linux_dsm_epyc7002/arch/arm/mach-sa1100/simpad.c

425 lines
9.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/arm/mach-sa1100/simpad.c
*/
#include <linux/module.h>
#include <linux/gpio/machine.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/tty.h>
#include <linux/proc_fs.h>
#include <linux/string.h>
#include <linux/pm.h>
#include <linux/platform_data/sa11x0-serial.h>
#include <linux/platform_device.h>
#include <linux/mfd/ucb1x00.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/gpio/driver.h>
i2c: gpio: Convert to use descriptors This converts the GPIO-based I2C-driver to using GPIO descriptors instead of the old global numberspace-based GPIO interface. We: - Convert the driver to unconditionally grab two GPIOs from the device by index 0 (SDA) and 1 (SCL) which will work fine with device tree and descriptor tables. The existing device trees will continue to work just like before, but without any roundtrip through the global numberspace. - Brutally convert all boardfiles still passing global GPIOs by registering descriptor tables associated with the devices instead so this driver does not need to keep supporting passing any GPIO numbers as platform data. There is no stepwise approach as elegant as this, I strongly prefer this big hammer over any antsteps for this conversion. This way the old GPIO numbers go away and NEVER COME BACK. Special conversion for the different boards utilizing I2C-GPIO: - EP93xx (arch/arm/mach-ep93xx): pretty straight forward as all boards were using the same two GPIO lines, just define these two in a lookup table for "i2c-gpio" and register these along with the device. None of them define any other platform data so just pass NULL as platform data. This platform selects GPIOLIB so all should be smooth. The pins appear on a gpiochip for bank "G" as pins 1 (SDA) and 0 (SCL). - IXP4 (arch/arm/mach-ixp4): descriptor tables have to be registered for each board separately. They all use "IXP4XX_GPIO_CHIP" so it is pretty straight forward. Most board define no other platform data than SCL/SDA so they can drop the #include of <linux/i2c-gpio.h> and assign NULL to platform data. The "goramo_mlr" (Goramo Multilink Router) board is a bit worrisome: it implements its own I2C bit-banging in the board file, and optionally registers an I2C serial port, but claims the same GPIO lines for itself in the board file. This is not going to work: there will be competition for the GPIO lines, so delete the optional extra I2C bus instead, no I2C devices are registered on it anyway, there are just hints that it may contain an EEPROM that may be accessed from userspace. This needs to be fixed up properly by the serial clock using I2C emulation so drop a note in the code. - KS8695 board acs5k (arch/arm/mach-ks8695/board-acs5.c) has some platform data in addition to the pins so it needs to be kept around sans GPIO lines. Its GPIO chip is named "KS8695" and the arch selects GPIOLIB. - PXA boards (arch/arm/mach-pxa/*) use some of the platform data so it needs to be preserved here. The viper board even registers two GPIO I2Cs. The gpiochip is named "gpio-pxa" and the arch selects GPIOLIB. - SA1100 Simpad (arch/arm/mach-sa1100/simpad.c) defines a GPIO I2C bus, and the arch selects GPIOLIB. - Blackfin boards (arch/blackfin/bf533 etc) for these I assume their I2C GPIOs refer to the local gpiochip defined in arch/blackfin/kernel/bfin_gpio.c names "BFIN-GPIO". The arch selects GPIOLIB. The boards get spiked with IF_ENABLED(I2C_GPIO) but that is a side effect of it being like that already (I would just have Kconfig select I2C_GPIO and get rid of them all.) I also delete any platform data set to 0 as it will get that value anyway from static declartions of platform data. - The MIPS selects GPIOLIB and the Alchemy machine is using two local GPIO chips, one of them has a GPIO I2C. We need to adjust the local offset from the global number space here. The ATH79 has a proper GPIO driver in drivers/gpio/gpio-ath79.c and AFAICT the chip is named "ath79-gpio" and the PB44 PCF857x expander spawns from this on GPIO 1 and 0. The latter board only use the platform data to specify pins so it can be cut altogether after this. - The MFD Silicon Motion SM501 is a special case. It dynamically spawns an I2C bus off the MFD using sm501_create_subdev(). We use an approach to dynamically create a machine descriptor table and attach this to the "SM501-LOW" or "SM501-HIGH" gpiochip. We use chip-local offsets to grab the right lines. We can get rid of two local static inline helpers as part of this refactoring. Cc: Steven Miao <realmz6@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Heiko Schocher <hs@denx.de> Acked-by: Wu, Aaron <Aaron.Wu@analog.com> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2017-09-10 06:30:46 +07:00
