linux_dsm_epyc7002/include/linux/bpf_verifier.h

424 lines
15 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
#ifndef _LINUX_BPF_VERIFIER_H
#define _LINUX_BPF_VERIFIER_H 1
#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
#include <linux/tnum.h>
/* Maximum variable offset umax_value permitted when resolving memory accesses.
* In practice this is far bigger than any realistic pointer offset; this limit
* ensures that umax_value + (int)off + (int)size cannot overflow a u64.
*/
#define BPF_MAX_VAR_OFF (1 << 29)
/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
* that converting umax_value to int cannot overflow.
*/
#define BPF_MAX_VAR_SIZ (1 << 29)
/* Liveness marks, used for registers and spilled-regs (in stack slots).
* Read marks propagate upwards until they find a write mark; they record that
* "one of this state's descendants read this reg" (and therefore the reg is
* relevant for states_equal() checks).
* Write marks collect downwards and do not propagate; they record that "the
* straight-line code that reached this state (from its parent) wrote this reg"
* (and therefore that reads propagated from this state or its descendants
* should not propagate to its parent).
* A state with a write mark can receive read marks; it just won't propagate
* them to its parent, since the write mark is a property, not of the state,
* but of the link between it and its parent. See mark_reg_read() and
* mark_stack_slot_read() in kernel/bpf/verifier.c.
*/
enum bpf_reg_liveness {
REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
bpf: verifier: mark verified-insn with sub-register zext flag eBPF ISA specification requires high 32-bit cleared when low 32-bit sub-register is written. This applies to destination register of ALU32 etc. JIT back-ends must guarantee this semantic when doing code-gen. x86_64 and AArch64 ISA has the same semantics, so the corresponding JIT back-end doesn't need to do extra work. However, 32-bit arches (arm, x86, nfp etc.) and some other 64-bit arches (PowerPC, SPARC etc) need to do explicit zero extension to meet this requirement, otherwise code like the following will fail. u64_value = (u64) u32_value ... other uses of u64_value This is because compiler could exploit the semantic described above and save those zero extensions for extending u32_value to u64_value, these JIT back-ends are expected to guarantee this through inserting extra zero extensions which however could be a significant increase on the code size. Some benchmarks show there could be ~40% sub-register writes out of total insns, meaning at least ~40% extra code-gen. One observation is these extra zero extensions are not always necessary. Take above code snippet for example, it is possible u32_value will never be casted into a u64, the value of high 32-bit of u32_value then could be ignored and extra zero extension could be eliminated. This patch implements this idea, insns defining sub-registers will be marked when the high 32-bit of the defined sub-register matters. For those unmarked insns, it is safe to eliminate high 32-bit clearnace for them. Algo: - Split read flags into READ32 and READ64. - Record index of insn that does sub-register write. Keep the index inside reg state and update it during verifier insn walking. - A full register read on a sub-register marks its definition insn as needing zero extension on dst register. A new sub-register write overrides the old one. - When propagating read64 during path pruning, also mark any insn defining a sub-register that is read in the pruned path as full-register. Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-25 05:25:12 +07:00
REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
};
struct bpf_reg_state {
/* Ordering of fields matters. See states_equal() */
enum bpf_reg_type type;
union {
/* valid when type == PTR_TO_PACKET */
u16 range;
/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
* PTR_TO_MAP_VALUE_OR_NULL
*/
struct bpf_map *map_ptr;
/* Max size from any of the above. */
unsigned long raw;
};
/* Fixed part of pointer offset, pointer types only */
s32 off;
/* For PTR_TO_PACKET, used to find other pointers with the same variable
* offset, so they can share range knowledge.
* For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
* came from, when one is tested for != NULL.
* For PTR_TO_SOCKET this is used to share which pointers retain the
* same reference to the socket, to determine proper reference freeing.
*/
u32 id;
bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release Lorenz Bauer [thanks!] reported that a ptr returned by bpf_tcp_sock(sk) can still be accessed after bpf_sk_release(sk). Both bpf_tcp_sock() and bpf_sk_fullsock() have the same issue. This patch addresses them together. A simple reproducer looks like this: sk = bpf_sk_lookup_tcp(); /* if (!sk) ... */ tp = bpf_tcp_sock(sk); /* if (!tp) ... */ bpf_sk_release(sk); snd_cwnd = tp->snd_cwnd; /* oops! The verifier does not complain. */ The problem is the verifier did not scrub the register's states of the tcp_sock ptr (tp) after bpf_sk_release(sk). [ Note that when calling bpf_tcp_sock(sk), the sk is not always refcount-acquired. e.g. bpf_tcp_sock(skb->sk). The verifier works fine for this case. ] Currently, the verifier does not track if a helper's return ptr (in REG_0) is "carry"-ing one of its argument's refcount status. To carry this info, the reg1->id needs to be stored in reg0. One approach was tried, like "reg0->id = reg1->id", when calling "bpf_tcp_sock()". The main idea was to avoid adding another "ref_obj_id" for the same reg. However, overlapping the NULL marking and ref tracking purpose in one "id" does not work well: ref_sk = bpf_sk_lookup_tcp(); fullsock = bpf_sk_fullsock(ref_sk); tp = bpf_tcp_sock(ref_sk); if (!fullsock) { bpf_sk_release(ref_sk); return 0; } /* fullsock_reg->id is marked for NOT-NULL. * Same for tp_reg->id because they have the same id. */ /* oops. verifier did not complain about the missing !tp check */ snd_cwnd = tp->snd_cwnd; Hence, a new "ref_obj_id" is needed in "struct bpf_reg_state". With a new ref_obj_id, when bpf_sk_release(sk) is called, the verifier can scrub all reg states which has a ref_obj_id match. It is done with the changes in release_reg_references() in this patch. While fixing it, sk_to_full_sk() is removed from bpf_tcp_sock() and bpf_sk_fullsock() to avoid these helpers from returning another ptr. It will make bpf_sk_release(tp) possible: sk = bpf_sk_lookup_tcp(); /* if (!sk) ... */ tp = bpf_tcp_sock(sk); /* if (!tp) ... */ bpf_sk_release(tp); A separate helper "bpf_get_listener_sock()" will be added in a later patch to do sk_to_full_sk(). Misc change notes: - To allow bpf_sk_release(tp), the arg of bpf_sk_release() is changed from ARG_PTR_TO_SOCKET to ARG_PTR_TO_SOCK_COMMON. ARG_PTR_TO_SOCKET is removed from bpf.h since no helper is using it. - arg_type_is_refcounted() is renamed to arg_type_may_be_refcounted() because ARG_PTR_TO_SOCK_COMMON is the only one and skb->sk is not refcounted. All bpf_sk_release(), bpf_sk_fullsock() and bpf_tcp_sock() take ARG_PTR_TO_SOCK_COMMON. - check_refcount_ok() ensures is_acquire_function() cannot take arg_type_may_be_refcounted() as its argument. - The check_func_arg() can only allow one refcount-ed arg. It is guaranteed by check_refcount_ok() which ensures at most one arg can be refcounted. Hence, it is a verifier internal error if >1 refcount arg found in check_func_arg(). - In release_reference(), release_reference_state() is called first to ensure a match on "reg->ref_obj_id" can be found before scrubbing the reg states with release_reg_references(). - reg_is_refcounted() is no longer needed. 1. In mark_ptr_or_null_regs(), its usage is replaced by "ref_obj_id && ref_obj_id == id" because, when is_null == true, release_reference_state() should only be called on the ref_obj_id obtained by a acquire helper (i.e. is_acquire_function() == true). Otherwise, the following would happen: sk = bpf_sk_lookup_tcp(); /* if (!sk) { ... } */ fullsock = bpf_sk_fullsock(sk); if (!fullsock) { /* * release_reference_state(fullsock_reg->ref_obj_id) * where fullsock_reg->ref_obj_id == sk_reg->ref_obj_id. * * Hence, the following bpf_sk_release(sk) will fail * because the ref state has already been released in the * earlier release_reference_state(fullsock_reg->ref_obj_id). */ bpf_sk_release(sk); } 2. In release_reg_references(), the current reg_is_refcounted() call is unnecessary because the id check is enough. - The type_is_refcounted() and type_is_refcounted_or_null() are no longer needed also because reg_is_refcounted() is removed. Fixes: 655a51e536c0 ("bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock") Reported-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-13 00:23:02 +07:00
/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
* from a pointer-cast helper, bpf_sk_fullsock() and
* bpf_tcp_sock().
