
memaddr = 0;
u8 subctxt, mapio = 0, vmf = 0, type;
ssize_t memlen = 0;
int ret = 0;
u16 ctxt;
if (!is_valid_mmap(token) || !uctxt ||
!(vma->vm_flags & VM_SHARED)) {
ret = -EINVAL;
goto done;
}
dd = uctxt->dd;
ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
type = HFI1_MMAP_TOKEN_GET(TYPE, token);
if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
ret = -EINVAL;
goto done;
}
flags = vma->vm_flags;
switch (type) {
case PIO_BUFS:
case PIO_BUFS_SOP:
memaddr = ((dd->physaddr + TXE_PIO_SEND) +
/* chip pio base */
(uctxt->sc->hw_context * BIT(16))) +
/* 64K PIO space / ctxt */
(type == PIO_BUFS_SOP ?
(TXE_PIO_SIZE / 2) : 0); /* sop? */
/*
* Map only the amount allocated to the context, not the
* entire available context's PIO space.
*/
memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
flags &= ~VM_MAYREAD;
flags |= VM_DONTCOPY | VM_DONTEXPAND;
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
mapio = 1;
break;
case PIO_CRED:
if (flags & VM_WRITE) {
ret = -EPERM;
goto done;
}
/*
* The credit return location for this context could be on the
* second or third page allocated for credit returns (if number
* of enabled contexts > 64 and 128 respectively).
*/
memaddr = dd->cr_base[uctxt->numa_id].pa +
(((u64)uctxt->sc->hw_free -
(u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
memlen = PAGE_SIZE;
flags &= ~VM_MAYWRITE;
flags |= VM_DONTCOPY | VM_DONTEXPAND;
/*
* The driver has already allocated memory for credit
* returns and programmed it into the chip. Has that
* memory been flagged as non-cached?
*/
/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
mapio = 1;
break;
case RCV_HDRQ:
memaddr = uctxt->rcvhdrq_phys;
memlen = uctxt->rcvhdrq_size;
break;
case RCV_EGRBUF: {
unsigned long addr;
int i;
/*
* The RcvEgr buffer need to be handled differently
* as multiple non-contiguous pages need to be mapped
* into the user process.
*/
memlen = uctxt->egrbufs.size;
if ((vma->vm_end - vma->vm_start) != memlen) {
dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
(vma->vm_end - vma->vm_start), memlen);
ret = -EINVAL;
goto done;
}
if (vma->vm_flags & VM_WRITE) {
ret = -EPERM;
goto done;
}
vma->vm_flags &= ~VM_MAYWRITE;
addr = vma->vm_start;
for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
ret = remap_pfn_range(
vma, addr,
uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT,
uctxt->egrbufs.buffers[i].len,
vma->vm_page_prot);
if (ret < 0)
goto done;
addr += uctxt->egrbufs.buffers[i].len;
}
ret = 0;
goto done;
}
case UREGS:
/*
* Map only the page that contains this context's user
* registers.
*/
memaddr = (unsigned long)
(dd->physaddr + RXE_PER_CONTEXT_USER)
+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
/*
* TidFlow table is on the same page as the rest of the
* user registers.
*/
memlen = PAGE_SIZE;
flags |= VM_DONTCOPY | VM_DONTEXPAND;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
mapio = 1;
break;
case EVENTS:
/*
* Use the page where this context's flags are. User level
* knows where it's own bitmap is within the page.
*/
memaddr = (unsigned long)(dd->events +
((uctxt->ctxt - dd->first_user_ctxt) *
HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK;
memlen = PAGE_SIZE;
/*
* v3.7 removes VM_RESERVED but the effect is kept by
* using VM_IO.
*/
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
case STATUS:
memaddr = kvirt_to_phys((void *)dd->status);
memlen = PAGE_SIZE;
flags |= VM_IO | VM_DONTEXPAND;
break;
case RTAIL:
if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
/*
* If the memory allocation failed, the context alloc
* also would have failed, so we would never get here
*/
ret = -EINVAL;
goto done;
}
if (flags & VM_WRITE) {
ret = -EPERM;
goto done;
}
memaddr = uctxt->rcvhdrqtailaddr_phys;
memlen = PAGE_SIZE;
flags &= ~VM_MAYWRITE;
break;
case SUBCTXT_UREGS:
memaddr = (u64)uctxt->subctxt_uregbase;
memlen = PAGE_SIZE;
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
case SUBCTXT_RCV_HDRQ:
memaddr = (u64)uctxt->subctxt_rcvhdr_base;
memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
case SUBCTXT_EGRBUF:
memaddr = (u64)uctxt->subctxt_rcvegrbuf;
memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
flags |= VM_IO | VM_DONTEXPAND;
flags &= ~VM_MAYWRITE;
vmf = 1;
break;
case SDMA_COMP: {
struct hfi1_user_sdma_comp_q *cq = fd->cq;
if (!cq) {
ret = -EFAULT;
goto done;
}
memaddr = (u64)cq->comps;
memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
flags |= VM_IO | VM_DONTEXPAND;
vmf = 1;
break;
}
default:
ret = -EINVAL;
break;
}
if ((vma->vm_end - vma->vm_start) != memlen) {
hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
uctxt->ctxt, fd->subctxt,
(vma->vm_end - vma->vm_start), memlen);
ret = -EINVAL;
goto done;
}
vma->vm_flags = flags;
hfi1_cdbg(PROC,
"%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
vma->vm_end - vma->vm_start, vma->vm_flags);
pfn = (unsigned long)(memaddr >> PAGE_SHIFT);
if (vmf) {
vma->vm_pgoff = pfn;
vma->vm_ops = &vm_ops;
ret = 0;
} else if (mapio) {
ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen,
vma->vm_page_prot);
} else {
ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen,
vma->vm_page_prot);
}
done:
return ret;
}
/*
* Local (non-chip) user memory is not mapped right away but as it is
* accessed by the user-level code.