#include <linux/gpio/machine.h>
#include <mach/hardware.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
#include <asm/mach/flash.h>
#include <asm/mach/map.h>
#include <linux/platform_data/mfd-mcp-sa11x0.h>
#include <mach/simpad.h>
#include <mach/irqs.h>
#include <linux/serial_core.h>
#include <linux/ioport.h>
#include <linux/input.h>
#include <linux/gpio_keys.h>
#include <linux/leds.h>
#include <linux/i2c-gpio.h>
#include "generic.h"
/*
* CS3 support
*/
static long cs3_shadow;
static spinlock_t cs3_lock;
static struct gpio_chip cs3_gpio;
long simpad_get_cs3_ro(void)
{
return readl(CS3_BASE);
}
EXPORT_SYMBOL(simpad_get_cs3_ro);
long simpad_get_cs3_shadow(void)
{
return cs3_shadow;
}
EXPORT_SYMBOL(simpad_get_cs3_shadow);
static void __simpad_write_cs3(void)
{
writel(cs3_shadow, CS3_BASE);
}
void simpad_set_cs3_bit(int value)
{
unsigned long flags;
spin_lock_irqsave(&cs3_lock, flags);
cs3_shadow |= value;
__simpad_write_cs3();
spin_unlock_irqrestore(&cs3_lock, flags);
}
EXPORT_SYMBOL(simpad_set_cs3_bit);
void simpad_clear_cs3_bit(int value)
{
unsigned long flags;
spin_lock_irqsave(&cs3_lock, flags);
cs3_shadow &= ~value;
__simpad_write_cs3();
spin_unlock_irqrestore(&cs3_lock, flags);
}
EXPORT_SYMBOL(simpad_clear_cs3_bit);
static void cs3_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
if (offset > 15)
return;
if (value)
simpad_set_cs3_bit(1 << offset);
else
simpad_clear_cs3_bit(1 << offset);
};
static int cs3_gpio_get(struct gpio_chip *chip, unsigned offset)
{
if (offset > 15)
return !!(simpad_get_cs3_ro() & (1 << (offset - 16)));
return !!(simpad_get_cs3_shadow() & (1 << offset));
};
static int cs3_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
if (offset > 15)
return 0;
return -EINVAL;
};
static int cs3_gpio_direction_output(struct gpio_chip *chip, unsigned offset,
int value)
{
if (offset > 15)
return -EINVAL;
cs3_gpio_set(chip, offset, value);
return 0;
};
static struct map_desc simpad_io_desc[] __initdata = {
{ /* MQ200 */
.virtual = 0xf2800000,
.pfn = __phys_to_pfn(0x4b800000),
.length = 0x00800000,
.type = MT_DEVICE
}, { /* Simpad CS3 */
.virtual = (unsigned long)CS3_BASE,
.pfn = __phys_to_pfn(SA1100_CS3_PHYS),
.length = 0x00100000,
.type = MT_DEVICE
},
};
static void simpad_uart_pm(struct uart_port *port, u_int state, u_int oldstate)
{
if (port->mapbase == (u_int)&Ser1UTCR0) {
if (state)
{
simpad_clear_cs3_bit(RS232_ON);
simpad_clear_cs3_bit(DECT_POWER_ON);
}else
{
simpad_set_cs3_bit(RS232_ON);
simpad_set_cs3_bit(DECT_POWER_ON);
}
}
}
static struct sa1100_port_fns simpad_port_fns __initdata = {
.pm = simpad_uart_pm,
};
static struct mtd_partition simpad_partitions[] = {
{
.name = "SIMpad boot firmware",
.size = 0x00080000,
.offset = 0,
.mask_flags = MTD_WRITEABLE,
}, {
.name = "SIMpad kernel",
.size = 0x0010000,
.offset = MTDPART_OFS_APPEND,
}, {
.name = "SIMpad root jffs2",
.size = MTDPART_SIZ_FULL,
.offset = MTDPART_OFS_APPEND,
}
};
static struct flash_platform_data simpad_flash_data = {
.map_name = "cfi_probe",
.parts = simpad_partitions,
.nr_parts = ARRAY_SIZE(simpad_partitions),
};
static struct resource simpad_flash_resources [] = {
DEFINE_RES_MEM(SA1100_CS0_PHYS, SZ_16M),
DEFINE_RES_MEM(SA1100_CS1_PHYS, SZ_16M),
};
static struct ucb1x00_plat_data simpad_ucb1x00_data = {
.gpio_base = SIMPAD_UCB1X00_GPIO_BASE,
};
static struct mcp_plat_data simpad_mcp_data = {
.mccr0 = MCCR0_ADM,
.sclk_rate = 11981000,
.codec_pdata = &simpad_ucb1x00_data,
};
static void __init simpad_map_io(void)
{
sa1100_map_io();
iotable_init(simpad_io_desc, ARRAY_SIZE(simpad_io_desc));
/* Initialize CS3 */
cs3_shadow = (EN1 | EN0 | LED2_ON | DISPLAY_ON |
RS232_ON | ENABLE_5V | RESET_SIMCARD | DECT_POWER_ON);
__simpad_write_cs3(); /* Spinlocks not yet initialized */
sa1100_register_uart_fns(&simpad_port_fns);
sa1100_register_uart(0, 3); /* serial interface */
sa1100_register_uart(1, 1); /* DECT */
// Reassign UART 1 pins
GAFR |= GPIO_UART_TXD | GPIO_UART_RXD;
GPDR |= GPIO_UART_TXD | GPIO_LDD13 | GPIO_LDD15;
GPDR &= ~GPIO_UART_RXD;
PPAR |= PPAR_UPR;
/*
* Set up registers for sleep mode.