*
* Consider the following where "sk" is a reference counted
* pointer returned from "sk = bpf_sk_lookup_tcp();":
*
* 1: sk = bpf_sk_lookup_tcp();
* 2: if (!sk) { return 0; }
* 3: fullsock = bpf_sk_fullsock(sk);
* 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
* 5: tp = bpf_tcp_sock(fullsock);
* 6: if (!tp) { bpf_sk_release(sk); return 0; }
* 7: bpf_sk_release(sk);
* 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
*
* After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
* "tp" ptr should be invalidated also. In order to do that,
* the reg holding "fullsock" and "sk" need to remember
* the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
* such that the verifier can reset all regs which have
* ref_obj_id matching the sk_reg->id.
*
* sk_reg->ref_obj_id is set to sk_reg->id at line 1.
* sk_reg->id will stay as NULL-marking purpose only.
* After NULL-marking is done, sk_reg->id can be reset to 0.
*
* After "fullsock = bpf_sk_fullsock(sk);" at line 3,
* fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
*
* After "tp = bpf_tcp_sock(fullsock);" at line 5,
* tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
* which is the same as sk_reg->ref_obj_id.
*
* From the verifier perspective, if sk, fullsock and tp
* are not NULL, they are the same ptr with different
* reg->type. In particular, bpf_sk_release(tp) is also
* allowed and has the same effect as bpf_sk_release(sk).
*/
u32 ref_obj_id;
/* For scalar types (SCALAR_VALUE), this represents our knowledge of
* the actual value.
* For pointer types, this represents the variable part of the offset
* from the pointed-to object, and is shared with all bpf_reg_states
* with the same id as us.
*/
struct tnum var_off;
/* Used to determine if any memory access using this register will
* result in a bad access.
* These refer to the same value as var_off, not necessarily the actual
* contents of the register.
*/
s64 smin_value; /* minimum possible (s64)value */
s64 smax_value; /* maximum possible (s64)value */
u64 umin_value; /* minimum possible (u64)value */
u64 umax_value; /* maximum possible (u64)value */
/* parentage chain for liveness checking */
struct bpf_reg_state *parent;
bpf: introduce function calls (verification) Allow arbitrary function calls from bpf function to another bpf function. To recognize such set of bpf functions the verifier does: 1. runs control flow analysis to detect function boundaries 2. proceeds with verification of all functions starting from main(root) function It recognizes that the stack of the caller can be accessed by the callee (if the caller passed a pointer to its stack to the callee) and the callee can store map_value and other pointers into the stack of the caller. 3. keeps track of the stack_depth of each function to make sure that total stack depth is still less than 512 bytes 4. disallows pointers to the callee stack to be stored into the caller stack, since they will be invalid as soon as the callee returns 5. to reuse all of the existing state_pruning logic each function call is considered to be independent call from the verifier point of view. The verifier pretends to inline all function calls it sees are being called. It stores the callsite instruction index as part of the state to make sure that two calls to the same callee from two different places in the caller will be different from state pruning point of view 6. more safety checks are added to liveness analysis Implementation details: . struct bpf_verifier_state is now consists of all stack frames that led to this function . struct bpf_func_state represent one stack frame. It consists of registers in the given frame and its stack . propagate_liveness() logic had a premature optimization where mark_reg_read() and mark_stack_slot_read() were manually inlined with loop iterating over parents for each register or stack slot. Undo this optimization to reuse more complex mark_*_read() logic . skip_callee() logic is not necessary from safety point of view, but without it mark_*_read() markings become too conservative, since after returning from the funciton call a read of r6-r9 will incorrectly propagate the read marks into callee causing inefficient pruning later . mark_*_read() logic is now aware of control flow which makes it more complex. In the future the plan is to rewrite liveness to be hierarchical. So that liveness can be done within basic block only and control flow will be responsible for propagation of liveness information along cfg and between calls. . tail_calls and ld_abs insns are not allowed in the programs with bpf-to-bpf calls . returning stack pointers to the caller or storing them into stack frame of the caller is not allowed Testing: . no difference in cilium processed_insn numbers . large number of tests follows in next patches Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:06 +07:00
/* Inside the callee two registers can be both PTR_TO_STACK like
* R1=fp-8 and R2=fp-8, but one of them points to this function stack
* while another to the caller's stack. To differentiate them 'frameno'
* is used which is an index in bpf_verifier_state->frame[] array
* pointing to bpf_func_state.
*/
u32 frameno;
bpf: verifier: mark verified-insn with sub-register zext flag eBPF ISA specification requires high 32-bit cleared when low 32-bit sub-register is written. This applies to destination register of ALU32 etc. JIT back-ends must guarantee this semantic when doing code-gen. x86_64 and AArch64 ISA has the same semantics, so the corresponding JIT back-end doesn't need to do extra work. However, 32-bit arches (arm, x86, nfp etc.) and some other 64-bit arches (PowerPC, SPARC etc) need to do explicit zero extension to meet this requirement, otherwise code like the following will fail. u64_value = (u64) u32_value ... other uses of u64_value This is because compiler could exploit the semantic described above and save those zero extensions for extending u32_value to u64_value, these JIT back-ends are expected to guarantee this through inserting extra zero extensions which however could be a significant increase on the code size. Some benchmarks show there could be ~40% sub-register writes out of total insns, meaning at least ~40% extra code-gen. One observation is these extra zero extensions are not always necessary. Take above code snippet for example, it is possible u32_value will never be casted into a u64, the value of high 32-bit of u32_value then could be ignored and extra zero extension could be eliminated. This patch implements this idea, insns defining sub-registers will be marked when the high 32-bit of the defined sub-register matters. For those unmarked insns, it is safe to eliminate high 32-bit clearnace for them. Algo: - Split read flags into READ32 and READ64. - Record index of insn that does sub-register write. Keep the index inside reg state and update it during verifier insn walking. - A full register read on a sub-register marks its definition insn as needing zero extension on dst register. A new sub-register write overrides the old one. - When propagating read64 during path pruning, also mark any insn defining a sub-register that is read in the pruned path as full-register. Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-25 05:25:12 +07:00
/* Tracks subreg definition. The stored value is the insn_idx of the
* writing insn. This is safe because subreg_def is used before any insn
* patching which only happens after main verification finished.