*/
static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page;
page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
if (!page)
return VM_FAULT_SIGBUS;
get_page(page);
vmf->page = page;
return 0;
}
static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt)
{
struct hfi1_ctxtdata *uctxt;
unsigned pollflag;
uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
if (!uctxt)
pollflag = POLLERR;
else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
pollflag = poll_urgent(fp, pt);
else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
pollflag = poll_next(fp, pt);
else /* invalid */
pollflag = POLLERR;
return pollflag;
}
static int hfi1_file_close(struct inode *inode, struct file *fp)
{
struct hfi1_filedata *fdata = fp->private_data;
struct hfi1_ctxtdata *uctxt = fdata->uctxt;
struct hfi1_devdata *dd = container_of(inode->i_cdev,
struct hfi1_devdata,
user_cdev);
unsigned long flags, *ev;
fp->private_data = NULL;
if (!uctxt)
goto done;
hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
mutex_lock(&hfi1_mutex);
flush_wc();
/* drain user sdma queue */
hfi1_user_sdma_free_queues(fdata);
/* release the cpu */
hfi1_put_proc_affinity(dd, fdata->rec_cpu_num);
/*
* Clear any left over, unhandled events so the next process that
* gets this context doesn't get confused.
*/
ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
HFI1_MAX_SHARED_CTXTS) + fdata->subctxt;
*ev = 0;
if (--uctxt->cnt) {
uctxt->active_slaves &= ~(1 << fdata->subctxt);
uctxt->subpid[fdata->subctxt] = 0;
mutex_unlock(&hfi1_mutex);
goto done;
}
spin_lock_irqsave(&dd->uctxt_lock, flags);
/*
* Disable receive context and interrupt available, reset all
* RcvCtxtCtrl bits to default values.
*/
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
HFI1_RCVCTRL_TIDFLOW_DIS |
HFI1_RCVCTRL_INTRAVAIL_DIS |
HFI1_RCVCTRL_TAILUPD_DIS |
HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt);
/* Clear the context's J_KEY */
hfi1_clear_ctxt_jkey(dd, uctxt->ctxt);
/*
* Reset context integrity checks to default.
* (writes to CSRs probably belong in chip.c)
*/
write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE,
hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type));
sc_disable(uctxt->sc);
uctxt->pid = 0;
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
dd->rcd[uctxt->ctxt] = NULL;
IB/hfi1: Don't attempt to free resources if initialization failed Attempting to free resources which have not been allocated and initialized properly led to the following kernel backtrace: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] PGD 852a43067 PUD 85d4a6067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 2831 Comm: osu_bw Tainted: G IO 3.12.18-wfr+ #1 task: ffff88085b15b540 ti: ffff8808588fe000 task.ti: ffff8808588fe000 RIP: 0010:[<ffffffffa09658fe>] [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] RSP: 0018:ffff8808588ffde0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff880858a31800 RCX: 0000000000000000 RDX: ffff88085d971bc0 RSI: ffff880858a318f8 RDI: ffff880858a318c0 RBP: ffff8808588ffe20 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88087ffd6f40 R11: 0000000001100348 R12: ffff880852900000 R13: ffff880858a318c0 R14: 0000000000000000 R15: ffff88085d971be8 FS: 00007f4674e83740(0000) GS:ffff88087f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000085c377000 CR4: 00000000001407f0 Stack: ffffffffa0941a71 ffff880858a318f8 ffff88085d971bc0 ffff880858a31800 ffff880852900000 ffff880858a31800 00000000003ffff7 ffff88085d971bc0 ffff8808588ffe60 ffffffffa09663fc ffff8808588ffe60 ffff880858a31800 Call Trace: [<ffffffffa0941a71>] ? find_mmu_handler+0x51/0x70 [hfi1] [<ffffffffa09663fc>] hfi1_user_exp_rcv_free+0x6c/0x120 [hfi1] [<ffffffffa0932809>] hfi1_file_close+0x1a9/0x340 [hfi1] [<ffffffff8116c189>] __fput+0xe9/0x270 [<ffffffff8116c35e>] ____fput+0xe/0x10 [<ffffffff81065707>] task_work_run+0xa7/0xe0 [<ffffffff81002969>] do_notify_resume+0x59/0x80 [<ffffffff814ffc1a>] int_signal+0x12/0x17 This commit re-arranges the context initialization code in a way that would allow for context event flags to be used to determine whether the context has been successfully initialized. In turn, this can be used to skip the resource de-allocation if they were never allocated in the first place. Fixes: 3abb33ac6521 ("staging/hfi1: Add TID cache receive init and free funcs") Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com. Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-04-20 20:05:36 +07:00
hfi1_user_exp_rcv_free(fdata);
hfi1_clear_ctxt_pkey(dd, uctxt->ctxt);
uctxt->rcvwait_to = 0;
uctxt->piowait_to = 0;
uctxt->rcvnowait = 0;
uctxt->pionowait = 0;
uctxt->event_flags = 0;
hfi1_stats.sps_ctxts--;
staging/rdma/hfi1: Add support for enabling/disabling PCIe ASPM hfi1 HW has a high PCIe ASPM L1 exit latency and also advertises an acceptable latency less than actual ASPM latencies. Additional mechanisms than those provided by BIOS/OS are therefore required to enable/disable ASPM for hfi1 to provide acceptable power/performance trade offs. This patch adds this support. By means of a module parameter ASPM can be either (a) always enabled (power save mode) (b) always disabled (performance mode) (c) enabled/disabled dynamically. The dynamic mode implements two heuristics to alleviate possible problems with high ASPM L1 exit latency. ASPM is normally enabled but is disabled if (a) there are any active user space PSM contexts, or (b) for verbs, ASPM is disabled as interrupt activity for a context starts to increase. A few more points about the verbs implementation. In order to reduce lock/cache contention between multiple verbs contexts, some processing is done at the context layer before contending for device layer locks. ASPM is disabled when two interrupts for a context happen within 1 millisec. A timer is scheduled which will re-enable ASPM after 1 second should the interrupt activity cease. Normally, every interrupt, or interrupt-pair should push the timer out further. However, since this might increase the processing load per interrupt, pushing the timer out is postponed for half a second. If after half a second we get two interrupts within 1 millisec the timer is pushed out by another second. Finally, the kernel ASPM API is not used in this patch. This is because this patch does several non-standard things as SW workarounds for HW issues. As mentioned above, it enables ASPM even when advertised actual latencies are greater than acceptable latencies. Also, whereas the kernel API only allows drivers to disable ASPM from driver probe, this patch enables/disables ASPM directly from interrupt context. Due to these reasons the kernel ASPM API was not used. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dean Luick <dean.luick@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-04 05:33:06 +07:00
if (++dd->freectxts == dd->num_user_contexts)
aspm_enable_all(dd);
mutex_unlock(&hfi1_mutex);
hfi1_free_ctxtdata(dd, uctxt);
done:
kobject_put(&dd->kobj);
kfree(fdata);
return 0;
}
/*
* Convert kernel *virtual* addresses to physical addresses.
