linux_dsm_epyc7002/tools/objtool/Documentation/stack-validation.txt

318 lines
13 KiB
Plaintext
Raw Normal View History

objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Compile-time stack metadata validation
======================================
Overview
--------
The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand which
analyzes every .o file and ensures the validity of its stack metadata.
It enforces a set of rules on asm code and C inline assembly code so
that stack traces can be reliable.
For each function, it recursively follows all possible code paths and
validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements, for
which gcc sometimes uses jump tables.
(Objtool also has an 'orc generate' subcommand which generates debuginfo
for the ORC unwinder. See Documentation/x86/orc-unwinder.txt in the
kernel tree for more details.)
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Why do we need stack metadata validation?
-----------------------------------------
Here are some of the benefits of validating stack metadata:
a) More reliable stack traces for frame pointer enabled kernels
Frame pointers are used for debugging purposes. They allow runtime
code and debug tools to be able to walk the stack to determine the
chain of function call sites that led to the currently executing
code.
For some architectures, frame pointers are enabled by
CONFIG_FRAME_POINTER. For some other architectures they may be
required by the ABI (sometimes referred to as "backchain pointers").
For C code, gcc automatically generates instructions for setting up
frame pointers when the -fno-omit-frame-pointer option is used.
But for asm code, the frame setup instructions have to be written by
hand, which most people don't do. So the end result is that
CONFIG_FRAME_POINTER is honored for C code but not for most asm code.
For stack traces based on frame pointers to be reliable, all
functions which call other functions must first create a stack frame
and update the frame pointer. If a first function doesn't properly
create a stack frame before calling a second function, the *caller*
of the first function will be skipped on the stack trace.
For example, consider the following example backtrace with frame
pointers enabled:
[<ffffffff81812584>] dump_stack+0x4b/0x63
[<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30
[<ffffffff8127f568>] seq_read+0x108/0x3e0
[<ffffffff812cce62>] proc_reg_read+0x42/0x70
[<ffffffff81256197>] __vfs_read+0x37/0x100
[<ffffffff81256b16>] vfs_read+0x86/0x130
[<ffffffff81257898>] SyS_read+0x58/0xd0
[<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76
It correctly shows that the caller of cmdline_proc_show() is
seq_read().
If we remove the frame pointer logic from cmdline_proc_show() by
replacing the frame pointer related instructions with nops, here's
what it looks like instead:
[<ffffffff81812584>] dump_stack+0x4b/0x63
[<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30
[<ffffffff812cce62>] proc_reg_read+0x42/0x70
[<ffffffff81256197>] __vfs_read+0x37/0x100
[<ffffffff81256b16>] vfs_read+0x86/0x130
[<ffffffff81257898>] SyS_read+0x58/0xd0
[<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76
Notice that cmdline_proc_show()'s caller, seq_read(), has been
skipped. Instead the stack trace seems to show that
cmdline_proc_show() was called by proc_reg_read().
The benefit of objtool here is that because it ensures that *all*
functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be
skipped on a stack trace.
[*] unless an interrupt or exception has occurred at the very
beginning of a function before the stack frame has been created,
or at the very end of the function after the stack frame has been
destroyed. This is an inherent limitation of frame pointers.
b) ORC (Oops Rewind Capability) unwind table generation
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
An alternative to frame pointers and DWARF, ORC unwind data can be
used to walk the stack. Unlike frame pointers, ORC data is out of
band. So it doesn't affect runtime performance and it can be
reliable even when interrupts or exceptions are involved.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
For more details, see Documentation/x86/orc-unwinder.txt.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
c) Higher live patching compatibility rate
Livepatch has an optional "consistency model", which is needed for
more complex patches. In order for the consistency model to work,
stack traces need to be reliable (or an unreliable condition needs to
be detectable). Objtool makes that possible.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
For more details, see the livepatch documentation in the Linux kernel
source tree at Documentation/livepatch/livepatch.txt.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Rules
-----
To achieve the validation, objtool enforces the following rules:
1. Each callable function must be annotated as such with the ELF
function type. In asm code, this is typically done using the
ENTRY/ENDPROC macros. If objtool finds a return instruction
outside of a function, it flags an error since that usually indicates
callable code which should be annotated accordingly.