*/
s32 subreg_def;
enum bpf_reg_liveness live;
bpf: precise scalar_value tracking Introduce precision tracking logic that helps cilium programs the most: old clang old clang new clang new clang with all patches with all patches bpf_lb-DLB_L3.o 1838 2283 1923 1863 bpf_lb-DLB_L4.o 3218 2657 3077 2468 bpf_lb-DUNKNOWN.o 1064 545 1062 544 bpf_lxc-DDROP_ALL.o 26935 23045 166729 22629 bpf_lxc-DUNKNOWN.o 34439 35240 174607 28805 bpf_netdev.o 9721 8753 8407 6801 bpf_overlay.o 6184 7901 5420 4754 bpf_lxc_jit.o 39389 50925 39389 50925 Consider code: 654: (85) call bpf_get_hash_recalc#34 655: (bf) r7 = r0 656: (15) if r8 == 0x0 goto pc+29 657: (bf) r2 = r10 658: (07) r2 += -48 659: (18) r1 = 0xffff8881e41e1b00 661: (85) call bpf_map_lookup_elem#1 662: (15) if r0 == 0x0 goto pc+23 663: (69) r1 = *(u16 *)(r0 +0) 664: (15) if r1 == 0x0 goto pc+21 665: (bf) r8 = r7 666: (57) r8 &= 65535 667: (bf) r2 = r8 668: (3f) r2 /= r1 669: (2f) r2 *= r1 670: (bf) r1 = r8 671: (1f) r1 -= r2 672: (57) r1 &= 255 673: (25) if r1 > 0x1e goto pc+12 R0=map_value(id=0,off=0,ks=20,vs=64,imm=0) R1_w=inv(id=0,umax_value=30,var_off=(0x0; 0x1f)) 674: (67) r1 <<= 1 675: (0f) r0 += r1 At this point the verifier will notice that scalar R1 is used in map pointer adjustment. R1 has to be precise for later operations on R0 to be validated properly. The verifier will backtrack the above code in the following way: last_idx 675 first_idx 664 regs=2 stack=0 before 675: (0f) r0 += r1 // started backtracking R1 regs=2 is a bitmask regs=2 stack=0 before 674: (67) r1 <<= 1 regs=2 stack=0 before 673: (25) if r1 > 0x1e goto pc+12 regs=2 stack=0 before 672: (57) r1 &= 255 regs=2 stack=0 before 671: (1f) r1 -= r2 // now both R1 and R2 has to be precise -> regs=6 mask regs=6 stack=0 before 670: (bf) r1 = r8 // after this insn R8 and R2 has to be precise regs=104 stack=0 before 669: (2f) r2 *= r1 // after this one R8, R2, and R1 regs=106 stack=0 before 668: (3f) r2 /= r1 regs=106 stack=0 before 667: (bf) r2 = r8 regs=102 stack=0 before 666: (57) r8 &= 65535 regs=102 stack=0 before 665: (bf) r8 = r7 regs=82 stack=0 before 664: (15) if r1 == 0x0 goto pc+21 // this is the end of verifier state. The following regs will be marked precised: R1_rw=invP(id=0,umax_value=65535,var_off=(0x0; 0xffff)) R7_rw=invP(id=0) parent didn't have regs=82 stack=0 marks // so backtracking continues into parent state last_idx 663 first_idx 655 regs=82 stack=0 before 663: (69) r1 = *(u16 *)(r0 +0) // R1 was assigned no need to track it further regs=80 stack=0 before 662: (15) if r0 == 0x0 goto pc+23 // keep tracking R7 regs=80 stack=0 before 661: (85) call bpf_map_lookup_elem#1 // keep tracking R7 regs=80 stack=0 before 659: (18) r1 = 0xffff8881e41e1b00 regs=80 stack=0 before 658: (07) r2 += -48 regs=80 stack=0 before 657: (bf) r2 = r10 regs=80 stack=0 before 656: (15) if r8 == 0x0 goto pc+29 regs=80 stack=0 before 655: (bf) r7 = r0 // here the assignment into R7 // mark R0 to be precise: R0_rw=invP(id=0) parent didn't have regs=1 stack=0 marks // regs=1 -> tracking R0 last_idx 654 first_idx 644 regs=1 stack=0 before 654: (85) call bpf_get_hash_recalc#34 // and in the parent frame it was a return value // nothing further to backtrack Two scalar registers not marked precise are equivalent from state pruning point of view. More details in the patch comments. It doesn't support bpf2bpf calls yet and enabled for root only. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-06-16 02:12:25 +07:00
/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
bool precise;
};
enum bpf_stack_slot_type {
STACK_INVALID, /* nothing was stored in this stack slot */
STACK_SPILL, /* register spilled into stack */
bpf: teach verifier to recognize zero initialized stack programs with function calls are often passing various pointers via stack. When all calls are inlined llvm flattens stack accesses and optimizes away extra branches. When functions are not inlined it becomes the job of the verifier to recognize zero initialized stack to avoid exploring paths that program will not take. The following program would fail otherwise: ptr = &buffer_on_stack; *ptr = 0; ... func_call(.., ptr, ...) { if (..) *ptr = bpf_map_lookup(); } ... if (*ptr != 0) { // Access (*ptr)->field is valid. // Without stack_zero tracking such (*ptr)->field access // will be rejected } since stack slots are no longer uniform invalid | spill | misc add liveness marking to all slots, but do it in 8 byte chunks. So if nothing was read or written in [fp-16, fp-9] range it will be marked as LIVE_NONE. If any byte in that range was read, it will be marked LIVE_READ and stacksafe() check will perform byte-by-byte verification. If all bytes in the range were written the slot will be marked as LIVE_WRITTEN. This significantly speeds up state equality comparison and reduces total number of states processed. before after bpf_lb-DLB_L3.o 2051 2003 bpf_lb-DLB_L4.o 3287 3164 bpf_lb-DUNKNOWN.o 1080 1080 bpf_lxc-DDROP_ALL.o 24980 12361 bpf_lxc-DUNKNOWN.o 34308 16605 bpf_netdev.o 15404 10962 bpf_overlay.o 7191 6679 Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:08 +07:00
STACK_MISC, /* BPF program wrote some data into this slot */
STACK_ZERO, /* BPF program wrote constant zero */
};
#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
struct bpf_stack_state {
struct bpf_reg_state spilled_ptr;
u8 slot_type[BPF_REG_SIZE];
};
struct bpf_reference_state {
/* Track each reference created with a unique id, even if the same
* instruction creates the reference multiple times (eg, via CALL).
*/
int id;
/* Instruction where the allocation of this reference occurred. This
* is used purely to inform the user of a reference leak.
*/
int insn_idx;
};
/* state of the program:
* type of all registers and stack info
*/
bpf: introduce function calls (verification) Allow arbitrary function calls from bpf function to another bpf function. To recognize such set of bpf functions the verifier does: 1. runs control flow analysis to detect function boundaries 2. proceeds with verification of all functions starting from main(root) function It recognizes that the stack of the caller can be accessed by the callee (if the caller passed a pointer to its stack to the callee) and the callee can store map_value and other pointers into the stack of the caller. 3. keeps track of the stack_depth of each function to make sure that total stack depth is still less than 512 bytes 4. disallows pointers to the callee stack to be stored into the caller stack, since they will be invalid as soon as the callee returns 5. to reuse all of the existing state_pruning logic each function call is considered to be independent call from the verifier point of view. The verifier pretends to inline all function calls it sees are being called. It stores the callsite instruction index as part of the state to make sure that two calls to the same callee from two different places in the caller will be different from state pruning point of view 6. more safety checks are added to liveness analysis Implementation details: . struct bpf_verifier_state is now consists of all stack frames that led to this function . struct bpf_func_state represent one stack frame. It consists of registers in the given frame and its stack . propagate_liveness() logic had a premature optimization where mark_reg_read() and mark_stack_slot_read() were manually inlined with loop iterating over parents for each register or stack slot. Undo this optimization to reuse more complex mark_*_read() logic . skip_callee() logic is not necessary from safety point of view, but without it mark_*_read() markings become too conservative, since after returning from the funciton call a read of r6-r9 will incorrectly propagate the read marks into callee causing inefficient pruning later . mark_*_read() logic is now aware of control flow which makes it more complex. In the future the plan is to rewrite liveness to be hierarchical. So that liveness can be done within basic block only and control flow will be responsible for propagation of liveness information along cfg and between calls. . tail_calls and ld_abs insns are not allowed in the programs with bpf-to-bpf calls . returning stack pointers to the caller or storing them into stack frame of the caller is not allowed Testing: . no difference in cilium processed_insn numbers . large number of tests follows in next patches Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:06 +07:00
struct bpf_func_state {
struct bpf_reg_state regs[MAX_BPF_REG];
bpf: introduce function calls (verification) Allow arbitrary function calls from bpf function to another bpf function. To recognize such set of bpf functions the verifier does: 1. runs control flow analysis to detect function boundaries 2. proceeds with verification of all functions starting from main(root) function It recognizes that the stack of the caller can be accessed by the callee (if the caller passed a pointer to its stack to the callee) and the callee can store map_value and other pointers into the stack of the caller. 3. keeps track of the stack_depth of each function to make sure that total stack depth is still less than 512 bytes 4. disallows pointers to the callee stack to be stored into the caller stack, since they will be invalid as soon as the callee returns 5. to reuse all of the existing state_pruning logic each function call is considered to be independent call from the verifier point of view. The verifier pretends to inline all function calls it sees are being called. It stores the callsite instruction index as part of the state to make sure that two calls to the same callee from two different places in the caller will be different from state pruning point of view 6. more safety checks are added to liveness analysis Implementation details: . struct bpf_verifier_state is now consists of all stack frames that led to this function . struct bpf_func_state represent one stack frame. It consists of registers in the given frame and its stack . propagate_liveness() logic had a premature optimization where mark_reg_read() and mark_stack_slot_read() were manually inlined with loop iterating over parents for each register or stack slot. Undo this optimization to reuse more complex mark_*_read() logic . skip_callee() logic is not necessary from safety point of view, but without it mark_*_read() markings become too conservative, since after returning from the funciton call a read of r6-r9 will incorrectly propagate the read marks into callee causing inefficient pruning later . mark_*_read() logic is now aware of control flow which makes it more complex. In the future the plan is to rewrite liveness to be hierarchical. So that liveness can be done within basic block only and control flow will be responsible for propagation of liveness information along cfg and between calls. . tail_calls and ld_abs insns are not allowed in the programs with bpf-to-bpf calls . returning stack pointers to the caller or storing them into stack frame of the caller is not allowed Testing: . no difference in cilium processed_insn numbers . large number of tests follows in next patches Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:06 +07:00
/* index of call instruction that called into this func */
int callsite;
/* stack frame number of this function state from pov of
* enclosing bpf_verifier_state.
* 0 = main function, 1 = first callee.