* This is used to vmalloc'ed addresses.
*/
static u64 kvirt_to_phys(void *addr)
{
struct page *page;
u64 paddr = 0;
page = vmalloc_to_page(addr);
if (page)
paddr = page_to_pfn(page) << PAGE_SHIFT;
return paddr;
}
static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo)
{
int i_minor, ret = 0;
unsigned int swmajor, swminor;
swmajor = uinfo->userversion >> 16;
if (swmajor != HFI1_USER_SWMAJOR) {
ret = -ENODEV;
goto done;
}
swminor = uinfo->userversion & 0xffff;
mutex_lock(&hfi1_mutex);
/* First, lets check if we need to setup a shared context? */
if (uinfo->subctxt_cnt) {
struct hfi1_filedata *fd = fp->private_data;
ret = find_shared_ctxt(fp, uinfo);
if (ret < 0)
goto done_unlock;
if (ret)
fd->rec_cpu_num = hfi1_get_proc_affinity(
fd->uctxt->dd, fd->uctxt->numa_id);
}
/*
* We execute the following block if we couldn't find a
* shared context or if context sharing is not required.
*/
if (!ret) {
i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE;
ret = get_user_context(fp, uinfo, i_minor);
}
done_unlock:
mutex_unlock(&hfi1_mutex);
done:
return ret;
}
static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo,
int devno)
{
struct hfi1_devdata *dd = NULL;
int devmax, npresent, nup;
devmax = hfi1_count_units(&npresent, &nup);
if (!npresent)
return -ENXIO;
if (!nup)
return -ENETDOWN;
dd = hfi1_lookup(devno);
if (!dd)
return -ENODEV;
else if (!dd->freectxts)
return -EBUSY;
return allocate_ctxt(fp, dd, uinfo);
}
static int find_shared_ctxt(struct file *fp,
const struct hfi1_user_info *uinfo)
{
int devmax, ndev, i;
int ret = 0;
struct hfi1_filedata *fd = fp->private_data;
devmax = hfi1_count_units(NULL, NULL);
for (ndev = 0; ndev < devmax; ndev++) {
struct hfi1_devdata *dd = hfi1_lookup(ndev);
if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase))
continue;
for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
struct hfi1_ctxtdata *uctxt = dd->rcd[i];
/* Skip ctxts which are not yet open */
if (!uctxt || !uctxt->cnt)
continue;
/* Skip ctxt if it doesn't match the requested one */
if (memcmp(uctxt->uuid, uinfo->uuid,
sizeof(uctxt->uuid)) ||
uctxt->jkey != generate_jkey(current_uid()) ||
uctxt->subctxt_id != uinfo->subctxt_id ||
uctxt->subctxt_cnt != uinfo->subctxt_cnt)
continue;
/* Verify the sharing process matches the master */
if (uctxt->userversion != uinfo->userversion ||
uctxt->cnt >= uctxt->subctxt_cnt) {
ret = -EINVAL;
goto done;
}
fd->uctxt = uctxt;
fd->subctxt = uctxt->cnt++;
uctxt->subpid[fd->subctxt] = current->pid;
uctxt->active_slaves |= 1 << fd->subctxt;
ret = 1;
goto done;
}
}
done:
return ret;
}
static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd,
struct hfi1_user_info *uinfo)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt;
unsigned ctxt;
int ret, numa;
if (dd->flags & HFI1_FROZEN) {
/*
* Pick an error that is unique from all other errors
* that are returned so the user process knows that
* it tried to allocate while the SPC was frozen. It
* it should be able to retry with success in a short
* while.
*/
return -EIO;
}
for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++)
if (!dd->rcd[ctxt])
break;
if (ctxt == dd->num_rcv_contexts)
return -EBUSY;
fd->rec_cpu_num = hfi1_get_proc_affinity(dd, -1);
if (fd->rec_cpu_num != -1)
numa = cpu_to_node(fd->rec_cpu_num);
else
numa = numa_node_id();
uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa);
if (!uctxt) {
dd_dev_err(dd,
"Unable to allocate ctxtdata memory, failing open\n");
return -ENOMEM;
}
hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
uctxt->numa_id);
/*
* Allocate and enable a PIO send context.
*/
uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize,
uctxt->dd->node);
if (!uctxt->sc)
return -ENOMEM;
hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
uctxt->sc->hw_context);
ret = sc_enable(uctxt->sc);
if (ret)
return ret;
/*
* Setup shared context resources if the user-level has requested
* shared contexts and this is the 'master' process.
