License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2005-04-17 05:20:36 +07:00
|
|
|
/*
|
2006-10-04 04:01:26 +07:00
|
|
|
* drivers/macintosh/adbhid.c
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
|
|
|
* ADB HID driver for Power Macintosh computers.
|
|
|
|
*
|
|
|
|
* Adapted from drivers/macintosh/mac_keyb.c by Franz Sirl.
|
|
|
|
* drivers/macintosh/mac_keyb.c was Copyright (C) 1996 Paul Mackerras
|
|
|
|
* with considerable contributions from Ben Herrenschmidt and others.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2000 Franz Sirl.
|
|
|
|
*
|
|
|
|
* Adapted to ADB changes and support for more devices by
|
|
|
|
* Benjamin Herrenschmidt. Adapted from code in MkLinux
|
|
|
|
* and reworked.
|
|
|
|
*
|
|
|
|
* Supported devices:
|
|
|
|
*
|
|
|
|
* - Standard 1 button mouse
|
|
|
|
* - All standard Apple Extended protocol (handler ID 4)
|
|
|
|
* - mouseman and trackman mice & trackballs
|
|
|
|
* - PowerBook Trackpad (default setup: enable tapping)
|
|
|
|
* - MicroSpeed mouse & trackball (needs testing)
|
|
|
|
* - CH Products Trackball Pro (needs testing)
|
|
|
|
* - Contour Design (Contour Mouse)
|
|
|
|
* - Hunter digital (NoHandsMouse)
|
|
|
|
* - Kensignton TurboMouse 5 (needs testing)
|
|
|
|
* - Mouse Systems A3 mice and trackballs <aidan@kublai.com>
|
|
|
|
* - MacAlly 2-buttons mouse (needs testing) <pochini@denise.shiny.it>
|
|
|
|
*
|
|
|
|
* To do:
|
|
|
|
*
|
|
|
|
* Improve Kensington support.
|
|
|
|
* Split mouse/kbd
|
|
|
|
* Move to syfs
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <linux/input.h>
|
|
|
|
|
|
|
|
#include <linux/adb.h>
|
|
|
|
#include <linux/cuda.h>
|
|
|
|
#include <linux/pmu.h>
|
|
|
|
|
|
|
|
#include <asm/machdep.h>
|
|
|
|
#ifdef CONFIG_PPC_PMAC
|
2006-09-23 07:25:18 +07:00
|
|
|
#include <asm/backlight.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <asm/pmac_feature.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Franz Sirl <Franz.Sirl-kernel@lauterbach.com>");
|
|
|
|
|
2007-10-11 11:49:43 +07:00
|
|
|
static int restore_capslock_events;
|
|
|
|
module_param(restore_capslock_events, int, 0644);
|
|
|
|
MODULE_PARM_DESC(restore_capslock_events,
|
|
|
|
"Produce keypress events for capslock on both keyup and keydown.");
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
#define KEYB_KEYREG 0 /* register # for key up/down data */
|
|
|
|
#define KEYB_LEDREG 2 /* register # for leds on ADB keyboard */
|
|
|
|
#define MOUSE_DATAREG 0 /* reg# for movement/button codes from mouse */
|
|
|
|
|
|
|
|
static int adb_message_handler(struct notifier_block *, unsigned long, void *);
|
|
|
|
static struct notifier_block adbhid_adb_notifier = {
|
|
|
|
.notifier_call = adb_message_handler,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Some special keys */
|
|
|
|
#define ADB_KEY_DEL 0x33
|
|
|
|
#define ADB_KEY_CMD 0x37
|
|
|
|
#define ADB_KEY_CAPSLOCK 0x39
|
|
|
|
#define ADB_KEY_FN 0x3f
|
|
|
|
#define ADB_KEY_FWDEL 0x75
|
|
|
|
#define ADB_KEY_POWER_OLD 0x7e
|
|
|
|
#define ADB_KEY_POWER 0x7f
|
|
|
|
|
2008-06-24 00:46:57 +07:00
|
|
|
static const u16 adb_to_linux_keycodes[128] = {
|
2005-04-17 05:20:36 +07:00
|
|
|
/* 0x00 */ KEY_A, /* 30 */
|
|
|
|
/* 0x01 */ KEY_S, /* 31 */
|
|
|
|
/* 0x02 */ KEY_D, /* 32 */
|
|
|
|
/* 0x03 */ KEY_F, /* 33 */
|
|
|
|
/* 0x04 */ KEY_H, /* 35 */
|
|
|
|
/* 0x05 */ KEY_G, /* 34 */
|
|
|
|
/* 0x06 */ KEY_Z, /* 44 */
|
|
|
|
/* 0x07 */ KEY_X, /* 45 */
|
|
|
|
/* 0x08 */ KEY_C, /* 46 */
|
|
|
|
/* 0x09 */ KEY_V, /* 47 */
|
|
|
|
/* 0x0a */ KEY_102ND, /* 86 */
|
|
|
|
/* 0x0b */ KEY_B, /* 48 */
|
|
|
|
/* 0x0c */ KEY_Q, /* 16 */
|
|
|
|
/* 0x0d */ KEY_W, /* 17 */
|
|
|
|
/* 0x0e */ KEY_E, /* 18 */
|
|
|
|
/* 0x0f */ KEY_R, /* 19 */
|
|
|
|
/* 0x10 */ KEY_Y, /* 21 */
|
|
|
|
/* 0x11 */ KEY_T, /* 20 */
|
|
|
|
/* 0x12 */ KEY_1, /* 2 */
|
|
|
|
/* 0x13 */ KEY_2, /* 3 */
|
|
|
|
/* 0x14 */ KEY_3, /* 4 */
|
|
|
|
/* 0x15 */ KEY_4, /* 5 */
|
|
|
|
/* 0x16 */ KEY_6, /* 7 */
|
|
|
|
/* 0x17 */ KEY_5, /* 6 */
|
|
|
|
/* 0x18 */ KEY_EQUAL, /* 13 */
|
|
|
|
/* 0x19 */ KEY_9, /* 10 */
|
|
|
|
/* 0x1a */ KEY_7, /* 8 */
|
|
|
|
/* 0x1b */ KEY_MINUS, /* 12 */
|
|
|
|
/* 0x1c */ KEY_8, /* 9 */
|
|
|
|
/* 0x1d */ KEY_0, /* 11 */
|
|
|
|
/* 0x1e */ KEY_RIGHTBRACE, /* 27 */
|
|
|
|
/* 0x1f */ KEY_O, /* 24 */
|
|
|
|
/* 0x20 */ KEY_U, /* 22 */
|
|
|
|
/* 0x21 */ KEY_LEFTBRACE, /* 26 */
|
|
|
|
/* 0x22 */ KEY_I, /* 23 */
|
|
|
|
/* 0x23 */ KEY_P, /* 25 */
|
|
|
|
/* 0x24 */ KEY_ENTER, /* 28 */
|
|
|
|
/* 0x25 */ KEY_L, /* 38 */
|
|
|
|
/* 0x26 */ KEY_J, /* 36 */
|
|
|
|
/* 0x27 */ KEY_APOSTROPHE, /* 40 */
|
|
|
|
/* 0x28 */ KEY_K, /* 37 */