*/
u32 frameno;
/* subprog number == index within subprog_stack_depth
* zero == main subprog
*/
u32 subprogno;
/* The following fields should be last. See copy_func_state() */
int acquired_refs;
struct bpf_reference_state *refs;
int allocated_stack;
struct bpf_stack_state *stack;
};
bpf: precise scalar_value tracking Introduce precision tracking logic that helps cilium programs the most: old clang old clang new clang new clang with all patches with all patches bpf_lb-DLB_L3.o 1838 2283 1923 1863 bpf_lb-DLB_L4.o 3218 2657 3077 2468 bpf_lb-DUNKNOWN.o 1064 545 1062 544 bpf_lxc-DDROP_ALL.o 26935 23045 166729 22629 bpf_lxc-DUNKNOWN.o 34439 35240 174607 28805 bpf_netdev.o 9721 8753 8407 6801 bpf_overlay.o 6184 7901 5420 4754 bpf_lxc_jit.o 39389 50925 39389 50925 Consider code: 654: (85) call bpf_get_hash_recalc#34 655: (bf) r7 = r0 656: (15) if r8 == 0x0 goto pc+29 657: (bf) r2 = r10 658: (07) r2 += -48 659: (18) r1 = 0xffff8881e41e1b00 661: (85) call bpf_map_lookup_elem#1 662: (15) if r0 == 0x0 goto pc+23 663: (69) r1 = *(u16 *)(r0 +0) 664: (15) if r1 == 0x0 goto pc+21 665: (bf) r8 = r7 666: (57) r8 &= 65535 667: (bf) r2 = r8 668: (3f) r2 /= r1 669: (2f) r2 *= r1 670: (bf) r1 = r8 671: (1f) r1 -= r2 672: (57) r1 &= 255 673: (25) if r1 > 0x1e goto pc+12 R0=map_value(id=0,off=0,ks=20,vs=64,imm=0) R1_w=inv(id=0,umax_value=30,var_off=(0x0; 0x1f)) 674: (67) r1 <<= 1 675: (0f) r0 += r1 At this point the verifier will notice that scalar R1 is used in map pointer adjustment. R1 has to be precise for later operations on R0 to be validated properly. The verifier will backtrack the above code in the following way: last_idx 675 first_idx 664 regs=2 stack=0 before 675: (0f) r0 += r1 // started backtracking R1 regs=2 is a bitmask regs=2 stack=0 before 674: (67) r1 <<= 1 regs=2 stack=0 before 673: (25) if r1 > 0x1e goto pc+12 regs=2 stack=0 before 672: (57) r1 &= 255 regs=2 stack=0 before 671: (1f) r1 -= r2 // now both R1 and R2 has to be precise -> regs=6 mask regs=6 stack=0 before 670: (bf) r1 = r8 // after this insn R8 and R2 has to be precise regs=104 stack=0 before 669: (2f) r2 *= r1 // after this one R8, R2, and R1 regs=106 stack=0 before 668: (3f) r2 /= r1 regs=106 stack=0 before 667: (bf) r2 = r8 regs=102 stack=0 before 666: (57) r8 &= 65535 regs=102 stack=0 before 665: (bf) r8 = r7 regs=82 stack=0 before 664: (15) if r1 == 0x0 goto pc+21 // this is the end of verifier state. The following regs will be marked precised: R1_rw=invP(id=0,umax_value=65535,var_off=(0x0; 0xffff)) R7_rw=invP(id=0) parent didn't have regs=82 stack=0 marks // so backtracking continues into parent state last_idx 663 first_idx 655 regs=82 stack=0 before 663: (69) r1 = *(u16 *)(r0 +0) // R1 was assigned no need to track it further regs=80 stack=0 before 662: (15) if r0 == 0x0 goto pc+23 // keep tracking R7 regs=80 stack=0 before 661: (85) call bpf_map_lookup_elem#1 // keep tracking R7 regs=80 stack=0 before 659: (18) r1 = 0xffff8881e41e1b00 regs=80 stack=0 before 658: (07) r2 += -48 regs=80 stack=0 before 657: (bf) r2 = r10 regs=80 stack=0 before 656: (15) if r8 == 0x0 goto pc+29 regs=80 stack=0 before 655: (bf) r7 = r0 // here the assignment into R7 // mark R0 to be precise: R0_rw=invP(id=0) parent didn't have regs=1 stack=0 marks // regs=1 -> tracking R0 last_idx 654 first_idx 644 regs=1 stack=0 before 654: (85) call bpf_get_hash_recalc#34 // and in the parent frame it was a return value // nothing further to backtrack Two scalar registers not marked precise are equivalent from state pruning point of view. More details in the patch comments. It doesn't support bpf2bpf calls yet and enabled for root only. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-06-16 02:12:25 +07:00
struct bpf_idx_pair {
u32 prev_idx;
u32 idx;
};
bpf: introduce function calls (verification) Allow arbitrary function calls from bpf function to another bpf function. To recognize such set of bpf functions the verifier does: 1. runs control flow analysis to detect function boundaries 2. proceeds with verification of all functions starting from main(root) function It recognizes that the stack of the caller can be accessed by the callee (if the caller passed a pointer to its stack to the callee) and the callee can store map_value and other pointers into the stack of the caller. 3. keeps track of the stack_depth of each function to make sure that total stack depth is still less than 512 bytes 4. disallows pointers to the callee stack to be stored into the caller stack, since they will be invalid as soon as the callee returns 5. to reuse all of the existing state_pruning logic each function call is considered to be independent call from the verifier point of view. The verifier pretends to inline all function calls it sees are being called. It stores the callsite instruction index as part of the state to make sure that two calls to the same callee from two different places in the caller will be different from state pruning point of view 6. more safety checks are added to liveness analysis Implementation details: . struct bpf_verifier_state is now consists of all stack frames that led to this function . struct bpf_func_state represent one stack frame. It consists of registers in the given frame and its stack . propagate_liveness() logic had a premature optimization where mark_reg_read() and mark_stack_slot_read() were manually inlined with loop iterating over parents for each register or stack slot. Undo this optimization to reuse more complex mark_*_read() logic . skip_callee() logic is not necessary from safety point of view, but without it mark_*_read() markings become too conservative, since after returning from the funciton call a read of r6-r9 will incorrectly propagate the read marks into callee causing inefficient pruning later . mark_*_read() logic is now aware of control flow which makes it more complex. In the future the plan is to rewrite liveness to be hierarchical. So that liveness can be done within basic block only and control flow will be responsible for propagation of liveness information along cfg and between calls. . tail_calls and ld_abs insns are not allowed in the programs with bpf-to-bpf calls . returning stack pointers to the caller or storing them into stack frame of the caller is not allowed Testing: . no difference in cilium processed_insn numbers . large number of tests follows in next patches Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:06 +07:00
#define MAX_CALL_FRAMES 8
struct bpf_verifier_state {
/* call stack tracking */
struct bpf_func_state *frame[MAX_CALL_FRAMES];
struct bpf_verifier_state *parent;
/*
* 'branches' field is the number of branches left to explore:
* 0 - all possible paths from this state reached bpf_exit or
* were safely pruned
* 1 - at least one path is being explored.
* This state hasn't reached bpf_exit
* 2 - at least two paths are being explored.
* This state is an immediate parent of two children.
* One is fallthrough branch with branches==1 and another
* state is pushed into stack (to be explored later) also with
* branches==1. The parent of this state has branches==1.
* The verifier state tree connected via 'parent' pointer looks like:
* 1
* 1
* 2 -> 1 (first 'if' pushed into stack)
* 1
* 2 -> 1 (second 'if' pushed into stack)
* 1
* 1
* 1 bpf_exit.
*
* Once do_check() reaches bpf_exit, it calls update_branch_counts()
* and the verifier state tree will look:
* 1
* 1
* 2 -> 1 (first 'if' pushed into stack)
* 1
* 1 -> 1 (second 'if' pushed into stack)
* 0
* 0
* 0 bpf_exit.
* After pop_stack() the do_check() will resume at second 'if'.
*
* If is_state_visited() sees a state with branches > 0 it means
* there is a loop. If such state is exactly equal to the current state
* it's an infinite loop. Note states_equal() checks for states
* equvalency, so two states being 'states_equal' does not mean
* infinite loop. The exact comparison is provided by
* states_maybe_looping() function. It's a stronger pre-check and
* much faster than states_equal().
*
* This algorithm may not find all possible infinite loops or
* loop iteration count may be too high.