* This has to be done here so the rest of the sub-contexts find the
* proper master.
*/
if (uinfo->subctxt_cnt && !fd->subctxt) {
ret = init_subctxts(uctxt, uinfo);
/*
* On error, we don't need to disable and de-allocate the
* send context because it will be done during file close
*/
if (ret)
return ret;
}
uctxt->userversion = uinfo->userversion;
uctxt->pid = current->pid;
uctxt->flags = HFI1_CAP_UGET(MASK);
init_waitqueue_head(&uctxt->wait);
strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
uctxt->jkey = generate_jkey(current_uid());
INIT_LIST_HEAD(&uctxt->sdma_queues);
spin_lock_init(&uctxt->sdma_qlock);
hfi1_stats.sps_ctxts++;
staging/rdma/hfi1: Add support for enabling/disabling PCIe ASPM hfi1 HW has a high PCIe ASPM L1 exit latency and also advertises an acceptable latency less than actual ASPM latencies. Additional mechanisms than those provided by BIOS/OS are therefore required to enable/disable ASPM for hfi1 to provide acceptable power/performance trade offs. This patch adds this support. By means of a module parameter ASPM can be either (a) always enabled (power save mode) (b) always disabled (performance mode) (c) enabled/disabled dynamically. The dynamic mode implements two heuristics to alleviate possible problems with high ASPM L1 exit latency. ASPM is normally enabled but is disabled if (a) there are any active user space PSM contexts, or (b) for verbs, ASPM is disabled as interrupt activity for a context starts to increase. A few more points about the verbs implementation. In order to reduce lock/cache contention between multiple verbs contexts, some processing is done at the context layer before contending for device layer locks. ASPM is disabled when two interrupts for a context happen within 1 millisec. A timer is scheduled which will re-enable ASPM after 1 second should the interrupt activity cease. Normally, every interrupt, or interrupt-pair should push the timer out further. However, since this might increase the processing load per interrupt, pushing the timer out is postponed for half a second. If after half a second we get two interrupts within 1 millisec the timer is pushed out by another second. Finally, the kernel ASPM API is not used in this patch. This is because this patch does several non-standard things as SW workarounds for HW issues. As mentioned above, it enables ASPM even when advertised actual latencies are greater than acceptable latencies. Also, whereas the kernel API only allows drivers to disable ASPM from driver probe, this patch enables/disables ASPM directly from interrupt context. Due to these reasons the kernel ASPM API was not used. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Dean Luick <dean.luick@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-04 05:33:06 +07:00
/*
* Disable ASPM when there are open user/PSM contexts to avoid
* issues with ASPM L1 exit latency
*/
if (dd->freectxts-- == dd->num_user_contexts)
aspm_disable_all(dd);
fd->uctxt = uctxt;
return 0;
}
static int init_subctxts(struct hfi1_ctxtdata *uctxt,
const struct hfi1_user_info *uinfo)
{
unsigned num_subctxts;
num_subctxts = uinfo->subctxt_cnt;
if (num_subctxts > HFI1_MAX_SHARED_CTXTS)
return -EINVAL;
uctxt->subctxt_cnt = uinfo->subctxt_cnt;
uctxt->subctxt_id = uinfo->subctxt_id;
uctxt->active_slaves = 1;
uctxt->redirect_seq_cnt = 1;
set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
return 0;
}
static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
{
int ret = 0;
unsigned num_subctxts = uctxt->subctxt_cnt;
uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
if (!uctxt->subctxt_uregbase) {
ret = -ENOMEM;
goto bail;
}
/* We can take the size of the RcvHdr Queue from the master */
uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
num_subctxts);
if (!uctxt->subctxt_rcvhdr_base) {
ret = -ENOMEM;
goto bail_ureg;
}
uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
num_subctxts);
if (!uctxt->subctxt_rcvegrbuf) {
ret = -ENOMEM;
goto bail_rhdr;
}
goto bail;
bail_rhdr:
vfree(uctxt->subctxt_rcvhdr_base);
bail_ureg:
vfree(uctxt->subctxt_uregbase);
uctxt->subctxt_uregbase = NULL;
bail:
return ret;
}
static int user_init(struct file *fp)
{
unsigned int rcvctrl_ops = 0;
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
/* make sure that the context has already been setup */
IB/hfi1: Don't attempt to free resources if initialization failed Attempting to free resources which have not been allocated and initialized properly led to the following kernel backtrace: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] PGD 852a43067 PUD 85d4a6067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 2831 Comm: osu_bw Tainted: G IO 3.12.18-wfr+ #1 task: ffff88085b15b540 ti: ffff8808588fe000 task.ti: ffff8808588fe000 RIP: 0010:[<ffffffffa09658fe>] [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] RSP: 0018:ffff8808588ffde0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff880858a31800 RCX: 0000000000000000 RDX: ffff88085d971bc0 RSI: ffff880858a318f8 RDI: ffff880858a318c0 RBP: ffff8808588ffe20 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88087ffd6f40 R11: 0000000001100348 R12: ffff880852900000 R13: ffff880858a318c0 R14: 0000000000000000 R15: ffff88085d971be8 FS: 00007f4674e83740(0000) GS:ffff88087f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000085c377000 CR4: 00000000001407f0 Stack: ffffffffa0941a71 ffff880858a318f8 ffff88085d971bc0 ffff880858a31800 ffff880852900000 ffff880858a31800 00000000003ffff7 ffff88085d971bc0 ffff8808588ffe60 ffffffffa09663fc ffff8808588ffe60 ffff880858a31800 Call Trace: [<ffffffffa0941a71>] ? find_mmu_handler+0x51/0x70 [hfi1] [<ffffffffa09663fc>] hfi1_user_exp_rcv_free+0x6c/0x120 [hfi1] [<ffffffffa0932809>] hfi1_file_close+0x1a9/0x340 [hfi1] [<ffffffff8116c189>] __fput+0xe9/0x270 [<ffffffff8116c35e>] ____fput+0xe/0x10 [<ffffffff81065707>] task_work_run+0xa7/0xe0 [<ffffffff81002969>] do_notify_resume+0x59/0x80 [<ffffffff814ffc1a>] int_signal+0x12/0x17 This commit re-arranges the context initialization code in a way that would allow for context event flags to be used to determine whether the context has been successfully initialized. In turn, this can be used to skip the resource de-allocation if they were never allocated in the first place. Fixes: 3abb33ac6521 ("staging/hfi1: Add TID cache receive init and free funcs") Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com. Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-04-20 20:05:36 +07:00
if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
return -EFAULT;
/* initialize poll variables... */
uctxt->urgent = 0;
uctxt->urgent_poll = 0;
/*
* Now enable the ctxt for receive.