*/
PWER = PWER_GPIO0| PWER_RTC;
PGSR = 0x818;
PCFR = 0;
PSDR = 0;
}
static void simpad_power_off(void)
{
local_irq_disable();
cs3_shadow = SD_MEDIAQ;
__simpad_write_cs3(); /* Bypass spinlock here */
/* disable internal oscillator, float CS lines */
PCFR = (PCFR_OPDE | PCFR_FP | PCFR_FS);
/* enable wake-up on GPIO0 */
PWER = GFER = GRER = PWER_GPIO0;
/*
* set scratchpad to zero, just in case it is used as a
* restart address by the bootloader.
*/
PSPR = 0;
PGSR = 0;
/* enter sleep mode */
PMCR = PMCR_SF;
while(1);
local_irq_enable(); /* we won't ever call it */
}
/*
* gpio_keys
*/
static struct gpio_keys_button simpad_button_table[] = {
{ KEY_POWER, IRQ_GPIO_POWER_BUTTON, 1, "power button" },
};
static struct gpio_keys_platform_data simpad_keys_data = {
.buttons = simpad_button_table,
.nbuttons = ARRAY_SIZE(simpad_button_table),
};
static struct platform_device simpad_keys = {
.name = "gpio-keys",
.dev = {
.platform_data = &simpad_keys_data,
},
};
static struct gpio_keys_button simpad_polled_button_table[] = {
{ KEY_PROG1, SIMPAD_UCB1X00_GPIO_PROG1, 1, "prog1 button" },
{ KEY_PROG2, SIMPAD_UCB1X00_GPIO_PROG2, 1, "prog2 button" },
{ KEY_UP, SIMPAD_UCB1X00_GPIO_UP, 1, "up button" },
{ KEY_DOWN, SIMPAD_UCB1X00_GPIO_DOWN, 1, "down button" },
{ KEY_LEFT, SIMPAD_UCB1X00_GPIO_LEFT, 1, "left button" },
{ KEY_RIGHT, SIMPAD_UCB1X00_GPIO_RIGHT, 1, "right button" },
};
static struct gpio_keys_platform_data simpad_polled_keys_data = {
.buttons = simpad_polled_button_table,
.nbuttons = ARRAY_SIZE(simpad_polled_button_table),
.poll_interval = 50,
};
static struct platform_device simpad_polled_keys = {
.name = "gpio-keys-polled",
.dev = {
.platform_data = &simpad_polled_keys_data,
},
};
/*
* GPIO LEDs
*/
static struct gpio_led simpad_leds[] = {
{
.name = "simpad:power",
.gpio = SIMPAD_CS3_LED2_ON,
.active_low = 0,
.default_trigger = "default-on",
},
};
static struct gpio_led_platform_data simpad_led_data = {
.num_leds = ARRAY_SIZE(simpad_leds),
.leds = simpad_leds,
};
static struct platform_device simpad_gpio_leds = {
.name = "leds-gpio",
.id = 0,
.dev = {
.platform_data = &simpad_led_data,
},
};
/*
* i2c
*/
i2c: gpio: Convert to use descriptors This converts the GPIO-based I2C-driver to using GPIO descriptors instead of the old global numberspace-based GPIO interface. We: - Convert the driver to unconditionally grab two GPIOs from the device by index 0 (SDA) and 1 (SCL) which will work fine with device tree and descriptor tables. The existing device trees will continue to work just like before, but without any roundtrip through the global numberspace. - Brutally convert all boardfiles still passing global GPIOs by registering descriptor tables associated with the devices instead so this driver does not need to keep supporting passing any GPIO numbers as platform data. There is no stepwise approach as elegant as this, I strongly prefer this big hammer over any antsteps for this conversion. This way the old GPIO numbers go away and NEVER COME BACK. Special conversion for the different boards utilizing I2C-GPIO: - EP93xx (arch/arm/mach-ep93xx): pretty straight forward as all boards were using the same two GPIO lines, just define these two in a lookup table for "i2c-gpio" and register these along with the device. None of them define any other platform data so just pass NULL as platform data. This platform selects GPIOLIB so all should be smooth. The pins appear on a gpiochip for bank "G" as pins 1 (SDA) and 0 (SCL). - IXP4 (arch/arm/mach-ixp4): descriptor tables have to be registered for each board separately. They all use "IXP4XX_GPIO_CHIP" so it is pretty straight forward. Most board define no other platform data than SCL/SDA so they can drop the #include of <linux/i2c-gpio.h> and assign NULL to platform data. The "goramo_mlr" (Goramo Multilink Router) board is a bit worrisome: it implements its own I2C bit-banging in the board file, and optionally registers an I2C serial port, but claims the same GPIO lines for itself in the board file. This is not going to work: there will be competition for the GPIO lines, so delete the optional extra I2C bus instead, no I2C devices are registered on it anyway, there are just hints that it may contain an EEPROM that may be accessed from userspace. This needs to be fixed up properly by the serial clock using I2C emulation so drop a note in the code. - KS8695 board acs5k (arch/arm/mach-ks8695/board-acs5.c) has