|
|
|
|
/* 0x29 */ KEY_SEMICOLON, /* 39 */
|
|
|
|
/* 0x2a */ KEY_BACKSLASH, /* 43 */
|
|
|
|
/* 0x2b */ KEY_COMMA, /* 51 */
|
|
|
|
/* 0x2c */ KEY_SLASH, /* 53 */
|
|
|
|
/* 0x2d */ KEY_N, /* 49 */
|
|
|
|
/* 0x2e */ KEY_M, /* 50 */
|
|
|
|
/* 0x2f */ KEY_DOT, /* 52 */
|
|
|
|
/* 0x30 */ KEY_TAB, /* 15 */
|
|
|
|
/* 0x31 */ KEY_SPACE, /* 57 */
|
|
|
|
/* 0x32 */ KEY_GRAVE, /* 41 */
|
|
|
|
/* 0x33 */ KEY_BACKSPACE, /* 14 */
|
|
|
|
/* 0x34 */ KEY_KPENTER, /* 96 */
|
|
|
|
/* 0x35 */ KEY_ESC, /* 1 */
|
|
|
|
/* 0x36 */ KEY_LEFTCTRL, /* 29 */
|
|
|
|
/* 0x37 */ KEY_LEFTMETA, /* 125 */
|
|
|
|
/* 0x38 */ KEY_LEFTSHIFT, /* 42 */
|
|
|
|
/* 0x39 */ KEY_CAPSLOCK, /* 58 */
|
|
|
|
/* 0x3a */ KEY_LEFTALT, /* 56 */
|
|
|
|
/* 0x3b */ KEY_LEFT, /* 105 */
|
|
|
|
/* 0x3c */ KEY_RIGHT, /* 106 */
|
|
|
|
/* 0x3d */ KEY_DOWN, /* 108 */
|
|
|
|
/* 0x3e */ KEY_UP, /* 103 */
|
2007-07-17 03:53:09 +07:00
|
|
|
/* 0x3f */ KEY_FN, /* 0x1d0 */
|
2005-04-17 05:20:36 +07:00
|
|
|
/* 0x40 */ 0,
|
|
|
|
/* 0x41 */ KEY_KPDOT, /* 83 */
|
|
|
|
/* 0x42 */ 0,
|
|
|
|
/* 0x43 */ KEY_KPASTERISK, /* 55 */
|
|
|
|
/* 0x44 */ 0,
|
|
|
|
/* 0x45 */ KEY_KPPLUS, /* 78 */
|
|
|
|
/* 0x46 */ 0,
|
|
|
|
/* 0x47 */ KEY_NUMLOCK, /* 69 */
|
|
|
|
/* 0x48 */ 0,
|
|
|
|
/* 0x49 */ 0,
|
|
|
|
/* 0x4a */ 0,
|
|
|
|
/* 0x4b */ KEY_KPSLASH, /* 98 */
|
|
|
|
/* 0x4c */ KEY_KPENTER, /* 96 */
|
|
|
|
/* 0x4d */ 0,
|
|
|
|
/* 0x4e */ KEY_KPMINUS, /* 74 */
|
|
|
|
/* 0x4f */ 0,
|
|
|
|
/* 0x50 */ 0,
|
|
|
|
/* 0x51 */ KEY_KPEQUAL, /* 117 */
|
|
|
|
/* 0x52 */ KEY_KP0, /* 82 */
|
|
|
|
/* 0x53 */ KEY_KP1, /* 79 */
|
|
|
|
/* 0x54 */ KEY_KP2, /* 80 */
|
|
|
|
/* 0x55 */ KEY_KP3, /* 81 */
|
|
|
|
/* 0x56 */ KEY_KP4, /* 75 */
|
|
|
|
/* 0x57 */ KEY_KP5, /* 76 */
|
|
|
|
/* 0x58 */ KEY_KP6, /* 77 */
|
|
|
|
/* 0x59 */ KEY_KP7, /* 71 */
|
|
|
|
/* 0x5a */ 0,
|
|
|
|
/* 0x5b */ KEY_KP8, /* 72 */
|
|
|
|
/* 0x5c */ KEY_KP9, /* 73 */
|
|
|
|
/* 0x5d */ KEY_YEN, /* 124 */
|
|
|
|
/* 0x5e */ KEY_RO, /* 89 */
|
|
|
|
/* 0x5f */ KEY_KPCOMMA, /* 121 */
|
|
|
|
/* 0x60 */ KEY_F5, /* 63 */
|
|
|
|
/* 0x61 */ KEY_F6, /* 64 */
|
|
|
|
/* 0x62 */ KEY_F7, /* 65 */
|
|
|
|
/* 0x63 */ KEY_F3, /* 61 */
|
|
|
|
/* 0x64 */ KEY_F8, /* 66 */
|
|
|
|
/* 0x65 */ KEY_F9, /* 67 */
|
|
|
|
/* 0x66 */ KEY_HANJA, /* 123 */
|
|
|
|
/* 0x67 */ KEY_F11, /* 87 */
|
2006-06-26 12:51:23 +07:00
|
|
|
/* 0x68 */ KEY_HANGEUL, /* 122 */
|
2005-04-17 05:20:36 +07:00
|
|
|
/* 0x69 */ KEY_SYSRQ, /* 99 */
|
|
|
|
/* 0x6a */ 0,
|
|
|
|
/* 0x6b */ KEY_SCROLLLOCK, /* 70 */
|
|
|
|
/* 0x6c */ 0,
|
|
|
|
/* 0x6d */ KEY_F10, /* 68 */
|
|
|
|
/* 0x6e */ KEY_COMPOSE, /* 127 */
|
|
|
|
/* 0x6f */ KEY_F12, /* 88 */
|
|
|
|
/* 0x70 */ 0,
|
|
|
|
/* 0x71 */ KEY_PAUSE, /* 119 */
|
|
|
|
/* 0x72 */ KEY_INSERT, /* 110 */
|
|
|
|
/* 0x73 */ KEY_HOME, /* 102 */
|
|
|
|
/* 0x74 */ KEY_PAGEUP, /* 104 */
|
|
|
|
/* 0x75 */ KEY_DELETE, /* 111 */
|
|
|
|
/* 0x76 */ KEY_F4, /* 62 */
|
|
|
|
/* 0x77 */ KEY_END, /* 107 */
|
|
|
|
/* 0x78 */ KEY_F2, /* 60 */
|
|
|
|
/* 0x79 */ KEY_PAGEDOWN, /* 109 */
|
|
|
|
/* 0x7a */ KEY_F1, /* 59 */
|
|
|
|
/* 0x7b */ KEY_RIGHTSHIFT, /* 54 */
|
|
|
|
/* 0x7c */ KEY_RIGHTALT, /* 100 */
|
|
|
|
/* 0x7d */ KEY_RIGHTCTRL, /* 97 */
|
|
|
|
/* 0x7e */ KEY_RIGHTMETA, /* 126 */
|
|
|
|
/* 0x7f */ KEY_POWER, /* 116 */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct adbhid {
|
2005-09-15 14:01:41 +07:00
|
|
|
struct input_dev *input;
|
2005-04-17 05:20:36 +07:00
|
|
|
int id;
|
|
|
|
int default_id;
|
|
|
|
int original_handler_id;
|
|
|
|
int current_handler_id;
|
|
|
|
int mouse_kind;
|
2007-07-17 03:53:09 +07:00
|
|
|
u16 *keycode;
|
2005-04-17 05:20:36 +07:00
|
|
|
char name[64];
|
|
|
|
char phys[32];
|
|
|
|
int flags;
|
|
|
|
};
|
|
|
|
|
2008-05-05 22:59:00 +07:00
|
|
|
#define FLAG_FN_KEY_PRESSED 0x00000001
|
|
|
|
#define FLAG_POWER_FROM_FN 0x00000002
|
|
|
|
#define FLAG_EMU_FWDEL_DOWN 0x00000004
|
|
|
|
#define FLAG_CAPSLOCK_TRANSLATE 0x00000008
|
|
|
|
#define FLAG_CAPSLOCK_DOWN 0x00000010
|
|
|
|
#define FLAG_CAPSLOCK_IGNORE_NEXT 0x00000020
|
2008-05-05 22:59:24 +07:00
|
|
|
#define FLAG_POWER_KEY_PRESSED 0x00000040
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
static struct adbhid *adbhid[16];
|
|
|
|
|
|
|
|
static void adbhid_probe(void);
|
|
|
|
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
|
|
|
static void adbhid_input_keycode(int, int, int);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
static void init_trackpad(int id);
|
|
|
|
static void init_trackball(int id);
|
|
|
|
static void init_turbomouse(int id);
|
|
|
|
static void init_microspeed(int id);
|
|
|
|