This rule is needed so that objtool can properly identify each
callable function in order to analyze its stack metadata.
2. Conversely, each section of code which is *not* callable should *not*
be annotated as an ELF function. The ENDPROC macro shouldn't be used
in this case.
This rule is needed so that objtool can ignore non-callable code.
Such code doesn't have to follow any of the other rules.
3. Each callable function which calls another function must have the
correct frame pointer logic, if required by CONFIG_FRAME_POINTER or
the architecture's back chain rules. This can by done in asm code
with the FRAME_BEGIN/FRAME_END macros.
This rule ensures that frame pointer based stack traces will work as
designed. If function A doesn't create a stack frame before calling
function B, the _caller_ of function A will be skipped on the stack
trace.
4. Dynamic jumps and jumps to undefined symbols are only allowed if:
a) the jump is part of a switch statement; or
b) the jump matches sibling call semantics and the frame pointer has
the same value it had on function entry.
This rule is needed so that objtool can reliably analyze all of a
function's code paths. If a function jumps to code in another file,
and it's not a sibling call, objtool has no way to follow the jump
because it only analyzes a single file at a time.
5. A callable function may not execute kernel entry/exit instructions.
The only code which needs such instructions is kernel entry code,
which shouldn't be be in callable functions anyway.
This rule is just a sanity check to ensure that callable functions
return normally.
Objtool warnings
----------------
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
For asm files, if you're getting an error which doesn't make sense,
first make sure that the affected code follows the above rules.
For C files, the common culprits are inline asm statements and calls to
"noreturn" functions. See below for more details.
Another possible cause for errors in C code is if the Makefile removes
-fno-omit-frame-pointer or adds -fomit-frame-pointer to the gcc options.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Here are some examples of common warnings reported by objtool, what
they mean, and suggestions for how to fix them.
1. file.o: warning: objtool: func()+0x128: call without frame pointer save/setup
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
The func() function made a function call without first saving and/or
updating the frame pointer, and CONFIG_FRAME_POINTER is enabled.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
If the error is for an asm file, and func() is indeed a callable
function, add proper frame pointer logic using the FRAME_BEGIN and
FRAME_END macros. Otherwise, if it's not a callable function, remove
its ELF function annotation by changing ENDPROC to END, and instead
use the manual unwind hint macros in asm/unwind_hints.h.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
If it's a GCC-compiled .c file, the error may be because the function
uses an inline asm() statement which has a "call" instruction. An
asm() statement with a call instruction must declare the use of the
x86/asm: Fix inline asm call constraints for Clang For inline asm statements which have a CALL instruction, we list the stack pointer as a constraint to convince GCC to ensure the frame pointer is set up first: static inline void foo() { register void *__sp asm(_ASM_SP); asm("call bar" : "+r" (__sp)) } Unfortunately, that pattern causes Clang to corrupt the stack pointer. The fix is easy: convert the stack pointer register variable to a global variable. It should be noted that the end result is different based on the GCC version. With GCC 6.4, this patch has exactly the same result as before: defconfig defconfig-nofp distro distro-nofp before 9820389 9491555 8816046 8516940 after 9820389 9491555 8816046 8516940 With GCC 7.2, however, GCC's behavior has changed. It now changes its behavior based on the conversion of the register variable to a global. That somehow convinces it to *always* set up the frame pointer before inserting *any* inline asm. (Therefore, listing the variable as an output constraint is a no-op and is no longer necessary.) It's a bit overkill, but the performance impact should be negligible. And in fact, there's a nice improvement with frame pointers disabled: defconfig defconfig-nofp distro distro-nofp before 9796316 9468236 9076191 8790305 after 9796957 9464267 9076381 8785949 So in summary, while listing the stack pointer as an output constraint is no longer necessary for newer versions of GCC, it's still needed for older versions. Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reported-by: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dmitriy Vyukov <dvyukov@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/3db862e970c432ae823cf515c52b54fec8270e0e.1505942196.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-21 04:24:33 +07:00
stack pointer in its output operand. On x86_64, this means adding
the ASM_CALL_CONSTRAINT as an output constraint:
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