some platform data in addition to the pins so it needs to be kept around sans GPIO lines. Its GPIO chip is named "KS8695" and the arch selects GPIOLIB. - PXA boards (arch/arm/mach-pxa/*) use some of the platform data so it needs to be preserved here. The viper board even registers two GPIO I2Cs. The gpiochip is named "gpio-pxa" and the arch selects GPIOLIB. - SA1100 Simpad (arch/arm/mach-sa1100/simpad.c) defines a GPIO I2C bus, and the arch selects GPIOLIB. - Blackfin boards (arch/blackfin/bf533 etc) for these I assume their I2C GPIOs refer to the local gpiochip defined in arch/blackfin/kernel/bfin_gpio.c names "BFIN-GPIO". The arch selects GPIOLIB. The boards get spiked with IF_ENABLED(I2C_GPIO) but that is a side effect of it being like that already (I would just have Kconfig select I2C_GPIO and get rid of them all.) I also delete any platform data set to 0 as it will get that value anyway from static declartions of platform data. - The MIPS selects GPIOLIB and the Alchemy machine is using two local GPIO chips, one of them has a GPIO I2C. We need to adjust the local offset from the global number space here. The ATH79 has a proper GPIO driver in drivers/gpio/gpio-ath79.c and AFAICT the chip is named "ath79-gpio" and the PB44 PCF857x expander spawns from this on GPIO 1 and 0. The latter board only use the platform data to specify pins so it can be cut altogether after this. - The MFD Silicon Motion SM501 is a special case. It dynamically spawns an I2C bus off the MFD using sm501_create_subdev(). We use an approach to dynamically create a machine descriptor table and attach this to the "SM501-LOW" or "SM501-HIGH" gpiochip. We use chip-local offsets to grab the right lines. We can get rid of two local static inline helpers as part of this refactoring. Cc: Steven Miao <realmz6@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Heiko Schocher <hs@denx.de> Acked-by: Wu, Aaron <Aaron.Wu@analog.com> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2017-09-10 06:30:46 +07:00
static struct gpiod_lookup_table simpad_i2c_gpiod_table = {
.dev_id = "i2c-gpio.0",
i2c: gpio: Convert to use descriptors This converts the GPIO-based I2C-driver to using GPIO descriptors instead of the old global numberspace-based GPIO interface. We: - Convert the driver to unconditionally grab two GPIOs from the device by index 0 (SDA) and 1 (SCL) which will work fine with device tree and descriptor tables. The existing device trees will continue to work just like before, but without any roundtrip through the global numberspace. - Brutally convert all boardfiles still passing global GPIOs by registering descriptor tables associated with the devices instead so this driver does not need to keep supporting passing any GPIO numbers as platform data. There is no stepwise approach as elegant as this, I strongly prefer this big hammer over any antsteps for this conversion. This way the old GPIO numbers go away and NEVER COME BACK. Special conversion for the different boards utilizing I2C-GPIO: - EP93xx (arch/arm/mach-ep93xx): pretty straight forward as all boards were using the same two GPIO lines, just define these two in a lookup table for "i2c-gpio" and register these along with the device. None of them define any other platform data so just pass NULL as platform data. This platform selects GPIOLIB so all should be smooth. The pins appear on a gpiochip for bank "G" as pins 1 (SDA) and 0 (SCL). - IXP4 (arch/arm/mach-ixp4): descriptor tables have to be registered for each board separately. They all use "IXP4XX_GPIO_CHIP" so it is pretty straight forward. Most board define no other platform data than SCL/SDA so they can drop the #include of <linux/i2c-gpio.h> and assign NULL to platform data. The "goramo_mlr" (Goramo Multilink Router) board is a bit worrisome: it implements its own I2C bit-banging in the board file, and optionally registers an I2C serial port, but claims the same GPIO lines for itself in the board file. This is not going to work: there will be competition for the GPIO lines, so delete the optional extra I2C bus instead, no I2C devices are registered on it anyway, there are just hints that it may contain an EEPROM that may be accessed from userspace. This needs to be fixed up properly by the serial clock using I2C emulation so drop a note in the code. - KS8695 board acs5k (arch/arm/mach-ks8695/board-acs5.c) has some platform data in