static void init_ms_a3(int id);
|
|
|
|
|
|
|
|
static struct adb_ids keyboard_ids;
|
|
|
|
static struct adb_ids mouse_ids;
|
|
|
|
static struct adb_ids buttons_ids;
|
|
|
|
|
|
|
|
/* Kind of keyboard, see Apple technote 1152 */
|
|
|
|
#define ADB_KEYBOARD_UNKNOWN 0
|
|
|
|
#define ADB_KEYBOARD_ANSI 0x0100
|
|
|
|
#define ADB_KEYBOARD_ISO 0x0200
|
|
|
|
#define ADB_KEYBOARD_JIS 0x0300
|
|
|
|
|
|
|
|
/* Kind of mouse */
|
|
|
|
#define ADBMOUSE_STANDARD_100 0 /* Standard 100cpi mouse (handler 1) */
|
|
|
|
#define ADBMOUSE_STANDARD_200 1 /* Standard 200cpi mouse (handler 2) */
|
|
|
|
#define ADBMOUSE_EXTENDED 2 /* Apple Extended mouse (handler 4) */
|
|
|
|
#define ADBMOUSE_TRACKBALL 3 /* TrackBall (handler 4) */
|
|
|
|
#define ADBMOUSE_TRACKPAD 4 /* Apple's PowerBook trackpad (handler 4) */
|
|
|
|
#define ADBMOUSE_TURBOMOUSE5 5 /* Turbomouse 5 (previously req. mousehack) */
|
|
|
|
#define ADBMOUSE_MICROSPEED 6 /* Microspeed mouse (&trackball ?), MacPoint */
|
|
|
|
#define ADBMOUSE_TRACKBALLPRO 7 /* Trackball Pro (special buttons) */
|
|
|
|
#define ADBMOUSE_MS_A3 8 /* Mouse systems A3 trackball (handler 3) */
|
|
|
|
#define ADBMOUSE_MACALLY2 9 /* MacAlly 2-button mouse */
|
|
|
|
|
|
|
|
static void
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
|
|
|
adbhid_keyboard_input(unsigned char *data, int nb, int apoll)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
int id = (data[0] >> 4) & 0x0f;
|
|
|
|
|
|
|
|
if (!adbhid[id]) {
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_err("ADB HID on ID %d not yet registered, packet %#02x, %#02x, %#02x, %#02x\n",
|
2005-04-17 05:20:36 +07:00
|
|
|
id, data[0], data[1], data[2], data[3]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* first check this is from register 0 */
|
|
|
|
if (nb != 3 || (data[0] & 3) != KEYB_KEYREG)
|
|
|
|
return; /* ignore it */
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
|
|
|
adbhid_input_keycode(id, data[1], 0);
|
2005-04-17 05:20:36 +07:00
|
|
|
if (!(data[2] == 0xff || (data[2] == 0x7f && data[1] == 0x7f)))
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
|
|
|
adbhid_input_keycode(id, data[2], 0);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-10-11 11:49:43 +07:00
|
|
|
adbhid_input_keycode(int id, int scancode, int repeat)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
struct adbhid *ahid = adbhid[id];
|
2007-10-17 07:02:46 +07:00
|
|
|
int keycode, up_flag, key;
|
2007-10-11 11:49:43 +07:00
|
|
|
|
|
|
|
keycode = scancode & 0x7f;
|
|
|
|
up_flag = scancode & 0x80;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2007-10-11 11:49:43 +07:00
|
|
|
if (restore_capslock_events) {
|
|
|
|
if (keycode == ADB_KEY_CAPSLOCK && !up_flag) {
|
|
|
|
/* Key pressed, turning on the CapsLock LED.
|
|
|
|
* The next 0xff will be interpreted as a release. */
|
2008-05-05 22:59:00 +07:00
|
|
|
if (ahid->flags & FLAG_CAPSLOCK_IGNORE_NEXT) {
|
|
|
|
/* Throw away this key event if it happens
|
|
|
|
* just after resume. */
|
|
|
|
ahid->flags &= ~FLAG_CAPSLOCK_IGNORE_NEXT;
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
ahid->flags |= FLAG_CAPSLOCK_TRANSLATE
|
2007-10-11 11:49:43 +07:00
|
|
|
| FLAG_CAPSLOCK_DOWN;
|
2008-05-05 22:59:00 +07:00
|
|
|
}
|
2008-05-05 22:59:24 +07:00
|
|
|
} else if (scancode == 0xff &&
|
|
|
|
!(ahid->flags & FLAG_POWER_KEY_PRESSED)) {
|
2007-10-11 11:49:43 +07:00
|
|
|
/* Scancode 0xff usually signifies that the capslock
|
2008-05-05 22:59:24 +07:00
|
|
|
* key was either pressed or released, or that the
|
|
|
|
* power button was released. */
|
2007-10-11 11:49:43 +07:00
|
|
|
if (ahid->flags & FLAG_CAPSLOCK_TRANSLATE) {
|
|
|
|
keycode = ADB_KEY_CAPSLOCK;
|
|
|
|
if (ahid->flags & FLAG_CAPSLOCK_DOWN) {
|
|
|
|
/* Key released */
|
|
|
|
up_flag = 1;
|
|
|
|
ahid->flags &= ~FLAG_CAPSLOCK_DOWN;
|
|
|
|
} else {
|
|
|
|
/* Key pressed */
|
|
|
|
up_flag = 0;
|
|
|
|
ahid->flags &= ~FLAG_CAPSLOCK_TRANSLATE;
|
|
|
|
}
|
|
|
|
} else {
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_info("Spurious caps lock event (scancode 0xff).\n");
|
2007-10-11 11:49:43 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
switch (keycode) {
|
2007-10-11 11:49:43 +07:00
|
|
|
case ADB_KEY_CAPSLOCK:
|
|
|
|
if (!restore_capslock_events) {
|
2011-03-31 08:57:33 +07:00
|
|
|
/* Generate down/up events for CapsLock every time. */
|
2007-10-11 11:49:43 +07:00
|
|
|
input_report_key(ahid->input, KEY_CAPSLOCK, 1);
|
|
|
|
input_sync(ahid->input);
|
|
|
|
input_report_key(ahid->input, KEY_CAPSLOCK, 0);
|
|
|
|
input_sync(ahid->input);
|
2008-01-14 15:55:15 +07:00
|
|
|
return;
|
2007-10-11 11:49:43 +07:00