* For chips that are set to DMA the tail register to memory
* when they change (and when the update bit transitions from
* 0 to 1. So for those chips, we turn it off and then back on.
* This will (very briefly) affect any other open ctxts, but the
* duration is very short, and therefore isn't an issue. We
* explicitly set the in-memory tail copy to 0 beforehand, so we
* don't have to wait to be sure the DMA update has happened
* (chip resets head/tail to 0 on transition to enable).
*/
if (uctxt->rcvhdrtail_kvaddr)
clear_rcvhdrtail(uctxt);
/* Setup J_KEY before enabling the context */
hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey);
rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
if (HFI1_CAP_KGET_MASK(uctxt->flags, HDRSUPP))
rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
/*
* Ignore the bit in the flags for now until proper
* support for multiple packet per rcv array entry is
* added.
*/
if (!HFI1_CAP_KGET_MASK(uctxt->flags, MULTI_PKT_EGR))
rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_EGR_FULL))
rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
/*
* The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
* We can't rely on the correct value to be set from prior
* uses of the chip or ctxt. Therefore, add the rcvctrl op
* for both cases.
*/
if (HFI1_CAP_KGET_MASK(uctxt->flags, DMA_RTAIL))
rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
else
rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt);
/* Notify any waiting slaves */
if (uctxt->subctxt_cnt) {
clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
wake_up(&uctxt->wait);
}
IB/hfi1: Don't attempt to free resources if initialization failed Attempting to free resources which have not been allocated and initialized properly led to the following kernel backtrace: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] PGD 852a43067 PUD 85d4a6067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 2831 Comm: osu_bw Tainted: G IO 3.12.18-wfr+ #1 task: ffff88085b15b540 ti: ffff8808588fe000 task.ti: ffff8808588fe000 RIP: 0010:[<ffffffffa09658fe>] [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] RSP: 0018:ffff8808588ffde0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff880858a31800 RCX: 0000000000000000 RDX: ffff88085d971bc0 RSI: ffff880858a318f8 RDI: ffff880858a318c0 RBP: ffff8808588ffe20 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88087ffd6f40 R11: 0000000001100348 R12: ffff880852900000 R13: ffff880858a318c0 R14: 0000000000000000 R15: ffff88085d971be8 FS: 00007f4674e83740(0000) GS:ffff88087f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000085c377000 CR4: 00000000001407f0 Stack: ffffffffa0941a71 ffff880858a318f8 ffff88085d971bc0 ffff880858a31800 ffff880852900000 ffff880858a31800 00000000003ffff7 ffff88085d971bc0 ffff8808588ffe60 ffffffffa09663fc ffff8808588ffe60 ffff880858a31800 Call Trace: [<ffffffffa0941a71>] ? find_mmu_handler+0x51/0x70 [hfi1] [<ffffffffa09663fc>] hfi1_user_exp_rcv_free+0x6c/0x120 [hfi1] [<ffffffffa0932809>] hfi1_file_close+0x1a9/0x340 [hfi1] [<ffffffff8116c189>] __fput+0xe9/0x270 [<ffffffff8116c35e>] ____fput+0xe/0x10 [<ffffffff81065707>] task_work_run+0xa7/0xe0 [<ffffffff81002969>] do_notify_resume+0x59/0x80 [<ffffffff814ffc1a>] int_signal+0x12/0x17 This commit re-arranges the context initialization code in a way that would allow for context event flags to be used to determine whether the context has been successfully initialized. In turn, this can be used to skip the resource de-allocation if they were never allocated in the first place. Fixes: 3abb33ac6521 ("staging/hfi1: Add TID cache receive init and free funcs") Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com. Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-04-20 20:05:36 +07:00
return 0;
}
static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len)
{
struct hfi1_ctxt_info cinfo;
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
int ret = 0;
memset(&cinfo, 0, sizeof(cinfo));
ret = hfi1_get_base_kinfo(uctxt, &cinfo);
if (ret < 0)
goto done;
cinfo.num_active = hfi1_count_active_units();
cinfo.unit = uctxt->dd->unit;
cinfo.ctxt = uctxt->ctxt;
cinfo.subctxt = fd->subctxt;
cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
uctxt->dd->rcv_entries.group_size) +
uctxt->expected_count;
cinfo.credits = uctxt->sc->credits;
cinfo.numa_node = uctxt->numa_id;
cinfo.rec_cpu = fd->rec_cpu_num;
cinfo.send_ctxt = uctxt->sc->hw_context;
cinfo.egrtids = uctxt->egrbufs.alloced;
cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
cinfo.sdma_ring_size = fd->cq->nentries;
cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo);
if (copy_to_user(ubase, &cinfo, sizeof(cinfo)))
ret = -EFAULT;
done:
return ret;
}
static int setup_ctxt(struct file *fp)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
int ret = 0;
/*