addition to the pins so it needs to be kept around sans GPIO lines. Its GPIO chip is named "KS8695" and the arch selects GPIOLIB. - PXA boards (arch/arm/mach-pxa/*) use some of the platform data so it needs to be preserved here. The viper board even registers two GPIO I2Cs. The gpiochip is named "gpio-pxa" and the arch selects GPIOLIB. - SA1100 Simpad (arch/arm/mach-sa1100/simpad.c) defines a GPIO I2C bus, and the arch selects GPIOLIB. - Blackfin boards (arch/blackfin/bf533 etc) for these I assume their I2C GPIOs refer to the local gpiochip defined in arch/blackfin/kernel/bfin_gpio.c names "BFIN-GPIO". The arch selects GPIOLIB. The boards get spiked with IF_ENABLED(I2C_GPIO) but that is a side effect of it being like that already (I would just have Kconfig select I2C_GPIO and get rid of them all.) I also delete any platform data set to 0 as it will get that value anyway from static declartions of platform data. - The MIPS selects GPIOLIB and the Alchemy machine is using two local GPIO chips, one of them has a GPIO I2C. We need to adjust the local offset from the global number space here. The ATH79 has a proper GPIO driver in drivers/gpio/gpio-ath79.c and AFAICT the chip is named "ath79-gpio" and the PB44 PCF857x expander spawns from this on GPIO 1 and 0. The latter board only use the platform data to specify pins so it can be cut altogether after this. - The MFD Silicon Motion SM501 is a special case. It dynamically spawns an I2C bus off the MFD using sm501_create_subdev(). We use an approach to dynamically create a machine descriptor table and attach this to the "SM501-LOW" or "SM501-HIGH" gpiochip. We use chip-local offsets to grab the right lines. We can get rid of two local static inline helpers as part of this refactoring. Cc: Steven Miao <realmz6@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Heiko Schocher <hs@denx.de> Acked-by: Wu, Aaron <Aaron.Wu@analog.com> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2017-09-10 06:30:46 +07:00
.table = {
ARM: sa1100: simpad: Correct I2C GPIO offsets Arnd reported the following build bug bug: In file included from arch/arm/mach-sa1100/simpad.c:20:0: arch/arm/mach-sa1100/include/mach/SA-1100.h:1118:18: error: large integer implicitly truncated to unsigned type [-Werror=overflow] (0x00000001 << (Nb)) ^ include/linux/gpio/machine.h:56:16: note: in definition of macro 'GPIO_LOOKUP_IDX' .chip_hwnum = _chip_hwnum, ^~~~~~~~~~~ arch/arm/mach-sa1100/include/mach/SA-1100.h:1140:21: note: in expansion of macro 'GPIO_GPIO' ^~~~~~~~~ arch/arm/mach-sa1100/simpad.c:331:27: note: in expansion of macro 'GPIO_GPIO21' GPIO_LOOKUP_IDX("gpio", GPIO_GPIO21, NULL, 0, This is what happened: commit b2e63555592f81331c8da3afaa607d8cf83e8138 "i2c: gpio: Convert to use descriptors" commit 4d0ce62c0a02e41a65cfdcfe277f5be430edc371 "i2c: gpio: Augment all boardfiles to use open drain" together uncovered an old bug in the Simpad board file: as theGPIO_LOOKUP_IDX() encodes GPIO offsets on gpiochips in an u16 (see <linux/gpio/machine.h>) these GPIO "numbers" does not fit, since in arch/arm/mach-sa1100/include/mach/SA-1100.h it is defined as: #define GPIO_GPIO(Nb) (0x00000001 << (Nb)) (...) #define GPIO_GPIO21 GPIO_GPIO(21) /* GPIO [21] */ This is however provably wrong, since the i2c-gpio driver uses proper GPIO numbers, albeit earlier from the global number space, whereas this GPIO_GPIO21 is the local line offset in the GPIO register, which is used in other code but certainly not in the gpiolib GPIO driver in drivers/gpio/gpio-sa1100.c, which has code like this: static void sa1100_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { int reg = value ? R_GPSR : R_GPCR; writel_relaxed(BIT(offset), sa1100_gpio_chip(chip)->membase + reg); } So far everything however compiled fine as an unsigned int was used to pass the GPIO numbers in struct i2c_gpio_platform_data. We can trace the actual error back to commit dbd406f9d0a1d33a1303eb75cbe3f9435513d339 "ARM: 7025/1: simpad: add GPIO based device definitions." This added the i2c_gpio with the wrong offsets. This commit was before the SA1100 was converted to use the gpiolib, but as can be seen from the contemporary gpio.c in mach-sa1100, it was already using: static int sa1100_gpio_get(struct gpio_chip *chip, unsigned offset) { return GPLR & GPIO_GPIO(offset); } And GPIO_GPIO() is essentially the BIT() macro. Reported-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2017-11-08 03:18:57 +07:00
