linux_dsm_epyc7002/drivers/ntb/hw/intel/ntb_hw_gen3.c

598 lines
17 KiB
C
Raw Normal View History

/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Intel PCIe NTB Linux driver
*
* Contact Information:
* Jon Mason <jon.mason@intel.com>
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/ntb.h>
#include "ntb_hw_intel.h"
#include "ntb_hw_gen1.h"
#include "ntb_hw_gen3.h"
static const struct intel_ntb_reg skx_reg = {
.poll_link = skx_poll_link,
.link_is_up = xeon_link_is_up,
.db_ioread = skx_db_ioread,
.db_iowrite = skx_db_iowrite,
.db_size = sizeof(u32),
.ntb_ctl = SKX_NTBCNTL_OFFSET,
.mw_bar = {2, 4},
};
static const struct intel_ntb_alt_reg skx_pri_reg = {
.db_bell = SKX_EM_DOORBELL_OFFSET,
.db_clear = SKX_IM_INT_STATUS_OFFSET,
.db_mask = SKX_IM_INT_DISABLE_OFFSET,
.spad = SKX_IM_SPAD_OFFSET,
};
static const struct intel_ntb_alt_reg skx_b2b_reg = {
.db_bell = SKX_IM_DOORBELL_OFFSET,
.db_clear = SKX_EM_INT_STATUS_OFFSET,
.db_mask = SKX_EM_INT_DISABLE_OFFSET,
.spad = SKX_B2B_SPAD_OFFSET,
};
static const struct intel_ntb_xlat_reg skx_sec_xlat = {
/* .bar0_base = SKX_EMBAR0_OFFSET, */
.bar2_limit = SKX_IMBAR1XLMT_OFFSET,
.bar2_xlat = SKX_IMBAR1XBASE_OFFSET,
};
int skx_poll_link(struct intel_ntb_dev *ndev)
{
u16 reg_val;
int rc;
ndev->reg->db_iowrite(ndev->db_link_mask,
ndev->self_mmio +
ndev->self_reg->db_clear);
rc = pci_read_config_word(ndev->ntb.pdev,
SKX_LINK_STATUS_OFFSET, &reg_val);
if (rc)
return 0;
if (reg_val == ndev->lnk_sta)
return 0;
ndev->lnk_sta = reg_val;
return 1;
}
static int skx_init_isr(struct intel_ntb_dev *ndev)
{
int i;
/*
* The MSIX vectors and the interrupt status bits are not lined up
* on Skylake. By default the link status bit is bit 32, however it
* is by default MSIX vector0. We need to fixup to line them up.
* The vectors at reset is 1-32,0. We need to reprogram to 0-32.
*/
for (i = 0; i < SKX_DB_MSIX_VECTOR_COUNT; i++)
iowrite8(i, ndev->self_mmio + SKX_INTVEC_OFFSET + i);
/* move link status down one as workaround */
if (ndev->hwerr_flags & NTB_HWERR_MSIX_VECTOR32_BAD) {
iowrite8(SKX_DB_MSIX_VECTOR_COUNT - 2,
ndev->self_mmio + SKX_INTVEC_OFFSET +
(SKX_DB_MSIX_VECTOR_COUNT - 1));
}
return ndev_init_isr(ndev, SKX_DB_MSIX_VECTOR_COUNT,
SKX_DB_MSIX_VECTOR_COUNT,
SKX_DB_MSIX_VECTOR_SHIFT,
SKX_DB_TOTAL_SHIFT);
}
static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev,
const struct intel_b2b_addr *addr,
const struct intel_b2b_addr *peer_addr)
{
struct pci_dev *pdev;
void __iomem *mmio;
phys_addr_t bar_addr;
pdev = ndev->ntb.pdev;
mmio = ndev->self_mmio;
/* setup incoming bar limits == base addrs (zero length windows) */
bar_addr = addr->bar2_addr64;
iowrite64(bar_addr, mmio + SKX_IMBAR1XLMT_OFFSET);
bar_addr = ioread64(mmio + SKX_IMBAR1XLMT_OFFSET);
dev_dbg(&pdev->dev, "IMBAR1XLMT %#018llx\n", bar_addr);
bar_addr = addr->bar4_addr64;
iowrite64(bar_addr, mmio + SKX_IMBAR2XLMT_OFFSET);
bar_addr = ioread64(mmio + SKX_IMBAR2XLMT_OFFSET);
dev_dbg(&pdev->dev, "IMBAR2XLMT %#018llx\n", bar_addr);
/* zero incoming translation addrs */
iowrite64(0, mmio + SKX_IMBAR1XBASE_OFFSET);
iowrite64(0, mmio + SKX_IMBAR2XBASE_OFFSET);
ndev->peer_mmio = ndev->self_mmio;
return 0;
}
static int skx_init_ntb(struct intel_ntb_dev *ndev)
{
int rc;
ndev->mw_count = XEON_MW_COUNT;
ndev->spad_count = SKX_SPAD_COUNT;
ndev->db_count = SKX_DB_COUNT;
ndev->db_link_mask = SKX_DB_LINK_BIT;
/* DB fixup for using 31 right now */
if (ndev->hwerr_flags & NTB_HWERR_MSIX_VECTOR32_BAD)
ndev->db_link_mask |= BIT_ULL(31);
switch (ndev->ntb.topo) {
case NTB_TOPO_B2B_USD:
case NTB_TOPO_B2B_DSD:
ndev->self_reg = &skx_pri_reg;
ndev->peer_reg = &skx_b2b_reg;
ndev->xlat_reg = &skx_sec_xlat;
if (ndev->ntb.topo == NTB_TOPO_B2B_USD) {
rc = skx_setup_b2b_mw(ndev,
&xeon_b2b_dsd_addr,
&xeon_b2b_usd_addr);
} else {
rc = skx_setup_b2b_mw(ndev,
&xeon_b2b_usd_addr,
&xeon_b2b_dsd_addr);
}
if (rc)
return rc;
/* Enable Bus Master and Memory Space on the secondary side */
iowrite16(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER,
ndev->self_mmio + SKX_SPCICMD_OFFSET);
break;
default:
return -EINVAL;
}
ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
ndev->reg->db_iowrite(ndev->db_valid_mask,
ndev->self_mmio +
ndev->self_reg->db_mask);
return 0;
}
int skx_init_dev(struct intel_ntb_dev *ndev)
{
struct pci_dev *pdev;
u8 ppd;
int rc;
pdev = ndev->ntb.pdev;
ndev->reg = &skx_reg;
rc = pci_read_config_byte(pdev, XEON_PPD_OFFSET, &ppd);
if (rc)
return -EIO;
ndev->ntb.topo = xeon_ppd_topo(ndev, ppd);
dev_dbg(&pdev->dev, "ppd %#x topo %s\n", ppd,
ntb_topo_string(ndev->ntb.topo));
if (ndev->ntb.topo == NTB_TOPO_NONE)
return -EINVAL;
ndev->hwerr_flags |= NTB_HWERR_MSIX_VECTOR32_BAD;
rc = skx_init_ntb(ndev);
if (rc)
return rc;
return skx_init_isr(ndev);
}
ssize_t ndev_ntb3_debugfs_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct intel_ntb_dev *ndev;
void __iomem *mmio;
char *buf;
size_t buf_size;
ssize_t ret, off;
union { u64 v64; u32 v32; u16 v16; } u;
ndev = filp->private_data;
mmio = ndev->self_mmio;
buf_size = min(count, 0x800ul);
buf = kmalloc(buf_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
off = 0;
off += scnprintf(buf + off, buf_size - off,
"NTB Device Information:\n");
off += scnprintf(buf + off, buf_size - off,
"Connection Topology -\t%s\n",
ntb_topo_string(ndev->ntb.topo));
off += scnprintf(buf + off, buf_size - off,
"NTB CTL -\t\t%#06x\n", ndev->ntb_ctl);
off += scnprintf(buf + off, buf_size - off,
"LNK STA -\t\t%#06x\n", ndev->lnk_sta);
if (!ndev->reg->link_is_up(ndev))
off += scnprintf(buf + off, buf_size - off,
"Link Status -\t\tDown\n");
else {
off += scnprintf(buf + off, buf_size - off,
"Link Status -\t\tUp\n");
off += scnprintf(buf + off, buf_size - off,
"Link Speed -\t\tPCI-E Gen %u\n",
NTB_LNK_STA_SPEED(ndev->lnk_sta));
off += scnprintf(buf + off, buf_size - off,
"Link Width -\t\tx%u\n",
NTB_LNK_STA_WIDTH(ndev->lnk_sta));
}
off += scnprintf(buf + off, buf_size - off,
"Memory Window Count -\t%u\n", ndev->mw_count);
off += scnprintf(buf + off, buf_size - off,
"Scratchpad Count -\t%u\n", ndev->spad_count);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Count -\t%u\n", ndev->db_count);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Vector Count -\t%u\n", ndev->db_vec_count);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Vector Shift -\t%u\n", ndev->db_vec_shift);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Valid Mask -\t%#llx\n", ndev->db_valid_mask);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Link Mask -\t%#llx\n", ndev->db_link_mask);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Mask Cached -\t%#llx\n", ndev->db_mask);
u.v64 = ndev_db_read(ndev, mmio + ndev->self_reg->db_mask);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Mask -\t\t%#llx\n", u.v64);
u.v64 = ndev_db_read(ndev, mmio + ndev->self_reg->db_bell);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Bell -\t\t%#llx\n", u.v64);
off += scnprintf(buf + off, buf_size - off,
"\nNTB Incoming XLAT:\n");