IB/hfi1: Don't attempt to free resources if initialization failed Attempting to free resources which have not been allocated and initialized properly led to the following kernel backtrace: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] PGD 852a43067 PUD 85d4a6067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 2831 Comm: osu_bw Tainted: G IO 3.12.18-wfr+ #1 task: ffff88085b15b540 ti: ffff8808588fe000 task.ti: ffff8808588fe000 RIP: 0010:[<ffffffffa09658fe>] [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] RSP: 0018:ffff8808588ffde0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff880858a31800 RCX: 0000000000000000 RDX: ffff88085d971bc0 RSI: ffff880858a318f8 RDI: ffff880858a318c0 RBP: ffff8808588ffe20 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88087ffd6f40 R11: 0000000001100348 R12: ffff880852900000 R13: ffff880858a318c0 R14: 0000000000000000 R15: ffff88085d971be8 FS: 00007f4674e83740(0000) GS:ffff88087f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000085c377000 CR4: 00000000001407f0 Stack: ffffffffa0941a71 ffff880858a318f8 ffff88085d971bc0 ffff880858a31800 ffff880852900000 ffff880858a31800 00000000003ffff7 ffff88085d971bc0 ffff8808588ffe60 ffffffffa09663fc ffff8808588ffe60 ffff880858a31800 Call Trace: [<ffffffffa0941a71>] ? find_mmu_handler+0x51/0x70 [hfi1] [<ffffffffa09663fc>] hfi1_user_exp_rcv_free+0x6c/0x120 [hfi1] [<ffffffffa0932809>] hfi1_file_close+0x1a9/0x340 [hfi1] [<ffffffff8116c189>] __fput+0xe9/0x270 [<ffffffff8116c35e>] ____fput+0xe/0x10 [<ffffffff81065707>] task_work_run+0xa7/0xe0 [<ffffffff81002969>] do_notify_resume+0x59/0x80 [<ffffffff814ffc1a>] int_signal+0x12/0x17 This commit re-arranges the context initialization code in a way that would allow for context event flags to be used to determine whether the context has been successfully initialized. In turn, this can be used to skip the resource de-allocation if they were never allocated in the first place. Fixes: 3abb33ac6521 ("staging/hfi1: Add TID cache receive init and free funcs") Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com. Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-04-20 20:05:36 +07:00
* Context should be set up only once, including allocation and
* programming of eager buffers. This is done if context sharing
* is not requested or by the master process.
*/
if (!uctxt->subctxt_cnt || !fd->subctxt) {
ret = hfi1_init_ctxt(uctxt->sc);
if (ret)
goto done;
/* Now allocate the RcvHdr queue and eager buffers. */
ret = hfi1_create_rcvhdrq(dd, uctxt);
if (ret)
goto done;
ret = hfi1_setup_eagerbufs(uctxt);
if (ret)
goto done;
if (uctxt->subctxt_cnt && !fd->subctxt) {
ret = setup_subctxt(uctxt);
if (ret)
goto done;
}
IB/hfi1: Don't attempt to free resources if initialization failed Attempting to free resources which have not been allocated and initialized properly led to the following kernel backtrace: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] PGD 852a43067 PUD 85d4a6067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 2831 Comm: osu_bw Tainted: G IO 3.12.18-wfr+ #1 task: ffff88085b15b540 ti: ffff8808588fe000 task.ti: ffff8808588fe000 RIP: 0010:[<ffffffffa09658fe>] [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] RSP: 0018:ffff8808588ffde0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff880858a31800 RCX: 0000000000000000 RDX: ffff88085d971bc0 RSI: ffff880858a318f8 RDI: ffff880858a318c0 RBP: ffff8808588ffe20 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88087ffd6f40 R11: 0000000001100348 R12: ffff880852900000 R13: ffff880858a318c0 R14: 0000000000000000 R15: ffff88085d971be8 FS: 00007f4674e83740(0000) GS:ffff88087f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000085c377000 CR4: 00000000001407f0 Stack: ffffffffa0941a71 ffff880858a318f8 ffff88085d971bc0 ffff880858a31800 ffff880852900000 ffff880858a31800 00000000003ffff7 ffff88085d971bc0 ffff8808588ffe60 ffffffffa09663fc ffff8808588ffe60 ffff880858a31800 Call Trace: [<ffffffffa0941a71>] ? find_mmu_handler+0x51/0x70 [hfi1] [<ffffffffa09663fc>] hfi1_user_exp_rcv_free+0x6c/0x120 [hfi1] [<ffffffffa0932809>] hfi1_file_close+0x1a9/0x340 [hfi1] [<ffffffff8116c189>] __fput+0xe9/0x270 [<ffffffff8116c35e>] ____fput+0xe/0x10 [<ffffffff81065707>] task_work_run+0xa7/0xe0 [<ffffffff81002969>] do_notify_resume+0x59/0x80 [<ffffffff814ffc1a>] int_signal+0x12/0x17 This commit re-arranges the context initialization code in a way that would allow for context event flags to be used to determine whether the context has been successfully initialized. In turn, this can be used to skip the resource de-allocation if they were never allocated in the first place. Fixes: 3abb33ac6521 ("staging/hfi1: Add TID cache receive init and free funcs") Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com. Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-04-20 20:05:36 +07:00
} else {
ret = wait_event_interruptible(uctxt->wait, !test_bit(
HFI1_CTXT_MASTER_UNINIT,
&uctxt->event_flags));
if (ret)
goto done;
}