|
|
|
}
|
2008-01-14 15:55:15 +07:00
|
|
|
break;
|
2005-04-17 05:20:36 +07:00
|
|
|
#ifdef CONFIG_PPC_PMAC
|
|
|
|
case ADB_KEY_POWER_OLD: /* Power key on PBook 3400 needs remapping */
|
|
|
|
switch(pmac_call_feature(PMAC_FTR_GET_MB_INFO,
|
|
|
|
NULL, PMAC_MB_INFO_MODEL, 0)) {
|
|
|
|
case PMAC_TYPE_COMET:
|
|
|
|
case PMAC_TYPE_HOOPER:
|
|
|
|
case PMAC_TYPE_KANGA:
|
|
|
|
keycode = ADB_KEY_POWER;
|
|
|
|
}
|
|
|
|
break;
|
2007-10-13 08:27:47 +07:00
|
|
|
case ADB_KEY_POWER:
|
2008-05-05 22:59:24 +07:00
|
|
|
/* Keep track of the power key state */
|
|
|
|
if (up_flag)
|
|
|
|
ahid->flags &= ~FLAG_POWER_KEY_PRESSED;
|
|
|
|
else
|
|
|
|
ahid->flags |= FLAG_POWER_KEY_PRESSED;
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Fn + Command will produce a bogus "power" keycode */
|
|
|
|
if (ahid->flags & FLAG_FN_KEY_PRESSED) {
|
|
|
|
keycode = ADB_KEY_CMD;
|
|
|
|
if (up_flag)
|
|
|
|
ahid->flags &= ~FLAG_POWER_FROM_FN;
|
|
|
|
else
|
|
|
|
ahid->flags |= FLAG_POWER_FROM_FN;
|
|
|
|
} else if (ahid->flags & FLAG_POWER_FROM_FN) {
|
|
|
|
keycode = ADB_KEY_CMD;
|
|
|
|
ahid->flags &= ~FLAG_POWER_FROM_FN;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ADB_KEY_FN:
|
|
|
|
/* Keep track of the Fn key state */
|
|
|
|
if (up_flag) {
|
|
|
|
ahid->flags &= ~FLAG_FN_KEY_PRESSED;
|
|
|
|
/* Emulate Fn+delete = forward delete */
|
|
|
|
if (ahid->flags & FLAG_EMU_FWDEL_DOWN) {
|
|
|
|
ahid->flags &= ~FLAG_EMU_FWDEL_DOWN;
|
|
|
|
keycode = ADB_KEY_FWDEL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
ahid->flags |= FLAG_FN_KEY_PRESSED;
|
2007-07-17 03:53:09 +07:00
|
|
|
break;
|
2005-04-17 05:20:36 +07:00
|
|
|
case ADB_KEY_DEL:
|
|
|
|
/* Emulate Fn+delete = forward delete */
|
|
|
|
if (ahid->flags & FLAG_FN_KEY_PRESSED) {
|
|
|
|
keycode = ADB_KEY_FWDEL;
|
|
|
|
if (up_flag)
|
|
|
|
ahid->flags &= ~FLAG_EMU_FWDEL_DOWN;
|
|
|
|
else
|
|
|
|
ahid->flags |= FLAG_EMU_FWDEL_DOWN;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif /* CONFIG_PPC_PMAC */
|
|
|
|
}
|
|
|
|
|
2007-07-17 03:53:09 +07:00
|
|
|
key = adbhid[id]->keycode[keycode];
|
|
|
|
if (key) {
|
|
|
|
input_report_key(adbhid[id]->input, key, !up_flag);
|
2005-09-15 14:01:41 +07:00
|
|
|
input_sync(adbhid[id]->input);
|
2005-04-17 05:20:36 +07:00
|
|
|
} else
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_info("Unhandled ADB key (scancode %#02x) %s.\n", keycode,
|
|
|
|
up_flag ? "released" : "pressed");
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
|
|
|
adbhid_mouse_input(unsigned char *data, int nb, int autopoll)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
int id = (data[0] >> 4) & 0x0f;
|
|
|
|
|
|
|
|
if (!adbhid[id]) {
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_err("ADB HID on ID %d not yet registered\n", id);
|
2005-04-17 05:20:36 +07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Handler 1 -- 100cpi original Apple mouse protocol.
|
|
|
|
Handler 2 -- 200cpi original Apple mouse protocol.
|
|
|
|
|
|
|
|
For Apple's standard one-button mouse protocol the data array will
|
|
|
|
contain the following values:
|
|
|
|
|
|
|
|
BITS COMMENTS
|
|
|
|
data[0] = dddd 1100 ADB command: Talk, register 0, for device dddd.
|
|
|
|
data[1] = bxxx xxxx First button and x-axis motion.
|
|
|
|
data[2] = byyy yyyy Second button and y-axis motion.
|
|
|
|
|
|
|
|
Handler 4 -- Apple Extended mouse protocol.
|
|
|
|
|
|
|
|
For Apple's 3-button mouse protocol the data array will contain the
|
|
|
|
following values:
|
|
|
|
|
|
|
|
BITS COMMENTS
|
|
|
|
data[0] = dddd 1100 ADB command: Talk, register 0, for device dddd.
|
|
|
|
data[1] = bxxx xxxx Left button and x-axis motion.
|
|
|
|
data[2] = byyy yyyy Second button and y-axis motion.
|
|
|
|
data[3] = byyy bxxx Third button and fourth button. Y is additional
|
|
|
|
high bits of y-axis motion. XY is additional
|
|
|
|
high bits of x-axis motion.
|
|
|
|
|
|
|
|
MacAlly 2-button mouse protocol.
|
|
|
|
|
|
|
|
For MacAlly 2-button mouse protocol the data array will contain the
|
|
|
|
following values:
|
|
|
|
|
|
|
|
BITS COMMENTS
|
|
|
|
data[0] = dddd 1100 ADB command: Talk, register 0, for device dddd.
|
|
|
|
data[1] = bxxx xxxx Left button and x-axis motion.
|
|
|
|
data[2] = byyy yyyy Right button and y-axis motion.
|
|
|
|
data[3] = ???? ???? unknown
|
|
|
|
data[4] = ???? ???? unknown
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* If it's a trackpad, we alias the second button to the first.
|
|
|
|
NOTE: Apple sends an ADB flush command to the trackpad when
|
|
|
|
the first (the real) button is released. We could do
|
|
|
|
this here using async flush requests.