u.v64 = ioread64(mmio + SKX_IMBAR1XBASE_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"IMBAR1XBASE -\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_IMBAR2XBASE_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"IMBAR2XBASE -\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_IMBAR1XLMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"IMBAR1XLMT -\t\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_IMBAR2XLMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"IMBAR2XLMT -\t\t\t%#018llx\n", u.v64);
if (ntb_topo_is_b2b(ndev->ntb.topo)) {
off += scnprintf(buf + off, buf_size - off,
"\nNTB Outgoing B2B XLAT:\n");
u.v64 = ioread64(mmio + SKX_EMBAR1XBASE_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"EMBAR1XBASE -\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_EMBAR2XBASE_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"EMBAR2XBASE -\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_EMBAR1XLMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"EMBAR1XLMT -\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_EMBAR2XLMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"EMBAR2XLMT -\t\t%#018llx\n", u.v64);
off += scnprintf(buf + off, buf_size - off,
"\nNTB Secondary BAR:\n");
u.v64 = ioread64(mmio + SKX_EMBAR0_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"EMBAR0 -\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_EMBAR1_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"EMBAR1 -\t\t%#018llx\n", u.v64);
u.v64 = ioread64(mmio + SKX_EMBAR2_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"EMBAR2 -\t\t%#018llx\n", u.v64);
}
off += scnprintf(buf + off, buf_size - off,
"\nNTB Statistics:\n");
u.v16 = ioread16(mmio + SKX_USMEMMISS_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"Upstream Memory Miss -\t%u\n", u.v16);
off += scnprintf(buf + off, buf_size - off,
"\nNTB Hardware Errors:\n");
if (!pci_read_config_word(ndev->ntb.pdev,
SKX_DEVSTS_OFFSET, &u.v16))
off += scnprintf(buf + off, buf_size - off,
"DEVSTS -\t\t%#06x\n", u.v16);
if (!pci_read_config_word(ndev->ntb.pdev,
SKX_LINK_STATUS_OFFSET, &u.v16))
off += scnprintf(buf + off, buf_size - off,
"LNKSTS -\t\t%#06x\n", u.v16);
if (!pci_read_config_dword(ndev->ntb.pdev,
SKX_UNCERRSTS_OFFSET, &u.v32))
off += scnprintf(buf + off, buf_size - off,
"UNCERRSTS -\t\t%#06x\n", u.v32);
if (!pci_read_config_dword(ndev->ntb.pdev,
SKX_CORERRSTS_OFFSET, &u.v32))
off += scnprintf(buf + off, buf_size - off,
"CORERRSTS -\t\t%#06x\n", u.v32);
ret = simple_read_from_buffer(ubuf, count, offp, buf, off);
kfree(buf);
return ret;
}
static int intel_ntb3_link_enable(struct ntb_dev *ntb,
enum ntb_speed max_speed,
enum ntb_width max_width)
{
struct intel_ntb_dev *ndev;
u32 ntb_ctl;
ndev = container_of(ntb, struct intel_ntb_dev, ntb);
dev_dbg(&ntb->pdev->dev,
"Enabling link with max_speed %d max_width %d\n",
max_speed, max_width);
if (max_speed != NTB_SPEED_AUTO)
dev_dbg(&ntb->pdev->dev, "ignoring max_speed %d\n", max_speed);
if (max_width != NTB_WIDTH_AUTO)
dev_dbg(&ntb->pdev->dev, "ignoring max_width %d\n", max_width);
ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl);
ntb_ctl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK);
ntb_ctl |= NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP;
ntb_ctl |= NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP;
iowrite32(ntb_ctl, ndev->self_mmio + ndev->reg->ntb_ctl);
return 0;
}
static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int pidx, int idx,
dma_addr_t addr, resource_size_t size)
{
struct intel_ntb_dev *ndev = ntb_ndev(ntb);
unsigned long xlat_reg, limit_reg;
resource_size_t bar_size, mw_size;
void __iomem *mmio;
u64 base, limit, reg_val;
int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