IB/hfi1: Don't attempt to free resources if initialization failed Attempting to free resources which have not been allocated and initialized properly led to the following kernel backtrace: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] PGD 852a43067 PUD 85d4a6067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 2831 Comm: osu_bw Tainted: G IO 3.12.18-wfr+ #1 task: ffff88085b15b540 ti: ffff8808588fe000 task.ti: ffff8808588fe000 RIP: 0010:[<ffffffffa09658fe>] [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] RSP: 0018:ffff8808588ffde0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff880858a31800 RCX: 0000000000000000 RDX: ffff88085d971bc0 RSI: ffff880858a318f8 RDI: ffff880858a318c0 RBP: ffff8808588ffe20 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88087ffd6f40 R11: 0000000001100348 R12: ffff880852900000 R13: ffff880858a318c0 R14: 0000000000000000 R15: ffff88085d971be8 FS: 00007f4674e83740(0000) GS:ffff88087f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000085c377000 CR4: 00000000001407f0 Stack: ffffffffa0941a71 ffff880858a318f8 ffff88085d971bc0 ffff880858a31800 ffff880852900000 ffff880858a31800 00000000003ffff7 ffff88085d971bc0 ffff8808588ffe60 ffffffffa09663fc ffff8808588ffe60 ffff880858a31800 Call Trace: [<ffffffffa0941a71>] ? find_mmu_handler+0x51/0x70 [hfi1] [<ffffffffa09663fc>] hfi1_user_exp_rcv_free+0x6c/0x120 [hfi1] [<ffffffffa0932809>] hfi1_file_close+0x1a9/0x340 [hfi1] [<ffffffff8116c189>] __fput+0xe9/0x270 [<ffffffff8116c35e>] ____fput+0xe/0x10 [<ffffffff81065707>] task_work_run+0xa7/0xe0 [<ffffffff81002969>] do_notify_resume+0x59/0x80 [<ffffffff814ffc1a>] int_signal+0x12/0x17 This commit re-arranges the context initialization code in a way that would allow for context event flags to be used to determine whether the context has been successfully initialized. In turn, this can be used to skip the resource de-allocation if they were never allocated in the first place. Fixes: 3abb33ac6521 ("staging/hfi1: Add TID cache receive init and free funcs") Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com. Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-04-20 20:05:36 +07:00
ret = hfi1_user_sdma_alloc_queues(uctxt, fp);
IB/hfi1: Don't attempt to free resources if initialization failed Attempting to free resources which have not been allocated and initialized properly led to the following kernel backtrace: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] PGD 852a43067 PUD 85d4a6067 PMD 0 Oops: 0000 [#1] SMP CPU: 0 PID: 2831 Comm: osu_bw Tainted: G IO 3.12.18-wfr+ #1 task: ffff88085b15b540 ti: ffff8808588fe000 task.ti: ffff8808588fe000 RIP: 0010:[<ffffffffa09658fe>] [<ffffffffa09658fe>] unlock_exp_tids.isra.8+0x2e/0x120 [hfi1] RSP: 0018:ffff8808588ffde0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff880858a31800 RCX: 0000000000000000 RDX: ffff88085d971bc0 RSI: ffff880858a318f8 RDI: ffff880858a318c0 RBP: ffff8808588ffe20 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88087ffd6f40 R11: 0000000001100348 R12: ffff880852900000 R13: ffff880858a318c0 R14: 0000000000000000 R15: ffff88085d971be8 FS: 00007f4674e83740(0000) GS:ffff88087f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000085c377000 CR4: 00000000001407f0 Stack: ffffffffa0941a71 ffff880858a318f8 ffff88085d971bc0 ffff880858a31800 ffff880852900000 ffff880858a31800 00000000003ffff7 ffff88085d971bc0 ffff8808588ffe60 ffffffffa09663fc ffff8808588ffe60 ffff880858a31800 Call Trace: [<ffffffffa0941a71>] ? find_mmu_handler+0x51/0x70 [hfi1] [<ffffffffa09663fc>] hfi1_user_exp_rcv_free+0x6c/0x120 [hfi1] [<ffffffffa0932809>] hfi1_file_close+0x1a9/0x340 [hfi1] [<ffffffff8116c189>] __fput+0xe9/0x270 [<ffffffff8116c35e>] ____fput+0xe/0x10 [<ffffffff81065707>] task_work_run+0xa7/0xe0 [<ffffffff81002969>] do_notify_resume+0x59/0x80 [<ffffffff814ffc1a>] int_signal+0x12/0x17 This commit re-arranges the context initialization code in a way that would allow for context event flags to be used to determine whether the context has been successfully initialized. In turn, this can be used to skip the resource de-allocation if they were never allocated in the first place. Fixes: 3abb33ac6521 ("staging/hfi1: Add TID cache receive init and free funcs") Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mitko Haralanov <mitko.haralanov@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com. Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-04-20 20:05:36 +07:00
if (ret)
goto done;
/*
* Expected receive has to be setup for all processes (including
* shared contexts). However, it has to be done after the master
* context has been fully configured as it depends on the
* eager/expected split of the RcvArray entries.
* Setting it up here ensures that the subcontexts will be waiting
* (due to the above wait_event_interruptible() until the master
* is setup.
*/
ret = hfi1_user_exp_rcv_init(fp);
if (ret)
goto done;
set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags);
done:
return ret;
}
static int get_base_info(struct file *fp, void __user *ubase, __u32 len)
{
struct hfi1_base_info binfo;
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
ssize_t sz;
unsigned offset;
int ret = 0;
trace_hfi1_uctxtdata(uctxt->dd, uctxt);
memset(&binfo, 0, sizeof(binfo));
binfo.hw_version = dd->revision;
binfo.sw_version = HFI1_KERN_SWVERSION;
binfo.bthqp = kdeth_qp;
binfo.jkey = uctxt->jkey;
/*
* If more than 64 contexts are enabled the allocated credit
* return will span two or three contiguous pages. Since we only
* map the page containing the context's credit return address,
* we need to calculate the offset in the proper page.