GPIO_LOOKUP_IDX("gpio", 21, NULL, 0,
GPIO_ACTIVE_HIGH | GPIO_OPEN_DRAIN),
ARM: sa1100: simpad: Correct I2C GPIO offsets Arnd reported the following build bug bug: In file included from arch/arm/mach-sa1100/simpad.c:20:0: arch/arm/mach-sa1100/include/mach/SA-1100.h:1118:18: error: large integer implicitly truncated to unsigned type [-Werror=overflow] (0x00000001 << (Nb)) ^ include/linux/gpio/machine.h:56:16: note: in definition of macro 'GPIO_LOOKUP_IDX' .chip_hwnum = _chip_hwnum, ^~~~~~~~~~~ arch/arm/mach-sa1100/include/mach/SA-1100.h:1140:21: note: in expansion of macro 'GPIO_GPIO' ^~~~~~~~~ arch/arm/mach-sa1100/simpad.c:331:27: note: in expansion of macro 'GPIO_GPIO21' GPIO_LOOKUP_IDX("gpio", GPIO_GPIO21, NULL, 0, This is what happened: commit b2e63555592f81331c8da3afaa607d8cf83e8138 "i2c: gpio: Convert to use descriptors" commit 4d0ce62c0a02e41a65cfdcfe277f5be430edc371 "i2c: gpio: Augment all boardfiles to use open drain" together uncovered an old bug in the Simpad board file: as theGPIO_LOOKUP_IDX() encodes GPIO offsets on gpiochips in an u16 (see <linux/gpio/machine.h>) these GPIO "numbers" does not fit, since in arch/arm/mach-sa1100/include/mach/SA-1100.h it is defined as: #define GPIO_GPIO(Nb) (0x00000001 << (Nb)) (...) #define GPIO_GPIO21 GPIO_GPIO(21) /* GPIO [21] */ This is however provably wrong, since the i2c-gpio driver uses proper GPIO numbers, albeit earlier from the global number space, whereas this GPIO_GPIO21 is the local line offset in the GPIO register, which is used in other code but certainly not in the gpiolib GPIO driver in drivers/gpio/gpio-sa1100.c, which has code like this: static void sa1100_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { int reg = value ? R_GPSR : R_GPCR; writel_relaxed(BIT(offset), sa1100_gpio_chip(chip)->membase + reg); } So far everything however compiled fine as an unsigned int was used to pass the GPIO numbers in struct i2c_gpio_platform_data. We can trace the actual error back to commit dbd406f9d0a1d33a1303eb75cbe3f9435513d339 "ARM: 7025/1: simpad: add GPIO based device definitions." This added the i2c_gpio with the wrong offsets. This commit was before the SA1100 was converted to use the gpiolib, but as can be seen from the contemporary gpio.c in mach-sa1100, it was already using: static int sa1100_gpio_get(struct gpio_chip *chip, unsigned offset) { return GPLR & GPIO_GPIO(offset); } And GPIO_GPIO() is essentially the BIT() macro. Reported-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2017-11-08 03:18:57 +07:00
GPIO_LOOKUP_IDX("gpio", 25, NULL, 1,
GPIO_ACTIVE_HIGH | GPIO_OPEN_DRAIN),
i2c: gpio: Convert to use descriptors This converts the GPIO-based I2C-driver to using GPIO descriptors instead of the old global numberspace-based GPIO interface. We: - Convert the driver to unconditionally grab two GPIOs from the device by index 0 (SDA) and 1 (SCL) which will work fine with device tree and descriptor tables. The existing device trees will continue to work just like before, but without any roundtrip through the global numberspace. - Brutally convert all boardfiles still passing global GPIOs by registering descriptor tables associated with the devices instead so this driver does not need to keep supporting passing any GPIO numbers as platform data. There is no stepwise approach as elegant as this, I strongly prefer this big hammer over any antsteps for this conversion. This way the old GPIO numbers go away and NEVER COME BACK. Special conversion for the different boards utilizing I2C-GPIO: - EP93xx (arch/arm/mach-ep93xx): pretty straight forward as all boards were using the same two GPIO lines, just define these two in a lookup table for "i2c-gpio" and register these along with the device. None of them define any other platform data so just pass NULL as platform data. This platform selects GPIOLIB so all should be smooth. The pins appear on a gpiochip for bank "G" as pins 1 (SDA) and 0 (SCL). - IXP4 (arch/arm/mach-ixp4): descriptor tables have to be registered for each board separately. They all use "IXP4XX_GPIO_CHIP" so it is pretty straight forward. Most board define no other platform data than SCL/SDA so they can drop the #include of <linux/i2c-gpio.h> and assign NULL to platform data. The "goramo_mlr" (Goramo Multilink Router) board is a bit worrisome: it implements its own I2C bit-banging in the board file, and