* In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
*/
u32 branches;
bpf: convert explored_states to hash table All prune points inside a callee bpf function most likely will have different callsites. For example, if function foo() is called from two callsites the half of explored states in all prune points in foo() will be useless for subsequent walking of one of those callsites. Fortunately explored_states pruning heuristics keeps the number of states per prune point small, but walking these states is still a waste of cpu time when the callsite of the current state is different from the callsite of the explored state. To improve pruning logic convert explored_states into hash table and use simple insn_idx ^ callsite hash to select hash bucket. This optimization has no effect on programs without bpf2bpf calls and drastically improves programs with calls. In the later case it reduces total memory consumption in 1M scale tests by almost 3 times (peak_states drops from 5752 to 2016). Care should be taken when comparing the states for equivalency. Since the same hash bucket can now contain states with different indices the insn_idx has to be part of verifier_state and compared. Different hash table sizes and different hash functions were explored, but the results were not significantly better vs this patch. They can be improved in the future. Hit/miss heuristic is not counting index miscompare as a miss. Otherwise verifier stats become unstable when experimenting with different hash functions. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-05-22 10:17:07 +07:00
u32 insn_idx;
bpf: introduce function calls (verification) Allow arbitrary function calls from bpf function to another bpf function. To recognize such set of bpf functions the verifier does: 1. runs control flow analysis to detect function boundaries 2. proceeds with verification of all functions starting from main(root) function It recognizes that the stack of the caller can be accessed by the callee (if the caller passed a pointer to its stack to the callee) and the callee can store map_value and other pointers into the stack of the caller. 3. keeps track of the stack_depth of each function to make sure that total stack depth is still less than 512 bytes 4. disallows pointers to the callee stack to be stored into the caller stack, since they will be invalid as soon as the callee returns 5. to reuse all of the existing state_pruning logic each function call is considered to be independent call from the verifier point of view. The verifier pretends to inline all function calls it sees are being called. It stores the callsite instruction index as part of the state to make sure that two calls to the same callee from two different places in the caller will be different from state pruning point of view 6. more safety checks are added to liveness analysis Implementation details: . struct bpf_verifier_state is now consists of all stack frames that led to this function . struct bpf_func_state represent one stack frame. It consists of registers in the given frame and its stack . propagate_liveness() logic had a premature optimization where mark_reg_read() and mark_stack_slot_read() were manually inlined with loop iterating over parents for each register or stack slot. Undo this optimization to reuse more complex mark_*_read() logic . skip_callee() logic is not necessary from safety point of view, but without it mark_*_read() markings become too conservative, since after returning from the funciton call a read of r6-r9 will incorrectly propagate the read marks into callee causing inefficient pruning later . mark_*_read() logic is now aware of control flow which makes it more complex. In the future the plan is to rewrite liveness to be hierarchical. So that liveness can be done within basic block only and control flow will be responsible for propagation of liveness information along cfg and between calls. . tail_calls and ld_abs insns are not allowed in the programs with bpf-to-bpf calls . returning stack pointers to the caller or storing them into stack frame of the caller is not allowed Testing: . no difference in cilium processed_insn numbers . large number of tests follows in next patches Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:06 +07:00
u32 curframe;
bpf: introduce bpf_spin_lock Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let bpf program serialize access to other variables. Example: struct hash_elem { int cnt; struct bpf_spin_lock lock; }; struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key); if (val) { bpf_spin_lock(&val->lock); val->cnt++; bpf_spin_unlock(&val->lock); } Restrictions and safety checks: - bpf_spin_lock is only allowed inside HASH and ARRAY maps. - BTF description of the map is mandatory for safety analysis. - bpf program can take one bpf_spin_lock at a time, since two or more can cause dead locks. - only one 'struct bpf_spin_lock' is allowed per map element. It drastically simplifies implementation yet allows bpf program to use any number of bpf_spin_locks. - when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed. - bpf program must bpf_spin_unlock() before return. - bpf program can access 'struct bpf_spin_lock' only via bpf_spin_lock()/bpf_spin_unlock() helpers. - load/store into 'struct bpf_spin_lock lock;' field is not allowed. - to use bpf_spin_lock() helper the BTF description of map value must be a struct and have 'struct bpf_spin_lock anyname;' field at the top level. Nested lock inside another struct is not allowed. - syscall map_lookup doesn't copy bpf_spin_lock field to user space. - syscall map_update and program map_update do not update bpf_spin_lock field. - bpf_spin_lock cannot be on the stack or inside networking packet. bpf_spin_lock can only be inside HASH or ARRAY map value. - bpf_spin_lock is available to root only and to all program types. - bpf_spin_lock is not allowed in inner maps of map-in-map. - ld_abs is not allowed inside spin_lock-ed region. - tracing progs and socket filter progs cannot use bpf_spin_lock due to insufficient preemption checks Implementation details: - cgroup-bpf class of programs can nest with xdp/tc programs. Hence bpf_spin_lock is equivalent to spin_lock_irqsave. Other solutions to avoid nested bpf_spin_lock are possible. Like making sure that all networking progs run with softirq disabled. spin_lock_irqsave is the simplest and doesn't add overhead to the programs that don't use it. - arch_spinlock_t is used when its implemented as queued_spin_lock - archs can force their own arch_spinlock_t - on architectures where queued_spin_lock is not available and sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used. - presence of bpf_spin_lock inside map value could have been indicated via extra flag during map_create, but specifying it via BTF is cleaner. It provides introspection for map key/value and reduces user mistakes. Next steps: - allow bpf_spin_lock in other map types (like cgroup local storage) - introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper to request kernel to grab bpf_spin_lock before rewriting the value. That will serialize access to map elements. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 06:40:04 +07:00
u32 active_spin_lock;
bpf: prevent out of bounds speculation on pointer arithmetic Jann reported that the original commit back in b2157399cc98 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399cc98 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-03 06:58:34 +07:00
bool speculative;
bpf: precise scalar_value tracking Introduce precision tracking logic that helps cilium programs the most: old clang old clang new clang new clang with all patches with all patches bpf_lb-DLB_L3.o 1838 2283 1923 1863 bpf_lb-DLB_L4.o 3218 2657 3077 2468 bpf_lb-DUNKNOWN.o 1064 545 1062 544 bpf_lxc-DDROP_ALL.o 26935 23045 166729 22629 bpf_lxc-DUNKNOWN.o 34439 35240 174607 28805 bpf_netdev.o 9721 8753 8407 6801 bpf_overlay.o 6184 7901 5420 4754 bpf_lxc_jit.o 39389 50925 39389 50925 Consider code: 654: (85) call bpf_get_hash_recalc#34 655: (bf) r7 = r0 656: (15) if r8 == 0x0 goto pc+29 657: (bf) r2 = r10 658: (07) r2 += -48 659: (18) r1 = 0xffff8881e41e1b00 661: (85) call bpf_map_lookup_elem#1 662: (15) if r0 == 0x0 goto pc+23 663: (69) r1 = *(u16 *)(r0 +0) 664: (15) if r1 == 0x0 goto pc+21 665: (bf) r8 = r7 666: (57) r8 &= 65535 667: (bf) r2 = r8 668: (3f) r2 /= r1 669: (2f) r2 *= r1 670: (bf) r1 = r8 671: (1f) r1 -= r2 672: (57) r1 &= 255 673: (25) if r1 > 0x1e goto pc+12 R0=map_value(id=0,off=0,ks=20,vs=64,imm=0) R1_w=inv(id=0,umax_value=30,var_off=(0x0; 0x1f)) 674: (67) r1 <<= 1 675: (0f) r0 += r1 At this point the verifier will notice that scalar R1 is used in map pointer adjustment. R1 has to be precise for later operations on R0 to be validated properly. The verifier will backtrack the above code in the following way: last_idx 675 first_idx 664 regs=2 stack=0 before 675: (0f) r0 += r1 // started backtracking R1 regs=2 is a bitmask regs=2 stack=0 before 674: (67) r1 <<= 1 regs=2 stack=0 before 673: (25) if r1 > 0x1e goto pc+12 regs=2 stack=0 before 672: (57) r1 &= 255 regs=2 stack=0 before 671: (1f) r1 -= r2 // now both R1 and R2 has to be precise -> regs=6 mask regs=6 stack=0 before 670: (bf) r1 = r8 // after this insn R8 and R2 has to be precise regs=104 stack=0 before 669: (2f) r2 *= r1 // after this one R8, R2, and R1 regs=106 stack=0 before 668: (3f) r2 /= r1 regs=106 stack=0 before 667: (bf) r2 = r8 regs=102 stack=0 before 666: (57) r8 &= 65535 regs=102 stack=0 before 665: (bf) r8 = r7 regs=82 stack=0 before 664: (15) if r1 == 0x0 goto pc+21 // this is the end of verifier state. The following regs will be marked precised: R1_rw=invP(id=0,umax_value=65535,var_off=(0x0; 0xffff)) R7_rw=invP(id=0) parent didn't have regs=82 stack=0 marks // so backtracking continues into parent state last_idx 663 first_idx 655 regs=82 stack=0 before 663: (69) r1 = *(u16 *)(r0 +0) // R1 was assigned no need to track it further regs=80 stack=0 before 662: (15) if r0 == 0x0 goto pc+23 // keep tracking R7 regs=80 stack=0 before 661: (85) call bpf_map_lookup_elem#1 // keep tracking R7 regs=80 stack=0 before 659: (18) r1 = 0xffff8881e41e1b00 regs=80 stack=0 before 658: (07) r2 += -48 regs=80 stack=0 before 657: (bf) r2 = r10 regs=80 stack=0 before 656: (15) if r8 == 0x0 goto pc+29 regs=80 stack=0 before 655: (bf) r7 = r0 // here the assignment into R7 // mark R0 to be precise: R0_rw=invP(id=0) parent didn't have regs=1 stack=0 marks // regs=1 -> tracking R0 last_idx 654 first_idx 644 regs=1 stack=0 before 654: (85) call bpf_get_hash_recalc#34 // and in the parent frame it was a return value // nothing further to backtrack Two scalar registers not marked precise are equivalent from state pruning point of view. More details in the patch comments. It doesn't support bpf2bpf calls yet and enabled for root only. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-06-16 02:12:25 +07:00
/* first and last insn idx of this verifier state */
u32 first_insn_idx;
u32 last_insn_idx;
/* jmp history recorded from first to last.