x86/asm: Fix inline asm call constraints for Clang For inline asm statements which have a CALL instruction, we list the stack pointer as a constraint to convince GCC to ensure the frame pointer is set up first: static inline void foo() { register void *__sp asm(_ASM_SP); asm("call bar" : "+r" (__sp)) } Unfortunately, that pattern causes Clang to corrupt the stack pointer. The fix is easy: convert the stack pointer register variable to a global variable. It should be noted that the end result is different based on the GCC version. With GCC 6.4, this patch has exactly the same result as before: defconfig defconfig-nofp distro distro-nofp before 9820389 9491555 8816046 8516940 after 9820389 9491555 8816046 8516940 With GCC 7.2, however, GCC's behavior has changed. It now changes its behavior based on the conversion of the register variable to a global. That somehow convinces it to *always* set up the frame pointer before inserting *any* inline asm. (Therefore, listing the variable as an output constraint is a no-op and is no longer necessary.) It's a bit overkill, but the performance impact should be negligible. And in fact, there's a nice improvement with frame pointers disabled: defconfig defconfig-nofp distro distro-nofp before 9796316 9468236 9076191 8790305 after 9796957 9464267 9076381 8785949 So in summary, while listing the stack pointer as an output constraint is no longer necessary for newer versions of GCC, it's still needed for older versions. Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reported-by: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dmitriy Vyukov <dvyukov@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/3db862e970c432ae823cf515c52b54fec8270e0e.1505942196.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-21 04:24:33 +07:00
asm volatile("call func" : ASM_CALL_CONSTRAINT);
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Otherwise the stack frame may not get created before the call.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
2. file.o: warning: objtool: .text+0x53: unreachable instruction
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Objtool couldn't find a code path to reach the instruction.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
If the error is for an asm file, and the instruction is inside (or
reachable from) a callable function, the function should be annotated
with the ENTRY/ENDPROC macros (ENDPROC is the important one).
Otherwise, the code should probably be annotated with the unwind hint
macros in asm/unwind_hints.h so objtool and the unwinder can know the
stack state associated with the code.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
If you're 100% sure the code won't affect stack traces, or if you're
a just a bad person, you can tell objtool to ignore it. See the
"Adding exceptions" section below.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
If it's not actually in a callable function (e.g. kernel entry code),
change ENDPROC to END.
4. file.o: warning: objtool: func(): can't find starting instruction
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
or
file.o: warning: objtool: func()+0x11dd: can't decode instruction
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Does the file have data in a text section? If so, that can confuse
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
objtool's instruction decoder. Move the data to a more appropriate
section like .data or .rodata.
5. file.o: warning: objtool: func()+0x6: unsupported instruction in callable function
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
This is a kernel entry/exit instruction like sysenter or iret. Such
instructions aren't allowed in a callable function, and are most
likely part of the kernel entry code. They should usually not have
the callable function annotation (ENDPROC) and should always be
annotated with the unwind hint macros in asm/unwind_hints.h.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
6. file.o: warning: objtool: func()+0x26: sibling call from callable instruction with modified stack frame
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
This is a dynamic jump or a jump to an undefined symbol. Objtool
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
assumed it's a sibling call and detected that the frame pointer
wasn't first restored to its original state.
If it's not really a sibling call, you may need to move the
destination code to the local file.
If the instruction is not actually in a callable function (e.g.
kernel entry code), change ENDPROC to END and annotate manually with
the unwind hint macros in asm/unwind_hints.h.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
7. file: warning: objtool: func()+0x5c: stack state mismatch
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
The instruction's frame pointer state is inconsistent, depending on
which execution path was taken to reach the instruction.
Make sure that, when CONFIG_FRAME_POINTER is enabled, the function
pushes and sets up the frame pointer (for x86_64, this means rbp) at
the beginning of the function and pops it at the end of the function.