|
|
|
|
*/
|
|
|
|
switch (adbhid[id]->mouse_kind)
|
|
|
|
{
|
|
|
|
case ADBMOUSE_TRACKPAD:
|
|
|
|
data[1] = (data[1] & 0x7f) | ((data[1] & data[2]) & 0x80);
|
|
|
|
data[2] = data[2] | 0x80;
|
|
|
|
break;
|
|
|
|
case ADBMOUSE_MICROSPEED:
|
|
|
|
data[1] = (data[1] & 0x7f) | ((data[3] & 0x01) << 7);
|
|
|
|
data[2] = (data[2] & 0x7f) | ((data[3] & 0x02) << 6);
|
|
|
|
data[3] = (data[3] & 0x77) | ((data[3] & 0x04) << 5)
|
|
|
|
| (data[3] & 0x08);
|
|
|
|
break;
|
|
|
|
case ADBMOUSE_TRACKBALLPRO:
|
|
|
|
data[1] = (data[1] & 0x7f) | (((data[3] & 0x04) << 5)
|
|
|
|
& ((data[3] & 0x08) << 4));
|
|
|
|
data[2] = (data[2] & 0x7f) | ((data[3] & 0x01) << 7);
|
|
|
|
data[3] = (data[3] & 0x77) | ((data[3] & 0x02) << 6);
|
|
|
|
break;
|
|
|
|
case ADBMOUSE_MS_A3:
|
|
|
|
data[1] = (data[1] & 0x7f) | ((data[3] & 0x01) << 7);
|
|
|
|
data[2] = (data[2] & 0x7f) | ((data[3] & 0x02) << 6);
|
|
|
|
data[3] = ((data[3] & 0x04) << 5);
|
|
|
|
break;
|
|
|
|
case ADBMOUSE_MACALLY2:
|
|
|
|
data[3] = (data[2] & 0x80) ? 0x80 : 0x00;
|
|
|
|
data[2] |= 0x80; /* Right button is mapped as button 3 */
|
|
|
|
nb=4;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, BTN_LEFT, !((data[1] >> 7) & 1));
|
|
|
|
input_report_key(adbhid[id]->input, BTN_MIDDLE, !((data[2] >> 7) & 1));
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
if (nb >= 4 && adbhid[id]->mouse_kind != ADBMOUSE_TRACKPAD)
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, BTN_RIGHT, !((data[3] >> 7) & 1));
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_rel(adbhid[id]->input, REL_X,
|
2005-04-17 05:20:36 +07:00
|
|
|
((data[2]&0x7f) < 64 ? (data[2]&0x7f) : (data[2]&0x7f)-128 ));
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_rel(adbhid[id]->input, REL_Y,
|
2005-04-17 05:20:36 +07:00
|
|
|
((data[1]&0x7f) < 64 ? (data[1]&0x7f) : (data[1]&0x7f)-128 ));
|
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
input_sync(adbhid[id]->input);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 20:55:46 +07:00
|
|
|
adbhid_buttons_input(unsigned char *data, int nb, int autopoll)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
int id = (data[0] >> 4) & 0x0f;
|
|
|
|
|
|
|
|
if (!adbhid[id]) {
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_err("ADB HID on ID %d not yet registered\n", id);
|
2005-04-17 05:20:36 +07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (adbhid[id]->original_handler_id) {
|
|
|
|
default:
|
|
|
|
case 0x02: /* Adjustable keyboard button device */
|
|
|
|
{
|
|
|
|
int down = (data[1] == (data[1] & 0xf));
|
|
|
|
|
|
|
|
switch (data[1] & 0x0f) {
|
|
|
|
case 0x0: /* microphone */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_SOUND, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x1: /* mute */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_MUTE, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x2: /* volume decrease */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_VOLUMEDOWN, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x3: /* volume increase */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_VOLUMEUP, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_info("Unhandled ADB_MISC event %02x, %02x, %02x, %02x\n",
|
|
|
|
data[0], data[1], data[2], data[3]);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x1f: /* Powerbook button device */
|
|
|
|
{
|
|
|
|
int down = (data[1] == (data[1] & 0xf));
|
2006-06-25 19:47:08 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* XXX: Where is the contrast control for the passive?
|
|
|
|
* -- Cort
|
|
|
|
*/
|
|
|
|
|
|
|
|
switch (data[1] & 0x0f) {
|
|
|
|
case 0x8: /* mute */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_MUTE, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x7: /* volume decrease */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_VOLUMEDOWN, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x6: /* volume increase */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_VOLUMEUP, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0xb: /* eject */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_EJECTCD, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0xa: /* brightness decrease */
|
|
|
|
#ifdef CONFIG_PMAC_BACKLIGHT
|
2006-07-30 17:04:19 +07:00
|
|
|
if (down)
|
2006-06-25 19:47:08 +07:00
|
|
|
pmac_backlight_key_down();
|
|
|
|
#endif
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_BRIGHTNESSDOWN, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x9: /* brightness increase */
|
|
|
|
#ifdef CONFIG_PMAC_BACKLIGHT
|
2006-07-30 17:04:19 +07:00
|
|
|
if (down)
|
2006-06-25 19:47:08 +07:00
|
|
|
pmac_backlight_key_up();
|
|
|
|
#endif
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_BRIGHTNESSUP, down);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
2005-05-01 22:58:41 +07:00
|
|
|
|
|
|
|
case 0xc: /* videomode switch */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_SWITCHVIDEOMODE, down);
|
2005-05-01 22:58:41 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0xd: /* keyboard illumination toggle */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_KBDILLUMTOGGLE, down);
|
2005-05-01 22:58:41 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0xe: /* keyboard illumination decrease */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_KBDILLUMDOWN, down);
|
2005-05-01 22:58:41 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0xf:
|
|
|
|
switch (data[1]) {
|
|
|
|
case 0x8f:
|
|
|
|
case 0x0f:
|
|
|
|
/* keyboard illumination increase */
|
2005-09-15 14:01:41 +07:00
|
|
|
input_report_key(adbhid[id]->input, KEY_KBDILLUMUP, down);
|
2005-05-01 22:58:41 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x7f:
|
|
|
|
case 0xff:
|
|
|
|
/* keypad overlay toogle */
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_info("Unhandled ADB_MISC event %02x, %02x, %02x, %02x\n",
|
|
|
|
data[0], data[1], data[2], data[3]);
|
2005-05-01 22:58:41 +07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_info("Unhandled ADB_MISC event %02x, %02x, %02x, %02x\n",
|
|
|
|
data[0], data[1], data[2], data[3]);
|
2005-05-01 22:58:41 +07:00
|
|
|
break;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
input_sync(adbhid[id]->input);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct adb_request led_request;
|
|
|
|
static int leds_pending[16];
|
|
|
|
static int leds_req_pending;
|
|
|
|
static int pending_devs[16];
|
2007-02-11 03:35:12 +07:00
|
|
|
static int pending_led_start;
|
|
|
|
static int pending_led_end;
|
2005-04-17 05:20:36 +07:00
|
|
|
static DEFINE_SPINLOCK(leds_lock);
|
|
|
|
|
|
|
|
static void leds_done(struct adb_request *req)
|
|
|
|
{
|
|
|
|
int leds = 0, device = 0, pending = 0;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&leds_lock, flags);
|
|
|
|
|
|
|
|
if (pending_led_start != pending_led_end) {
|
|
|
|
device = pending_devs[pending_led_start];
|
|
|
|
leds = leds_pending[device] & 0xff;
|
|
|
|
leds_pending[device] = 0;
|
|
|
|
pending_led_start++;
|
|
|
|
pending_led_start = (pending_led_start < 16) ? pending_led_start : 0;
|
|
|
|
pending = leds_req_pending;
|
|
|
|
} else
|
|
|
|
leds_req_pending = 0;
|
|
|
|
spin_unlock_irqrestore(&leds_lock, flags);
|
|
|
|
if (pending)
|
|
|
|
adb_request(&led_request, leds_done, 0, 3,
|
|
|
|
ADB_WRITEREG(device, KEYB_LEDREG), 0xff, ~leds);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void real_leds(unsigned char leds, int device)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&leds_lock, flags);
|
|
|
|
if (!leds_req_pending) {
|
|
|
|
leds_req_pending = 1;
|
|
|
|
spin_unlock_irqrestore(&leds_lock, flags);
|
|
|
|
adb_request(&led_request, leds_done, 0, 3,
|
|
|
|
ADB_WRITEREG(device, KEYB_LEDREG), 0xff, ~leds);
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
if (!(leds_pending[device] & 0x100)) {
|
|
|
|
pending_devs[pending_led_end] = device;
|
|
|
|
pending_led_end++;
|
|
|
|
pending_led_end = (pending_led_end < 16) ? pending_led_end : 0;
|
|
|
|
}
|
|
|
|
leds_pending[device] = leds | 0x100;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&leds_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Event callback from the input module. Events that change the state of
|
|
|
|
* the hardware are processed here.