* backtracking is using it to go from last to first.
* For most states jmp_history_cnt is [0-3].
* For loops can go up to ~40.
*/
struct bpf_idx_pair *jmp_history;
u32 jmp_history_cnt;
bpf: introduce function calls (verification) Allow arbitrary function calls from bpf function to another bpf function. To recognize such set of bpf functions the verifier does: 1. runs control flow analysis to detect function boundaries 2. proceeds with verification of all functions starting from main(root) function It recognizes that the stack of the caller can be accessed by the callee (if the caller passed a pointer to its stack to the callee) and the callee can store map_value and other pointers into the stack of the caller. 3. keeps track of the stack_depth of each function to make sure that total stack depth is still less than 512 bytes 4. disallows pointers to the callee stack to be stored into the caller stack, since they will be invalid as soon as the callee returns 5. to reuse all of the existing state_pruning logic each function call is considered to be independent call from the verifier point of view. The verifier pretends to inline all function calls it sees are being called. It stores the callsite instruction index as part of the state to make sure that two calls to the same callee from two different places in the caller will be different from state pruning point of view 6. more safety checks are added to liveness analysis Implementation details: . struct bpf_verifier_state is now consists of all stack frames that led to this function . struct bpf_func_state represent one stack frame. It consists of registers in the given frame and its stack . propagate_liveness() logic had a premature optimization where mark_reg_read() and mark_stack_slot_read() were manually inlined with loop iterating over parents for each register or stack slot. Undo this optimization to reuse more complex mark_*_read() logic . skip_callee() logic is not necessary from safety point of view, but without it mark_*_read() markings become too conservative, since after returning from the funciton call a read of r6-r9 will incorrectly propagate the read marks into callee causing inefficient pruning later . mark_*_read() logic is now aware of control flow which makes it more complex. In the future the plan is to rewrite liveness to be hierarchical. So that liveness can be done within basic block only and control flow will be responsible for propagation of liveness information along cfg and between calls. . tail_calls and ld_abs insns are not allowed in the programs with bpf-to-bpf calls . returning stack pointers to the caller or storing them into stack frame of the caller is not allowed Testing: . no difference in cilium processed_insn numbers . large number of tests follows in next patches Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:06 +07:00
};
#define bpf_get_spilled_reg(slot, frame) \
(((slot < frame->allocated_stack / BPF_REG_SIZE) && \
(frame->stack[slot].slot_type[0] == STACK_SPILL)) \
? &frame->stack[slot].spilled_ptr : NULL)
/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
#define bpf_for_each_spilled_reg(iter, frame, reg) \
for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
iter < frame->allocated_stack / BPF_REG_SIZE; \
iter++, reg = bpf_get_spilled_reg(iter, frame))
/* linked list of verifier states used to prune search */
struct bpf_verifier_state_list {
struct bpf_verifier_state state;
struct bpf_verifier_state_list *next;
bpf: improve verification speed by droping states Branch instructions, branch targets and calls in a bpf program are the places where the verifier remembers states that led to successful verification of the program. These states are used to prune brute force program analysis. For unprivileged programs there is a limit of 64 states per such 'branching' instructions (maximum length is tracked by max_states_per_insn counter introduced in the previous patch). Simply reducing this threshold to 32 or lower increases insn_processed metric to the point that small valid programs get rejected. For root programs there is no limit and cilium programs can have max_states_per_insn to be 100 or higher. Walking 100+ states multiplied by number of 'branching' insns during verification consumes significant amount of cpu time. Turned out simple LRU-like mechanism can be used to remove states that unlikely will be helpful in future search pruning. This patch introduces hit_cnt and miss_cnt counters: hit_cnt - this many times this state successfully pruned the search miss_cnt - this many times this state was not equivalent to other states (and that other states were added to state list) The heuristic introduced in this patch is: if (sl->miss_cnt > sl->hit_cnt * 3 + 3) /* drop this state from future considerations */ Higher numbers increase max_states_per_insn (allow more states to be considered for pruning) and slow verification speed, but do not meaningfully reduce insn_processed metric. Lower numbers drop too many states and insn_processed increases too much. Many different formulas were considered. This one is simple and works well enough in practice. (the analysis was done on selftests/progs/* and on cilium programs) The end result is this heuristic improves verification speed by 10 times. Large synthetic programs that used to take a second more now take 1/10 of a second. In cases where max_states_per_insn used to be 100 or more, now it's ~10. There is a slight increase in insn_processed for cilium progs: before after bpf_lb-DLB_L3.o 1831 1838 bpf_lb-DLB_L4.o 3029 3218 bpf_lb-DUNKNOWN.o 1064 1064 bpf_lxc-DDROP_ALL.o 26309 26935 bpf_lxc-DUNKNOWN.o 33517 34439 bpf_netdev.o 9713 9721 bpf_overlay.o 6184 6184 bpf_lcx_jit.o 37335 39389 And 2-3 times improvement in the verification speed. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-02 11:27:41 +07:00
int miss_cnt, hit_cnt;
};
bpf: prevent out of bounds speculation on pointer arithmetic Jann reported that the original commit back in b2157399cc98 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399cc98 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-03 06:58:34 +07:00
/* Possible states for alu_state member. */
#define BPF_ALU_SANITIZE_SRC 1U
#define BPF_ALU_SANITIZE_DST 2U
#define BPF_ALU_NEG_VALUE (1U << 2)
#define BPF_ALU_NON_POINTER (1U << 3)
bpf: prevent out of bounds speculation on pointer arithmetic Jann reported that the original commit back in b2157399cc98 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399cc98 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-03 06:58:34 +07:00
#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
BPF_ALU_SANITIZE_DST)
struct bpf_insn_aux_data {
union {
enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
bpf: properly enforce index mask to prevent out-of-bounds speculation While reviewing the verifier code, I recently noticed that the following two program variants in relation to tail calls can be loaded. Variant 1: # bpftool p d x i 15 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:5] 3: (05) goto pc+2 4: (18) r2 = map[id:6] 6: (b7) r3 = 7 7: (35) if r3 >= 0xa0 goto pc+2 8: (54) (u32) r3 &= (u32) 255 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 5 5: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B # bpftool m s i 6 6: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B Variant 2: # bpftool p d x i 20 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:8] 3: (05) goto pc+2 4: (18) r2 = map[id:7] 6: (b7) r3 = 7 7: (35) if r3 >= 0x4 goto pc+2 8: (54) (u32) r3 &= (u32) 3 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 8 8: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B # bpftool m s i 7 7: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B In both cases the index masking inserted by the verifier in order to control out of bounds speculation from a CPU via b2157399cc98 ("bpf: prevent out-of-bounds speculation") seems to be incorrect in what it is enforcing. In the 1st variant, the mask is applied from the map with the significantly larger number of entries where we would allow to a certain degree out of bounds speculation for the smaller map, and in the 2nd variant where the mask is applied from the map with the smaller number of entries, we get buggy behavior since we truncate the index of the larger map. The original intent from commit b2157399cc98 is to reject such occasions where two or more different tail call maps are used in the same tail call helper invocation. However, the check on the BPF_MAP_PTR_POISON is never hit since we never poisoned the saved pointer in the first place! We do this explicitly for map lookups but in case of tail calls we basically used the tail call map in insn_aux_data that was processed in the most recent path which the verifier walked. Thus any prior path that stored a pointer in insn_aux_data at the helper location was always overridden. Fix it by moving the map pointer poison logic into a small helper that covers both BPF helpers with the same logic. After that in fixup_bpf_calls() the poison check is then hit for tail calls and the program rejected. Latter only happens in unprivileged case since this is the *only* occasion where a rewrite needs to happen, and where such rewrite is specific to the map (max_entries, index_mask). In the privileged case the rewrite is generic for the insn->imm / insn->code update so multiple maps from different paths can be handled just fine since all the remaining logic happens in the instruction processing itself. This is similar to the case of map lookups: in case there is a collision of maps in fixup_bpf_calls() we must skip the inlined rewrite since this will turn the generic instruction sequence into a non- generic one. Thus the patch_call_imm will simply update the insn->imm location where the bpf_map_lookup_elem() will later take care of the dispatch. Given we need this 'poison' state as a check, the information of whether a map is an unpriv_array gets lost, so enforcing it prior to that needs an additional state. In general this check is needed since there are some complex and tail call intensive BPF programs out there where LLVM tends to generate such code occasionally. We therefore convert the map_ptr rather into map_state to store all this w/o extra memory overhead, and the bit whether one of the maps involved in the collision was from an unpriv_array thus needs to be retained as well there. Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-24 07:32:53 +07:00