Also make sure that no other code in the function touches the frame
pointer.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
Another possibility is that the code has some asm or inline asm which
does some unusual things to the stack or the frame pointer. In such
cases it's probably appropriate to use the unwind hint macros in
asm/unwind_hints.h.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
8. file.o: warning: objtool: funcA() falls through to next function funcB()
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
objtool: Detect falling through to the next function There are several cases in compiled C code where a function may not return at the end, and may instead fall through to the next function. That may indicate a bug in the code, or a gcc bug, or even an objtool bug. But in each case, objtool reports an unhelpful warning, something like: drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_fc_host_stats()+0x0: duplicate frame pointer save drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_fc_host_stats()+0x0: frame pointer state mismatch Detect this situation and print a more useful error message: drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_host_fabric_name() falls through to next function qla2x00_get_starget_node_name() Also add some information about this warning and its potential causes to the documentation. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/caa4ec6c687931db805e692d4e4bf06cd87d33e6.1460729697.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-15 21:17:10 +07:00
This means that funcA() doesn't end with a return instruction or an
unconditional jump, and that objtool has determined that the function
can fall through into the next function. There could be different
reasons for this:
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
objtool: Detect falling through to the next function There are several cases in compiled C code where a function may not return at the end, and may instead fall through to the next function. That may indicate a bug in the code, or a gcc bug, or even an objtool bug. But in each case, objtool reports an unhelpful warning, something like: drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_fc_host_stats()+0x0: duplicate frame pointer save drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_fc_host_stats()+0x0: frame pointer state mismatch Detect this situation and print a more useful error message: drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_host_fabric_name() falls through to next function qla2x00_get_starget_node_name() Also add some information about this warning and its potential causes to the documentation. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/caa4ec6c687931db805e692d4e4bf06cd87d33e6.1460729697.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-15 21:17:10 +07:00
1) funcA()'s last instruction is a call to a "noreturn" function like
panic(). In this case the noreturn function needs to be added to
objtool's hard-coded global_noreturns array. Feel free to bug the
objtool maintainer, or you can submit a patch.
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
objtool: Detect falling through to the next function There are several cases in compiled C code where a function may not return at the end, and may instead fall through to the next function. That may indicate a bug in the code, or a gcc bug, or even an objtool bug. But in each case, objtool reports an unhelpful warning, something like: drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_fc_host_stats()+0x0: duplicate frame pointer save drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_fc_host_stats()+0x0: frame pointer state mismatch Detect this situation and print a more useful error message: drivers/scsi/qla2xxx/qla_attr.o: warning: objtool: qla2x00_get_host_fabric_name() falls through to next function qla2x00_get_starget_node_name() Also add some information about this warning and its potential causes to the documentation. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/caa4ec6c687931db805e692d4e4bf06cd87d33e6.1460729697.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-15 21:17:10 +07:00
2) funcA() uses the unreachable() annotation in a section of code
that is actually reachable.
3) If funcA() calls an inline function, the object code for funcA()
might be corrupt due to a gcc bug. For more details, see:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70646
objtool: Add tool to perform compile-time stack metadata validation This adds a host tool named objtool which has a "check" subcommand which analyzes .o files to ensure the validity of stack metadata. It enforces a set of rules on asm code and C inline assembly code so that stack traces can be reliable. For each function, it recursively follows all possible code paths and validates the correct frame pointer state at each instruction. It also follows code paths involving kernel special sections, like .altinstructions, __jump_table, and __ex_table, which can add alternative execution paths to a given instruction (or set of instructions). Similarly, it knows how to follow switch statements, for which gcc sometimes uses jump tables. Here are some of the benefits of validating stack metadata: a) More reliable stack traces for frame pointer enabled kernels Frame pointers are used for debugging purposes. They allow runtime code and debug tools to be able to walk the stack to determine the chain of function call sites that led to the currently executing code. For some architectures, frame pointers are enabled by CONFIG_FRAME_POINTER. For