*/
offset = ((u64)uctxt->sc->hw_free -
(u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
fd->subctxt, offset);
binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
fd->subctxt,
uctxt->sc->base_addr);
binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
uctxt->ctxt,
fd->subctxt,
uctxt->sc->base_addr);
binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
fd->subctxt,
uctxt->rcvhdrq);
binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
fd->subctxt,
uctxt->egrbufs.rcvtids[0].phys);
binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
fd->subctxt, 0);
/*
* user regs are at
* (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
*/
binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
fd->subctxt, 0);
offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) *
HFI1_MAX_SHARED_CTXTS) + fd->subctxt) *
sizeof(*dd->events));
binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
fd->subctxt,
offset);
binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
fd->subctxt,
dd->status);
if (HFI1_CAP_IS_USET(DMA_RTAIL))
binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
fd->subctxt, 0);
if (uctxt->subctxt_cnt) {
binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
uctxt->ctxt,
fd->subctxt, 0);
binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
uctxt->ctxt,
fd->subctxt, 0);
binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
uctxt->ctxt,
fd->subctxt, 0);
}
sz = (len < sizeof(binfo)) ? len : sizeof(binfo);
if (copy_to_user(ubase, &binfo, sz))
ret = -EFAULT;
return ret;
}
static unsigned int poll_urgent(struct file *fp,
struct poll_table_struct *pt)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
unsigned pollflag;
poll_wait(fp, &uctxt->wait, pt);
spin_lock_irq(&dd->uctxt_lock);
if (uctxt->urgent != uctxt->urgent_poll) {
pollflag = POLLIN | POLLRDNORM;
uctxt->urgent_poll = uctxt->urgent;
} else {
pollflag = 0;
set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
}
spin_unlock_irq(&dd->uctxt_lock);
return pollflag;
}
static unsigned int poll_next(struct file *fp,
struct poll_table_struct *pt)
{
struct hfi1_filedata *fd = fp->private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
unsigned pollflag;
poll_wait(fp, &uctxt->wait, pt);
spin_lock_irq(&dd->uctxt_lock);
if (hdrqempty(uctxt)) {
set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt);
pollflag = 0;
} else {
pollflag = POLLIN | POLLRDNORM;
}
spin_unlock_irq(&dd->uctxt_lock);
return pollflag;
}
/*
* Find all user contexts in use, and set the specified bit in their
* event mask.
* See also find_ctxt() for a similar use, that is specific to send buffers.
*/
int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
{
struct hfi1_ctxtdata *uctxt;
struct hfi1_devdata *dd = ppd->dd;
unsigned ctxt;
int ret = 0;
unsigned long flags;
if (!dd->events) {
ret = -EINVAL;
goto done;
}
spin_lock_irqsave(&dd->uctxt_lock, flags);
for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts;
ctxt++) {
uctxt = dd->rcd[ctxt];
if (uctxt) {
unsigned long *evs = dd->events +
(uctxt->ctxt - dd->first_user_ctxt) *
HFI1_MAX_SHARED_CTXTS;
int i;
/*
* subctxt_cnt is 0 if not shared, so do base
* separately, first, then remaining subctxt, if any
*/
set_bit(evtbit, evs);
for (i = 1; i < uctxt->subctxt_cnt; i++)
set_bit(evtbit, evs + i);
}
}
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
done:
return ret;
}
/**
* manage_rcvq - manage a context's receive queue
* @uctxt: the context
* @subctxt: the sub-context
* @start_stop: action to carry out
*
* start_stop == 0 disables receive on the context, for use in queue
* overflow conditions. start_stop==1 re-enables, to be used to
* re-init the software copy of the head register
*/
static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
int start_stop)
{
struct hfi1_devdata *dd = uctxt->dd;
unsigned int rcvctrl_op;
if (subctxt)
goto bail;
/* atomically clear receive enable ctxt. */
if (start_stop) {
/*
* On enable, force in-memory copy of the tail register to
* 0, so that protocol code doesn't have to worry about
* whether or not the chip has yet updated the in-memory
* copy or not on return from the system call. The chip
* always resets it's tail register back to 0 on a
* transition from disabled to enabled.
*/
if (uctxt->rcvhdrtail_kvaddr)
clear_rcvhdrtail(uctxt);
rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
} else {
rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
}
hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt);
/* always; new head should be equal to new tail; see above */
bail:
return 0;
}
/*
* clear the event notifier events for this context.
* User process then performs actions appropriate to bit having been
* set, if desired, and checks again in future.
*/
static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt,
unsigned long events)
{
int i;
struct hfi1_devdata *dd = uctxt->dd;
unsigned long *evs;
if (!dd->events)
return 0;
evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
HFI1_MAX_SHARED_CTXTS) + subctxt;
for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
if (!test_bit(i, &events))
continue;
clear_bit(i, evs);
}
return 0;
}
static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
u16 pkey)
{
int ret = -ENOENT, i, intable = 0;
struct hfi1_pportdata *ppd = uctxt->ppd;
struct hfi1_devdata *dd = uctxt->dd;
if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) {
ret = -EINVAL;
goto done;
}
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
if (pkey == ppd->pkeys[i]) {
intable = 1;
break;
}
if (intable)
ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey);
done:
return ret;
}
static void user_remove(struct hfi1_devdata *dd)
{
hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
}
static int user_add(struct hfi1_devdata *dd)
{
char name[10];
int ret;
snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
&dd->user_cdev, &dd->user_device,
true, &dd->kobj);
if (ret)
user_remove(dd);
return ret;
}
/*
* Create per-unit files in /dev
*/
int hfi1_device_create(struct hfi1_devdata *dd)
{
return user_add(dd);
}
/*
* Remove per-unit files in /dev
* void, core kernel returns no errors for this stuff
*/
void hfi1_device_remove(struct hfi1_devdata *dd)
{
user_remove(dd);
}