unsigned long map_state; /* pointer/poison value for maps */
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:15 +07:00
s32 call_imm; /* saved imm field of call insn */
bpf: prevent out of bounds speculation on pointer arithmetic Jann reported that the original commit back in b2157399cc98 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399cc98 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-03 06:58:34 +07:00
u32 alu_limit; /* limit for add/sub register with pointer */
bpf: implement lookup-free direct value access for maps This generic extension to BPF maps allows for directly loading an address residing inside a BPF map value as a single BPF ldimm64 instruction! The idea is similar to what BPF_PSEUDO_MAP_FD does today, which is a special src_reg flag for ldimm64 instruction that indicates that inside the first part of the double insns's imm field is a file descriptor which the verifier then replaces as a full 64bit address of the map into both imm parts. For the newly added BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following: the first part of the double insns's imm field is again a file descriptor corresponding to the map, and the second part of the imm field is an offset into the value. The verifier will then replace both imm parts with an address that points into the BPF map value at the given value offset for maps that support this operation. Currently supported is array map with single entry. It is possible to support more than just single map element by reusing both 16bit off fields of the insns as a map index, so full array map lookup could be expressed that way. It hasn't been implemented here due to lack of concrete use case, but could easily be done so in future in a compatible way, since both off fields right now have to be 0 and would correctly denote a map index 0. The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of map pointer versus load of map's value at offset 0, and changing BPF_PSEUDO_MAP_FD's encoding into off by one to differ between regular map pointer and map value pointer would add unnecessary complexity and increases barrier for debugability thus less suitable. Using the second part of the imm field as an offset into the value does /not/ come with limitations since maximum possible value size is in u32 universe anyway. This optimization allows for efficiently retrieving an address to a map value memory area without having to issue a helper call which needs to prepare registers according to calling convention, etc, without needing the extra NULL test, and without having to add the offset in an additional instruction to the value base pointer. The verifier then treats the destination register as PTR_TO_MAP_VALUE with constant reg->off from the user passed offset from the second imm field, and guarantees that this is within bounds of the map value. Any subsequent operations are normally treated as typical map value handling without anything extra needed from verification side. The two map operations for direct value access have been added to array map for now. In future other types could be supported as well depending on the use case. The main use case for this commit is to allow for BPF loader support for global variables that reside in .data/.rodata/.bss sections such that we can directly load the address of them with minimal additional infrastructure required. Loader support has been added in subsequent commits for libbpf library. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-10 04:20:03 +07:00
struct {
u32 map_index; /* index into used_maps[] */
u32 map_off; /* offset from value base address */
};
};
int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
int sanitize_stack_off; /* stack slot to be cleared */
bool seen; /* this insn was processed by the verifier */
bpf: verifier: mark verified-insn with sub-register zext flag eBPF ISA specification requires high 32-bit cleared when low 32-bit sub-register is written. This applies to destination register of ALU32 etc. JIT back-ends must guarantee this semantic when doing code-gen. x86_64 and AArch64 ISA has the same semantics, so the corresponding JIT back-end doesn't need to do extra work. However, 32-bit arches (arm, x86, nfp etc.) and some other 64-bit arches (PowerPC, SPARC etc) need to do explicit zero extension to meet this requirement, otherwise code like the following will fail. u64_value = (u64) u32_value ... other uses of u64_value This is because compiler could exploit the semantic described above and save those zero extensions for extending u32_value to u64_value, these JIT back-ends are expected to guarantee this through inserting extra zero extensions which however could be a significant increase on the code size. Some benchmarks show there could be ~40% sub-register writes out of total insns, meaning at least ~40% extra code-gen. One observation is these extra zero extensions are not always necessary. Take above code snippet for example, it is possible u32_value will never be casted into a u64, the value of high 32-bit of u32_value then could be ignored and extra zero extension could be eliminated. This patch implements this idea, insns defining sub-registers will be marked when the high 32-bit of the defined sub-register matters. For those unmarked insns, it is safe to eliminate high 32-bit clearnace for them. Algo: - Split read flags into READ32 and READ64. - Record index of insn that does sub-register write. Keep the index inside reg state and update it during verifier insn walking. - A full register read on a sub-register marks its definition insn as needing zero extension on dst register. A new sub-register write overrides the old one. - When propagating read64 during path pruning, also mark any insn defining a sub-register that is read in the pruned path as full-register. Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-25 05:25:12 +07:00
bool zext_dst; /* this insn zero extends dst reg */
bpf: prevent out of bounds speculation on pointer arithmetic Jann reported that the original commit back in b2157399cc98 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399cc98 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-03 06:58:34 +07:00
u8 alu_state; /* used in combination with alu_limit */
bool prune_point;
unsigned int orig_idx; /* original instruction index */
};
#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
#define BPF_VERIFIER_TMP_LOG_SIZE 1024
struct bpf_verifier_log {
u32 level;
char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
char __user *ubuf;
u32 len_used;
u32 len_total;
};
static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
{
return log->len_used >= log->len_total - 1;
}
#define BPF_LOG_LEVEL1 1
#define BPF_LOG_LEVEL2 2
#define BPF_LOG_STATS 4
#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS)
static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
{
return log->level && log->ubuf && !bpf_verifier_log_full(log);
}
bpf: introduce function calls (function boundaries) Allow arbitrary function calls from bpf function to another bpf function. Since the beginning of bpf all bpf programs were represented as a single function and program authors were forced to use always_inline for all functions in their C code. That was causing llvm to unnecessary inflate the code size and forcing developers to move code to header files with little code reuse. With a bit of additional complexity teach verifier to recognize arbitrary function calls from one bpf function to another as long as all of functions are presented to the verifier as a single bpf program. New program layout: r6 = r1 // some code .. r1 = .. // arg1 r2 = .. // arg2 call pc+1 // function call pc-relative exit .. = r1 // access arg1 .. = r2 // access arg2 .. call pc+20 // second level of function call ... It allows for better optimized code and finally allows to introduce the core bpf libraries that can be reused in different projects, since programs are no longer limited by single elf file. With function calls bpf can be compiled into multiple .o files. This patch is the first step. It detects programs that contain multiple functions and checks that calls between them are valid. It splits the sequence of bpf instructions (one program) into a set of bpf functions that call each other. Calls to only known functions are allowed. In the future the verifier may allow calls to unresolved functions and will do dynamic linking. This logic supports statically linked bpf functions only. Such function boundary detection could have been done as part of control flow graph building in check_cfg(), but it's cleaner to separate function boundary detection vs control flow checks within a subprogram (function) into logically indepedent steps. Follow up patches may split check_cfg() further, but not check_subprogs(). Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs. These restrictions can be relaxed in the future. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:05 +07:00
#define BPF_MAX_SUBPROGS 256
struct bpf_subprog_info {
u32 start; /* insn idx of function entry point */
bpf: Add bpf_line_info support This patch adds bpf_line_info support. It accepts an array of bpf_line_info objects during BPF_PROG_LOAD. The "line_info", "line_info_cnt" and "line_info_rec_size" are added to the "union bpf_attr". The "line_info_rec_size" makes bpf_line_info extensible in the future. The new "check_btf_line()" ensures the userspace line_info is valid for the kernel to use. When the verifier is translating/patching the bpf_prog (through "bpf_patch_insn_single()"), the line_infos' insn_off is also adjusted by the newly added "bpf_adj_linfo()". If the bpf_prog is jited, this patch also provides the jited addrs (in aux->jited_linfo) for the corresponding line_info.insn_off. "bpf_prog_fill_jited_linfo()" is added to fill the aux->jited_linfo. It is currently called by the x86 jit. Other jits can also use "bpf_prog_fill_jited_linfo()" and it will be done in the followup patches. In the future, if it deemed necessary, a particular jit could also provide its own "bpf_prog_fill_jited_linfo()" implementation. A few "*line_info*" fields are added to the bpf_prog_info such that the user can get the xlated line_info back (i.e. the line_info with its insn_off reflecting the translated prog). The jited_line_info is available if the prog is jited. It is an array of __u64. If the prog is not jited, jited_line_info_cnt is 0. The verifier's verbose log with line_info will be done in a follow up patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 07:42:25 +07:00