optionally registers an I2C serial port, but claims the same GPIO lines for itself in the board file. This is not going to work: there will be competition for the GPIO lines, so delete the optional extra I2C bus instead, no I2C devices are registered on it anyway, there are just hints that it may contain an EEPROM that may be accessed from userspace. This needs to be fixed up properly by the serial clock using I2C emulation so drop a note in the code. - KS8695 board acs5k (arch/arm/mach-ks8695/board-acs5.c) has some platform data in addition to the pins so it needs to be kept around sans GPIO lines. Its GPIO chip is named "KS8695" and the arch selects GPIOLIB. - PXA boards (arch/arm/mach-pxa/*) use some of the platform data so it needs to be preserved here. The viper board even registers two GPIO I2Cs. The gpiochip is named "gpio-pxa" and the arch selects GPIOLIB. - SA1100 Simpad (arch/arm/mach-sa1100/simpad.c) defines a GPIO I2C bus, and the arch selects GPIOLIB. - Blackfin boards (arch/blackfin/bf533 etc) for these I assume their I2C GPIOs refer to the local gpiochip defined in arch/blackfin/kernel/bfin_gpio.c names "BFIN-GPIO". The arch selects GPIOLIB. The boards get spiked with IF_ENABLED(I2C_GPIO) but that is a side effect of it being like that already (I would just have Kconfig select I2C_GPIO and get rid of them all.) I also delete any platform data set to 0 as it will get that value anyway from static declartions of platform data. - The MIPS selects GPIOLIB and the Alchemy machine is using two local GPIO chips, one of them has a GPIO I2C. We need to adjust the local offset from the global number space here. The ATH79 has a proper GPIO driver in drivers/gpio/gpio-ath79.c and AFAICT the chip is named "ath79-gpio" and the PB44 PCF857x expander spawns from this on GPIO 1 and 0. The latter board only use the platform data to specify pins so it can be cut altogether after this. - The MFD Silicon Motion SM501 is a special case. It dynamically spawns an I2C bus off the MFD using sm501_create_subdev(). We use an approach to dynamically create a machine descriptor table and attach this to the "SM501-LOW" or "SM501-HIGH" gpiochip. We use chip-local offsets to grab the right lines. We can get rid of two local static inline helpers as part of this refactoring. Cc: Steven Miao <realmz6@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Heiko Schocher <hs@denx.de> Acked-by: Wu, Aaron <Aaron.Wu@analog.com> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2017-09-10 06:30:46 +07:00
},
};
static struct i2c_gpio_platform_data simpad_i2c_data = {
.udelay = 10,
.timeout = HZ,
};
static struct platform_device simpad_i2c = {
.name = "i2c-gpio",
.id = 0,
.dev = {
.platform_data = &simpad_i2c_data,
},
};
/*
* MediaQ Video Device
*/
static struct platform_device simpad_mq200fb = {
.name = "simpad-mq200",
.id = 0,
};
static struct platform_device *devices[] __initdata = {
&simpad_keys,
&simpad_polled_keys,
&simpad_mq200fb,
&simpad_gpio_leds,
&simpad_i2c,
};
/* Compact Flash */
static struct gpiod_lookup_table simpad_cf_gpio_table = {
.dev_id = "sa11x0-pcmcia",
.table = {
GPIO_LOOKUP("gpio", GPIO_CF_IRQ, "cf-ready", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("gpio", GPIO_CF_CD, "cf-detect", GPIO_ACTIVE_HIGH),
{ },
},
};
static int __init simpad_init(void)
{
int ret;
spin_lock_init(&cs3_lock);
cs3_gpio.label = "simpad_cs3";
cs3_gpio.base = SIMPAD_CS3_GPIO_BASE;
cs3_gpio.ngpio = 24;
cs3_gpio.set = cs3_gpio_set;
cs3_gpio.get = cs3_gpio_get;
cs3_gpio.direction_input = cs3_gpio_direction_input;
cs3_gpio.direction_output = cs3_gpio_direction_output;
ret = gpiochip_add_data(&cs3_gpio, NULL);
if (ret)
printk(KERN_WARNING "simpad: Unable to register cs3 GPIO device");
pm_power_off = simpad_power_off;
sa11x0_register_pcmcia(-1, &simpad_cf_gpio_table);
sa11x0_ppc_configure_mcp();
sa11x0_register_mtd(&simpad_flash_data, simpad_flash_resources,
ARRAY_SIZE(simpad_flash_resources));
sa11x0_register_mcp(&simpad_mcp_data);