|
|
|
|
*/
|
|
|
|
static int adbhid_kbd_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
|
|
|
|
{
|
2007-05-09 10:34:30 +07:00
|
|
|
struct adbhid *adbhid = input_get_drvdata(dev);
|
2005-04-17 05:20:36 +07:00
|
|
|
unsigned char leds;
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case EV_LED:
|
2007-05-09 10:34:30 +07:00
|
|
|
leds = (test_bit(LED_SCROLLL, dev->led) ? 4 : 0) |
|
|
|
|
(test_bit(LED_NUML, dev->led) ? 1 : 0) |
|
|
|
|
(test_bit(LED_CAPSL, dev->led) ? 2 : 0);
|
|
|
|
real_leds(leds, adbhid->id);
|
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2008-05-05 22:59:00 +07:00
|
|
|
static void
|
|
|
|
adbhid_kbd_capslock_remember(void)
|
|
|
|
{
|
|
|
|
struct adbhid *ahid;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 1; i < 16; i++) {
|
|
|
|
ahid = adbhid[i];
|
|
|
|
|
|
|
|
if (ahid && ahid->id == ADB_KEYBOARD)
|
|
|
|
if (ahid->flags & FLAG_CAPSLOCK_TRANSLATE)
|
|
|
|
ahid->flags |= FLAG_CAPSLOCK_IGNORE_NEXT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
static int
|
|
|
|
adb_message_handler(struct notifier_block *this, unsigned long code, void *x)
|
|
|
|
{
|
|
|
|
switch (code) {
|
|
|
|
case ADB_MSG_PRE_RESET:
|
|
|
|
case ADB_MSG_POWERDOWN:
|
2007-05-09 10:34:30 +07:00
|
|
|
/* Stop the repeat timer. Autopoll is already off at this point */
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 1; i < 16; i++) {
|
|
|
|
if (adbhid[i])
|
2005-09-15 14:01:41 +07:00
|
|
|
del_timer_sync(&adbhid[i]->input->timer);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Stop pending led requests */
|
2008-05-05 22:59:00 +07:00
|
|
|
while (leds_req_pending)
|
2005-04-17 05:20:36 +07:00
|
|
|
adb_poll();
|
2008-05-05 22:59:00 +07:00
|
|
|
|
|
|
|
/* After resume, and if the capslock LED is on, the PMU will
|
|
|
|
* send a "capslock down" key event. This confuses the
|
|
|
|
* restore_capslock_events logic. Remember if the capslock
|
|
|
|
* LED was on before suspend so the unwanted key event can
|
|
|
|
* be ignored after resume. */
|
|
|
|
if (restore_capslock_events)
|
|
|
|
adbhid_kbd_capslock_remember();
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ADB_MSG_POST_RESET:
|
|
|
|
adbhid_probe();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
|
|
}
|
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
static int
|
2005-04-17 05:20:36 +07:00
|
|
|
adbhid_input_register(int id, int default_id, int original_handler_id,
|
|
|
|
int current_handler_id, int mouse_kind)
|
|
|
|
{
|
2005-09-15 14:01:41 +07:00
|
|
|
struct adbhid *hid;
|
|
|
|
struct input_dev *input_dev;
|
|
|
|
int err;
|
2005-04-17 05:20:36 +07:00
|
|
|
int i;
|
2018-09-12 07:18:44 +07:00
|
|
|
char *keyboard_type;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
if (adbhid[id]) {
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_err("Trying to reregister ADB HID on ID %d\n", id);
|
2005-09-15 14:01:41 +07:00
|
|
|
return -EEXIST;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
adbhid[id] = hid = kzalloc(sizeof(struct adbhid), GFP_KERNEL);
|
|
|
|
input_dev = input_allocate_device();
|
|
|
|
if (!hid || !input_dev) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto fail;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
sprintf(hid->phys, "adb%d:%d.%02x/input", id, default_id, original_handler_id);
|
|
|
|
|
2005-10-31 13:30:32 +07:00
|
|
|
hid->input = input_dev;
|
2005-09-15 14:01:41 +07:00
|
|
|
hid->id = default_id;
|
|
|
|
hid->original_handler_id = original_handler_id;
|
|
|
|
hid->current_handler_id = current_handler_id;
|
|
|
|
hid->mouse_kind = mouse_kind;
|
|
|
|
hid->flags = 0;
|
2007-05-09 10:34:30 +07:00
|
|
|
input_set_drvdata(input_dev, hid);
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->name = hid->name;
|
|
|
|
input_dev->phys = hid->phys;
|
|
|
|
input_dev->id.bustype = BUS_ADB;
|
|
|
|
input_dev->id.vendor = 0x0001;
|
|
|
|
input_dev->id.product = (id << 12) | (default_id << 8) | original_handler_id;
|
|
|
|
input_dev->id.version = 0x0100;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
switch (default_id) {
|
|
|
|
case ADB_KEYBOARD:
|
2005-09-15 14:01:41 +07:00
|
|
|
hid->keycode = kmalloc(sizeof(adb_to_linux_keycodes), GFP_KERNEL);
|
|
|
|
if (!hid->keycode) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto fail;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
sprintf(hid->name, "ADB keyboard");
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
memcpy(hid->keycode, adb_to_linux_keycodes, sizeof(adb_to_linux_keycodes));
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
switch (original_handler_id) {
|
|
|
|
default:
|
2018-09-12 07:18:44 +07:00
|
|
|
keyboard_type = "<unknown>";
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->id.version = ADB_KEYBOARD_UNKNOWN;
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x01: case 0x02: case 0x03: case 0x06: case 0x08:
|
|
|
|
case 0x0C: case 0x10: case 0x18: case 0x1B: case 0x1C:
|
|
|
|
case 0xC0: case 0xC3: case 0xC6:
|
2018-09-12 07:18:44 +07:00
|
|
|
keyboard_type = "ANSI";
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->id.version = ADB_KEYBOARD_ANSI;
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x04: case 0x05: case 0x07: case 0x09: case 0x0D:
|
|
|
|
case 0x11: case 0x14: case 0x19: case 0x1D: case 0xC1:
|
|
|
|
case 0xC4: case 0xC7:
|
2018-09-12 07:18:44 +07:00
|
|
|
keyboard_type = "ISO, swapping keys";
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->id.version = ADB_KEYBOARD_ISO;
|
|
|
|
i = hid->keycode[10];