u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
u16 stack_depth; /* max. stack depth used by this function */
};
/* single container for all structs
* one verifier_env per bpf_check() call
*/
struct bpf_verifier_env {
u32 insn_idx;
u32 prev_insn_idx;
struct bpf_prog *prog; /* eBPF program being verified */
const struct bpf_verifier_ops *ops;
struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
int stack_size; /* number of states to be processed */
bool strict_alignment; /* perform strict pointer alignment checks */
bool test_state_freq; /* test verifier with different pruning frequency */
struct bpf_verifier_state *cur_state; /* current verifier state */
struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
bpf: improve verification speed by droping states Branch instructions, branch targets and calls in a bpf program are the places where the verifier remembers states that led to successful verification of the program. These states are used to prune brute force program analysis. For unprivileged programs there is a limit of 64 states per such 'branching' instructions (maximum length is tracked by max_states_per_insn counter introduced in the previous patch). Simply reducing this threshold to 32 or lower increases insn_processed metric to the point that small valid programs get rejected. For root programs there is no limit and cilium programs can have max_states_per_insn to be 100 or higher. Walking 100+ states multiplied by number of 'branching' insns during verification consumes significant amount of cpu time. Turned out simple LRU-like mechanism can be used to remove states that unlikely will be helpful in future search pruning. This patch introduces hit_cnt and miss_cnt counters: hit_cnt - this many times this state successfully pruned the search miss_cnt - this many times this state was not equivalent to other states (and that other states were added to state list) The heuristic introduced in this patch is: if (sl->miss_cnt > sl->hit_cnt * 3 + 3) /* drop this state from future considerations */ Higher numbers increase max_states_per_insn (allow more states to be considered for pruning) and slow verification speed, but do not meaningfully reduce insn_processed metric. Lower numbers drop too many states and insn_processed increases too much. Many different formulas were considered. This one is simple and works well enough in practice. (the analysis was done on selftests/progs/* and on cilium programs) The end result is this heuristic improves verification speed by 10 times. Large synthetic programs that used to take a second more now take 1/10 of a second. In cases where max_states_per_insn used to be 100 or more, now it's ~10. There is a slight increase in insn_processed for cilium progs: before after bpf_lb-DLB_L3.o 1831 1838 bpf_lb-DLB_L4.o 3029 3218 bpf_lb-DUNKNOWN.o 1064 1064 bpf_lxc-DDROP_ALL.o 26309 26935 bpf_lxc-DUNKNOWN.o 33517 34439 bpf_netdev.o 9713 9721 bpf_overlay.o 6184 6184 bpf_lcx_jit.o 37335 39389 And 2-3 times improvement in the verification speed. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-02 11:27:41 +07:00
struct bpf_verifier_state_list *free_list;
struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
u32 used_map_cnt; /* number of used maps */
u32 id_gen; /* used to generate unique reg IDs */
bool allow_ptr_leaks;
bool seen_direct_write;
struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
const struct bpf_line_info *prev_linfo;
struct bpf_verifier_log log;
struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
struct {
int *insn_state;
int *insn_stack;
int cur_stack;
} cfg;
bpf: introduce function calls (function boundaries) Allow arbitrary function calls from bpf function to another bpf function. Since the beginning of bpf all bpf programs were represented as a single function and program authors were forced to use always_inline for all functions in their C code. That was causing llvm to unnecessary inflate the code size and forcing developers to move code to header files with little code reuse. With a bit of additional complexity teach verifier to recognize arbitrary function calls from one bpf function to another as long as all of functions are presented to the verifier as a single bpf program. New program layout: r6 = r1 // some code .. r1 = .. // arg1 r2 = .. // arg2 call pc+1 // function call pc-relative exit .. = r1 // access arg1 .. = r2 // access arg2 .. call pc+20 // second level of function call ... It allows for better optimized code and finally allows to introduce the core bpf libraries that can be reused in different projects, since programs are no longer limited by single elf file. With function calls bpf can be compiled into multiple .o files. This patch is the first step. It detects programs that contain multiple functions and checks that calls between them are valid. It splits the sequence of bpf instructions (one program) into a set of bpf functions that call each other. Calls to only known functions are allowed. In the future the verifier may allow calls to unresolved functions and will do dynamic linking. This logic supports statically linked bpf functions only. Such function boundary detection could have been done as part of control flow graph building in check_cfg(), but it's cleaner to separate function boundary detection vs control flow checks within a subprogram (function) into logically indepedent steps. Follow up patches may split check_cfg() further, but not check_subprogs(). Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs. These restrictions can be relaxed in the future. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:05 +07:00
u32 subprog_cnt;
/* number of instructions analyzed by the verifier */
u32 prev_insn_processed, insn_processed;
/* number of jmps, calls, exits analyzed so far */
u32 prev_jmps_processed, jmps_processed;
/* total verification time */
u64 verification_time;
/* maximum number of verifier states kept in 'branching' instructions */
u32 max_states_per_insn;
/* total number of allocated verifier states */
u32 total_states;
/* some states are freed during program analysis.
* this is peak number of states. this number dominates kernel
* memory consumption during verification
*/
u32 peak_states;
/* longest register parentage chain walked for liveness marking */
u32 longest_mark_read_walk;
};
__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
const char *fmt, va_list args);
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
const char *fmt, ...);
static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
{
bpf: introduce function calls (verification) Allow arbitrary function calls from bpf function to another bpf function. To recognize such set of bpf functions the verifier does: 1. runs control flow analysis to detect function boundaries 2. proceeds with verification of all functions starting from main(root) function It recognizes that the stack of the caller can be accessed by the callee (if the caller passed a pointer to its stack to the callee) and the callee can store map_value and other pointers into the stack of the caller. 3. keeps track of the stack_depth of each function to make sure that total stack depth is still less than 512 bytes 4. disallows pointers to the callee stack to be stored into the caller stack, since they will be invalid as soon as the callee returns 5. to reuse all of the existing state_pruning logic each function call is considered to be independent call from the verifier point of view. The verifier pretends to inline all function calls it sees are being called. It stores the callsite instruction index as part of the state to make sure that two calls to the same callee from two different places in the caller will be different from state pruning point of view 6. more safety checks are added to liveness analysis Implementation details: . struct bpf_verifier_state is now consists of all stack frames that led to this function . struct bpf_func_state represent one stack frame. It consists of registers in the given frame and its stack . propagate_liveness() logic had a premature optimization where mark_reg_read() and mark_stack_slot_read() were manually inlined with loop iterating over parents for each register or stack slot. Undo this optimization to reuse more complex mark_*_read() logic . skip_callee() logic is not necessary from safety point of view, but without it mark_*_read() markings become too conservative, since after returning from the funciton call a read of r6-r9 will incorrectly propagate the read marks into callee causing inefficient pruning later . mark_*_read() logic is now aware of control flow which makes it more complex. In the future the plan is to rewrite liveness to be hierarchical. So that liveness can be done within basic block only and control flow will be responsible for propagation of liveness information along cfg and between calls. . tail_calls and ld_abs insns are not allowed in the programs with bpf-to-bpf calls . returning stack pointers to the caller or storing them into stack frame of the caller is not allowed Testing: . no difference in cilium processed_insn numbers . large number of tests follows in next patches Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 08:55:06 +07:00
struct bpf_verifier_state *cur = env->cur_state;
return cur->frame[cur->curframe];
}
static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
{
return cur_func(env)->regs;
}
int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx);
int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
void
bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
struct bpf_insn *insn);
void
bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
#endif /* _LINUX_BPF_VERIFIER_H */