some other architectures they may be required by the ABI (sometimes referred to as "backchain pointers"). For C code, gcc automatically generates instructions for setting up frame pointers when the -fno-omit-frame-pointer option is used. But for asm code, the frame setup instructions have to be written by hand, which most people don't do. So the end result is that CONFIG_FRAME_POINTER is honored for C code but not for most asm code. For stack traces based on frame pointers to be reliable, all functions which call other functions must first create a stack frame and update the frame pointer. If a first function doesn't properly create a stack frame before calling a second function, the *caller* of the first function will be skipped on the stack trace. For example, consider the following example backtrace with frame pointers enabled: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff8127f568>] seq_read+0x108/0x3e0 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 It correctly shows that the caller of cmdline_proc_show() is seq_read(). If we remove the frame pointer logic from cmdline_proc_show() by replacing the frame pointer related instructions with nops, here's what it looks like instead: [<ffffffff81812584>] dump_stack+0x4b/0x63 [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30 [<ffffffff812cce62>] proc_reg_read+0x42/0x70 [<ffffffff81256197>] __vfs_read+0x37/0x100 [<ffffffff81256b16>] vfs_read+0x86/0x130 [<ffffffff81257898>] SyS_read+0x58/0xd0 [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76 Notice that cmdline_proc_show()'s caller, seq_read(), has been skipped. Instead the stack trace seems to show that cmdline_proc_show() was called by proc_reg_read(). The benefit of "objtool check" here is that because it ensures that *all* functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be skipped on a stack trace. [*] unless an interrupt or exception has occurred at the very beginning of a function before the stack frame has been created, or at the very end of the function after the stack frame has been destroyed. This is an inherent limitation of frame pointers. b) 100% reliable stack traces for DWARF enabled kernels This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. c) Higher live patching compatibility rate This is not yet implemented. For more details about what is planned, see tools/objtool/Documentation/stack-validation.txt. To achieve the validation, "objtool check" enforces the following rules: 1. Each callable function must be annotated as such with the ELF function type. In asm code, this is typically done using the ENTRY/ENDPROC macros. If objtool finds a return instruction outside of a function, it flags an error since that usually indicates callable code which should be annotated accordingly. This rule is needed so that objtool can properly identify each callable function in order to analyze its stack metadata. 2. Conversely, each section of code which is *not* callable should *not* be annotated as an ELF function. The ENDPROC macro shouldn't be used in this case. This rule is needed so that objtool can ignore non-callable code. Such code doesn't have to follow any of the other rules. 3. Each callable function which calls another function must have the correct frame pointer logic, if required by CONFIG_FRAME_POINTER or the architecture's back chain rules. This can by done in asm code with the FRAME_BEGIN/FRAME_END macros. This rule ensures that frame pointer based stack traces will work as designed. If function A doesn't create a stack frame before calling function B, the _caller_ of function A will be skipped on the stack trace. 4. Dynamic jumps and jumps to undefined symbols are only allowed if: a) the jump is part of a switch statement; or b) the jump matches sibling call semantics and the frame pointer has the same value it had on function entry. This rule is needed so that objtool can reliably analyze all of a function's code paths. If a function jumps to code in another file, and it's not a sibling call, objtool has no way to follow the jump because it only analyzes a single file at a time. 5. A callable function may not execute kernel entry/exit instructions. The only code which needs such instructions is kernel entry code, which shouldn't be be in callable functions anyway. This rule is just a sanity check to ensure that callable functions return normally. It currently only supports x86_64. I tried to make the code generic so that support for other architectures can hopefully be plugged in relatively easily. On my Lenovo laptop with a i7-4810MQ 4-core/8-thread CPU, building the kernel with objtool checking every .o file adds about three seconds of total build time. It hasn't been optimized for performance yet, so there are probably some opportunities for better build performance. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Link: http://lkml.kernel.org/r/f3efb173de43bd067b060de73f856567c0fa1174.1456719558.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 11:22:41 +07:00
If the error doesn't seem to make sense, it could be a bug in objtool.
Feel free to ask the objtool maintainer for help.
Adding exceptions
-----------------
If you _really_ need objtool to ignore something, and are 100% sure
that it won't affect kernel stack traces, you can tell objtool to
ignore it:
- To skip validation of a function, use the STACK_FRAME_NON_STANDARD
macro.
- To skip validation of a file, add
OBJECT_FILES_NON_STANDARD_filename.o := n
to the Makefile.
- To skip validation of a directory, add
OBJECT_FILES_NON_STANDARD := y
to the Makefile.