|
|
|
|
hid->keycode[10] = hid->keycode[50];
|
|
|
|
hid->keycode[50] = i;
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x12: case 0x15: case 0x16: case 0x17: case 0x1A:
|
|
|
|
case 0x1E: case 0xC2: case 0xC5: case 0xC8: case 0xC9:
|
2018-09-12 07:18:44 +07:00
|
|
|
keyboard_type = "JIS";
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->id.version = ADB_KEYBOARD_JIS;
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
}
|
2018-09-12 07:18:44 +07:00
|
|
|
pr_info("Detected ADB keyboard, type %s.\n", keyboard_type);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
for (i = 0; i < 128; i++)
|
2005-09-15 14:01:41 +07:00
|
|
|
if (hid->keycode[i])
|
|
|
|
set_bit(hid->keycode[i], input_dev->keybit);
|
|
|
|
|
2007-10-19 13:40:32 +07:00
|
|
|
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_LED) |
|
|
|
|
BIT_MASK(EV_REP);
|
|
|
|
input_dev->ledbit[0] = BIT_MASK(LED_SCROLLL) |
|
|
|
|
BIT_MASK(LED_CAPSL) | BIT_MASK(LED_NUML);
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->event = adbhid_kbd_event;
|
2007-07-17 03:53:09 +07:00
|
|
|
input_dev->keycodemax = KEY_FN;
|
|
|
|
input_dev->keycodesize = sizeof(hid->keycode[0]);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ADB_MOUSE:
|
2005-09-15 14:01:41 +07:00
|
|
|
sprintf(hid->name, "ADB mouse");
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2007-10-19 13:40:32 +07:00
|
|
|
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);
|
|
|
|
input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |
|
|
|
|
BIT_MASK(BTN_MIDDLE) | BIT_MASK(BTN_RIGHT);
|
|
|
|
input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ADB_MISC:
|
|
|
|
switch (original_handler_id) {
|
|
|
|
case 0x02: /* Adjustable keyboard button device */
|
2005-09-15 14:01:41 +07:00
|
|
|
sprintf(hid->name, "ADB adjustable keyboard buttons");
|
2007-10-19 13:40:32 +07:00
|
|
|
input_dev->evbit[0] = BIT_MASK(EV_KEY) |
|
|
|
|
BIT_MASK(EV_REP);
|
2005-09-15 14:01:41 +07:00
|
|
|
set_bit(KEY_SOUND, input_dev->keybit);
|
|
|
|
set_bit(KEY_MUTE, input_dev->keybit);
|
|
|
|
set_bit(KEY_VOLUMEUP, input_dev->keybit);
|
|
|
|
set_bit(KEY_VOLUMEDOWN, input_dev->keybit);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
case 0x1f: /* Powerbook button device */
|
2005-09-15 14:01:41 +07:00
|
|
|
sprintf(hid->name, "ADB Powerbook buttons");
|
2007-10-19 13:40:32 +07:00
|
|
|
input_dev->evbit[0] = BIT_MASK(EV_KEY) |
|
|
|
|
BIT_MASK(EV_REP);
|
2005-09-15 14:01:41 +07:00
|
|
|
set_bit(KEY_MUTE, input_dev->keybit);
|
|
|
|
set_bit(KEY_VOLUMEUP, input_dev->keybit);
|
|
|
|
set_bit(KEY_VOLUMEDOWN, input_dev->keybit);
|
|
|
|
set_bit(KEY_BRIGHTNESSUP, input_dev->keybit);
|
|
|
|
set_bit(KEY_BRIGHTNESSDOWN, input_dev->keybit);
|
|
|
|
set_bit(KEY_EJECTCD, input_dev->keybit);
|
|
|
|
set_bit(KEY_SWITCHVIDEOMODE, input_dev->keybit);
|
|
|
|
set_bit(KEY_KBDILLUMTOGGLE, input_dev->keybit);
|
|
|
|
set_bit(KEY_KBDILLUMDOWN, input_dev->keybit);
|
|
|
|
set_bit(KEY_KBDILLUMUP, input_dev->keybit);
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
}
|
2005-09-15 14:01:41 +07:00
|
|
|
if (hid->name[0])
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
2020-08-24 05:36:59 +07:00
|
|
|
fallthrough;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
default:
|
2016-11-29 03:29:07 +07:00
|
|
|
pr_info("Trying to register unknown ADB device to input layer.\n");
|
2005-09-15 14:01:41 +07:00
|
|
|
err = -ENODEV;
|
|
|
|
goto fail;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->keycode = hid->keycode;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2006-11-24 12:43:22 +07:00
|
|
|
err = input_register_device(input_dev);
|
|
|
|
if (err)
|
|
|
|
goto fail;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
if (default_id == ADB_KEYBOARD) {
|
|
|
|
/* HACK WARNING!! This should go away as soon there is an utility
|
|
|
|
* to control that for event devices.
|
|
|
|
*/
|
2005-09-15 14:01:41 +07:00
|
|
|
input_dev->rep[REP_DELAY] = 500; /* input layer default: 250 */
|
|
|
|
input_dev->rep[REP_PERIOD] = 66; /* input layer default: 33 */
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2005-09-15 14:01:41 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail: input_free_device(input_dev);
|
2006-11-24 12:43:22 +07:00
|
|
|
if (hid) {
|
|
|
|
kfree(hid->keycode);
|
|
|
|
kfree(hid);
|
|
|
|
}
|
2005-09-15 14:01:41 +07:00
|
|
|
adbhid[id] = NULL;
|
|
|
|
return err;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void adbhid_input_unregister(int id)
|
|
|
|
{
|
2005-09-15 14:01:41 +07:00
|
|
|
input_unregister_device(adbhid[id]->input);
|
2005-11-07 16:01:32 +07:00
|
|
|
kfree(adbhid[id]->keycode);
|
2005-04-17 05:20:36 +07:00
|
|
|
kfree(adbhid[id]);
|
|
|
|
adbhid[id] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static u16
|
|
|
|
adbhid_input_reregister(int id, int default_id, int org_handler_id,
|
|
|
|
int cur_handler_id, int mk)
|
|
|
|
{
|
|
|
|
if (adbhid[id]) {
|
2005-09-15 14:01:41 +07:00
|
|
|
if (adbhid[id]->input->id.product !=
|
2005-04-17 05:20:36 +07:00
|
|
|
((id << 12)|(default_id << 8)|org_handler_id)) {
|
|
|
|
adbhid_input_unregister(id);
|
|
|
|
adbhid_input_register(id, default_id, org_handler_id,
|
|
|
|
cur_handler_id, mk);
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
adbhid_input_register(id, default_id, org_handler_id,
|
|
|
|
cur_handler_id, mk);
|
|
|
|
return 1<<id;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
adbhid_input_devcleanup(u16 exist)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i=1; i<16; i++)