if (idx >= ndev->b2b_idx && !ndev->b2b_off)
idx += 1;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
bar_size = pci_resource_len(ndev->ntb.pdev, bar);
if (idx == ndev->b2b_idx)
mw_size = bar_size - ndev->b2b_off;
else
mw_size = bar_size;
/* hardware requires that addr is aligned to bar size */
if (addr & (bar_size - 1))
return -EINVAL;
/* make sure the range fits in the usable mw size */
if (size > mw_size)
return -EINVAL;
mmio = ndev->self_mmio;
xlat_reg = ndev->xlat_reg->bar2_xlat + (idx * 0x10);
limit_reg = ndev->xlat_reg->bar2_limit + (idx * 0x10);
base = pci_resource_start(ndev->ntb.pdev, bar);
/* Set the limit if supported, if size is not mw_size */
if (limit_reg && size != mw_size)
limit = base + size;
else
limit = base + mw_size;
/* set and verify setting the translation address */
iowrite64(addr, mmio + xlat_reg);
reg_val = ioread64(mmio + xlat_reg);
if (reg_val != addr) {
iowrite64(0, mmio + xlat_reg);
return -EIO;
}
dev_dbg(&ntb->pdev->dev, "BAR %d IMBARXBASE: %#Lx\n", bar, reg_val);
/* set and verify setting the limit */
iowrite64(limit, mmio + limit_reg);
reg_val = ioread64(mmio + limit_reg);
if (reg_val != limit) {
iowrite64(base, mmio + limit_reg);
iowrite64(0, mmio + xlat_reg);
return -EIO;
}
dev_dbg(&ntb->pdev->dev, "BAR %d IMBARXLMT: %#Lx\n", bar, reg_val);
/* setup the EP */
limit_reg = ndev->xlat_reg->bar2_limit + (idx * 0x10) + 0x4000;
base = ioread64(mmio + SKX_EMBAR1_OFFSET + (8 * idx));
base &= ~0xf;
if (limit_reg && size != mw_size)
limit = base + size;
else
limit = base + mw_size;
/* set and verify setting the limit */
iowrite64(limit, mmio + limit_reg);
reg_val = ioread64(mmio + limit_reg);
if (reg_val != limit) {
iowrite64(base, mmio + limit_reg);
iowrite64(0, mmio + xlat_reg);
return -EIO;
}
dev_dbg(&ntb->pdev->dev, "BAR %d EMBARXLMT: %#Lx\n", bar, reg_val);
return 0;
}
static int intel_ntb3_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
{
struct intel_ntb_dev *ndev = ntb_ndev(ntb);
int bit;
if (db_bits & ~ndev->db_valid_mask)
return -EINVAL;
while (db_bits) {
bit = __ffs(db_bits);
iowrite32(1, ndev->peer_mmio +
ndev->peer_reg->db_bell + (bit * 4));
db_bits &= db_bits - 1;
}
return 0;
}
static u64 intel_ntb3_db_read(struct ntb_dev *ntb)
{
struct intel_ntb_dev *ndev = ntb_ndev(ntb);
return ndev_db_read(ndev,
ndev->self_mmio +
ndev->self_reg->db_clear);
}
static int intel_ntb3_db_clear(struct ntb_dev *ntb, u64 db_bits)
{
struct intel_ntb_dev *ndev = ntb_ndev(ntb);
return ndev_db_write(ndev, db_bits,
ndev->self_mmio +
ndev->self_reg->db_clear);
}
const struct ntb_dev_ops intel_ntb3_ops = {
.mw_count = intel_ntb_mw_count,
.mw_get_align = intel_ntb_mw_get_align,
.mw_set_trans = intel_ntb3_mw_set_trans,
.peer_mw_count = intel_ntb_peer_mw_count,
.peer_mw_get_addr = intel_ntb_peer_mw_get_addr,
.link_is_up = intel_ntb_link_is_up,
.link_enable = intel_ntb3_link_enable,
.link_disable = intel_ntb_link_disable,
.db_valid_mask = intel_ntb_db_valid_mask,
.db_vector_count = intel_ntb_db_vector_count,
.db_vector_mask = intel_ntb_db_vector_mask,
.db_read = intel_ntb3_db_read,
.db_clear = intel_ntb3_db_clear,
.db_set_mask = intel_ntb_db_set_mask,
.db_clear_mask = intel_ntb_db_clear_mask,
.peer_db_addr = intel_ntb_peer_db_addr,
.peer_db_set = intel_ntb3_peer_db_set,
.spad_is_unsafe = intel_ntb_spad_is_unsafe,
.spad_count = intel_ntb_spad_count,
.spad_read = intel_ntb_spad_read,
.spad_write = intel_ntb_spad_write,
.peer_spad_addr = intel_ntb_peer_spad_addr,
.peer_spad_read = intel_ntb_peer_spad_read,
.peer_spad_write = intel_ntb_peer_spad_write,
};