i2c: gpio: Convert to use descriptors This converts the GPIO-based I2C-driver to using GPIO descriptors instead of the old global numberspace-based GPIO interface. We: - Convert the driver to unconditionally grab two GPIOs from the device by index 0 (SDA) and 1 (SCL) which will work fine with device tree and descriptor tables. The existing device trees will continue to work just like before, but without any roundtrip through the global numberspace. - Brutally convert all boardfiles still passing global GPIOs by registering descriptor tables associated with the devices instead so this driver does not need to keep supporting passing any GPIO numbers as platform data. There is no stepwise approach as elegant as this, I strongly prefer this big hammer over any antsteps for this conversion. This way the old GPIO numbers go away and NEVER COME BACK. Special conversion for the different boards utilizing I2C-GPIO: - EP93xx (arch/arm/mach-ep93xx): pretty straight forward as all boards were using the same two GPIO lines, just define these two in a lookup table for "i2c-gpio" and register these along with the device. None of them define any other platform data so just pass NULL as platform data. This platform selects GPIOLIB so all should be smooth. The pins appear on a gpiochip for bank "G" as pins 1 (SDA) and 0 (SCL). - IXP4 (arch/arm/mach-ixp4): descriptor tables have to be registered for each board separately. They all use "IXP4XX_GPIO_CHIP" so it is pretty straight forward. Most board define no other platform data than SCL/SDA so they can drop the #include of <linux/i2c-gpio.h> and assign NULL to platform data. The "goramo_mlr" (Goramo Multilink Router) board is a bit worrisome: it implements its own I2C bit-banging in the board file, and optionally registers an I2C serial port, but claims the same GPIO lines for itself in the board file. This is not going to work: there will be competition for the GPIO lines, so delete the optional extra I2C bus instead, no I2C devices are registered on it anyway, there are just hints that it may contain an EEPROM that may be accessed from userspace. This needs to be fixed up properly by the serial clock using I2C emulation so drop a note in the code. - KS8695 board acs5k (arch/arm/mach-ks8695/board-acs5.c) has some platform data in addition to the pins so it needs to be kept around sans GPIO lines. Its GPIO chip is named "KS8695" and the arch selects GPIOLIB. - PXA boards (arch/arm/mach-pxa/*) use some of the platform data so it needs to be preserved here. The viper board even registers two GPIO I2Cs. The gpiochip is named "gpio-pxa" and the arch selects GPIOLIB. - SA1100 Simpad (arch/arm/mach-sa1100/simpad.c) defines a GPIO I2C bus, and the arch selects GPIOLIB. - Blackfin boards (arch/blackfin/bf533 etc) for these I assume their I2C GPIOs refer to the local gpiochip defined in arch/blackfin/kernel/bfin_gpio.c names "BFIN-GPIO". The arch selects GPIOLIB. The boards get spiked with IF_ENABLED(I2C_GPIO) but that is a side effect of it being like that already (I would just have Kconfig select I2C_GPIO and get rid of them all.) I also delete any platform data set to 0 as it will get that value anyway from static declartions of platform data. - The MIPS selects GPIOLIB and the Alchemy machine is using two local GPIO chips, one of them has a GPIO I2C. We need to adjust the local offset from the global number space here. The ATH79 has a proper GPIO driver in drivers/gpio/gpio-ath79.c and AFAICT the chip is named "ath79-gpio" and the PB44 PCF857x expander spawns from this on GPIO 1 and 0. The latter board only use the platform data to specify pins so it can be cut altogether after this. - The MFD Silicon Motion SM501 is a special case. It dynamically spawns an I2C bus off the MFD using sm501_create_subdev(). We use an approach to dynamically create a machine descriptor table and attach this to the "SM501-LOW" or "SM501-HIGH" gpiochip. We use chip-local offsets to grab the right lines. We can get rid of two local static inline helpers as part of this refactoring. Cc: Steven Miao <realmz6@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: Ben Dooks <ben.dooks@codethink.co.uk> Cc: Heiko Schocher <hs@denx.de> Acked-by: Wu, Aaron <Aaron.Wu@analog.com> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2017-09-10 06:30:46 +07:00
gpiod_add_lookup_table(&simpad_i2c_gpiod_table);
ret = platform_add_devices(devices, ARRAY_SIZE(devices));
if(ret)
printk(KERN_WARNING "simpad: Unable to register mq200 framebuffer device");
return 0;
}
arch_initcall(simpad_init);
MACHINE_START(SIMPAD, "Simpad")
/* Maintainer: Holger Freyther */
.atag_offset = 0x100,
.map_io = simpad_map_io,
.nr_irqs = SA1100_NR_IRQS,
.init_irq = sa1100_init_irq,
.init_late = sa11x0_init_late,
.init_time = sa1100_timer_init,
.restart = sa11x0_restart,
MACHINE_END