|
|
|
|
if (adbhid[i] && !(exist&(1<<i)))
|
|
|
|
adbhid_input_unregister(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
adbhid_probe(void)
|
|
|
|
{
|
|
|
|
struct adb_request req;
|
|
|
|
int i, default_id, org_handler_id, cur_handler_id;
|
|
|
|
u16 reg = 0;
|
|
|
|
|
|
|
|
adb_register(ADB_MOUSE, 0, &mouse_ids, adbhid_mouse_input);
|
|
|
|
adb_register(ADB_KEYBOARD, 0, &keyboard_ids, adbhid_keyboard_input);
|
|
|
|
adb_register(ADB_MISC, 0, &buttons_ids, adbhid_buttons_input);
|
|
|
|
|
|
|
|
for (i = 0; i < keyboard_ids.nids; i++) {
|
|
|
|
int id = keyboard_ids.id[i];
|
|
|
|
|
|
|
|
adb_get_infos(id, &default_id, &org_handler_id);
|
|
|
|
|
|
|
|
/* turn off all leds */
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id, KEYB_LEDREG), 0xff, 0xff);
|
|
|
|
|
|
|
|
/* Enable full feature set of the keyboard
|
|
|
|
->get it to send separate codes for left and right shift,
|
|
|
|
control, option keys */
|
|
|
|
#if 0 /* handler 5 doesn't send separate codes for R modifiers */
|
2018-09-12 07:18:44 +07:00
|
|
|
if (!adb_try_handler_change(id, 5))
|
2005-04-17 05:20:36 +07:00
|
|
|
#endif
|
2018-09-12 07:18:44 +07:00
|
|
|
adb_try_handler_change(id, 3);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
adb_get_infos(id, &default_id, &cur_handler_id);
|
2018-09-12 07:18:44 +07:00
|
|
|
printk(KERN_DEBUG "ADB keyboard at %d has handler 0x%X\n",
|
|
|
|
id, cur_handler_id);
|
2005-04-17 05:20:36 +07:00
|
|
|
reg |= adbhid_input_reregister(id, default_id, org_handler_id,
|
|
|
|
cur_handler_id, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < buttons_ids.nids; i++) {
|
|
|
|
int id = buttons_ids.id[i];
|
|
|
|
|
|
|
|
adb_get_infos(id, &default_id, &org_handler_id);
|
|
|
|
reg |= adbhid_input_reregister(id, default_id, org_handler_id,
|
|
|
|
org_handler_id, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Try to switch all mice to handler 4, or 2 for three-button
|
|
|
|
mode and full resolution. */
|
|
|
|
for (i = 0; i < mouse_ids.nids; i++) {
|
|
|
|
int id = mouse_ids.id[i];
|
|
|
|
int mouse_kind;
|
2018-09-12 07:18:44 +07:00
|
|
|
char *desc = "standard";
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
adb_get_infos(id, &default_id, &org_handler_id);
|
|
|
|
|
|
|
|
if (adb_try_handler_change(id, 4)) {
|
|
|
|
mouse_kind = ADBMOUSE_EXTENDED;
|
|
|
|
}
|
|
|
|
else if (adb_try_handler_change(id, 0x2F)) {
|
|
|
|
mouse_kind = ADBMOUSE_MICROSPEED;
|
|
|
|
}
|
|
|
|
else if (adb_try_handler_change(id, 0x42)) {
|
|
|
|
mouse_kind = ADBMOUSE_TRACKBALLPRO;
|
|
|
|
}
|
|
|
|
else if (adb_try_handler_change(id, 0x66)) {
|
|
|
|
mouse_kind = ADBMOUSE_MICROSPEED;
|
|
|
|
}
|
|
|
|
else if (adb_try_handler_change(id, 0x5F)) {
|
|
|
|
mouse_kind = ADBMOUSE_MICROSPEED;
|
|
|
|
}
|
|
|
|
else if (adb_try_handler_change(id, 3)) {
|
|
|
|
mouse_kind = ADBMOUSE_MS_A3;
|
|
|
|
}
|
|
|
|
else if (adb_try_handler_change(id, 2)) {
|
|
|
|
mouse_kind = ADBMOUSE_STANDARD_200;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
mouse_kind = ADBMOUSE_STANDARD_100;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((mouse_kind == ADBMOUSE_TRACKBALLPRO)
|
|
|
|
|| (mouse_kind == ADBMOUSE_MICROSPEED)) {
|
2018-09-12 07:18:44 +07:00
|
|
|
desc = "Microspeed/MacPoint or compatible";
|
2005-04-17 05:20:36 +07:00
|
|
|
init_microspeed(id);
|
|
|
|
} else if (mouse_kind == ADBMOUSE_MS_A3) {
|
2018-09-12 07:18:44 +07:00
|
|
|
desc = "Mouse Systems A3 Mouse or compatible";
|
2005-04-17 05:20:36 +07:00
|
|
|
init_ms_a3(id);
|
|
|
|
} else if (mouse_kind == ADBMOUSE_EXTENDED) {
|
2018-09-12 07:18:44 +07:00
|
|
|
desc = "extended";
|
2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* Register 1 is usually used for device
|
|
|
|
* identification. Here, we try to identify
|
|
|
|
* a known device and call the appropriate
|
|
|
|
* init function.
|
|
|
|
*/
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC | ADBREQ_REPLY, 1,
|
|
|
|
ADB_READREG(id, 1));
|
|
|
|
|
|
|
|
if ((req.reply_len) &&
|
|
|
|
(req.reply[1] == 0x9a) && ((req.reply[2] == 0x21)
|
|
|
|
|| (req.reply[2] == 0x20))) {
|
|
|
|
mouse_kind = ADBMOUSE_TRACKBALL;
|
2018-09-12 07:18:44 +07:00
|
|
|
desc = "trackman/mouseman";
|
2005-04-17 05:20:36 +07:00
|
|
|
init_trackball(id);
|
|
|
|
}
|
|
|
|
else if ((req.reply_len >= 4) &&
|
|
|
|
(req.reply[1] == 0x74) && (req.reply[2] == 0x70) &&
|
|
|
|
(req.reply[3] == 0x61) && (req.reply[4] == 0x64)) {
|
|
|
|
mouse_kind = ADBMOUSE_TRACKPAD;
|
2018-09-12 07:18:44 +07:00
|
|
|
desc = "trackpad";
|
2005-04-17 05:20:36 +07:00
|
|
|
init_trackpad(id);
|
|
|
|
}
|
|
|
|
else if ((req.reply_len >= 4) &&
|
|
|
|
(req.reply[1] == 0x4b) && (req.reply[2] == 0x4d) &&
|
|
|
|
(req.reply[3] == 0x4c) && (req.reply[4] == 0x31)) {
|
|
|
|
mouse_kind = ADBMOUSE_TURBOMOUSE5;
|
2018-09-12 07:18:44 +07:00
|
|
|
desc = "TurboMouse 5";
|
2005-04-17 05:20:36 +07:00
|
|
|
init_turbomouse(id);
|
|
|
|
}
|
|
|
|
else if ((req.reply_len == 9) &&
|
|
|
|
(req.reply[1] == 0x4b) && (req.reply[2] == 0x4f) &&
|
|
|
|
(req.reply[3] == 0x49) && (req.reply[4] == 0x54)) {
|
|
|
|
if (adb_try_handler_change(id, 0x42)) {
|
|
|
|
mouse_kind = ADBMOUSE_MACALLY2;
|
2018-09-12 07:18:44 +07:00
|
|
|
desc = "MacAlly 2-button";
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
adb_get_infos(id, &default_id, &cur_handler_id);
|
2018-09-12 07:18:44 +07:00
|
|
|
printk(KERN_DEBUG "ADB mouse (%s) at %d has handler 0x%X\n",
|
|
|
|
desc, id, cur_handler_id);
|
2005-04-17 05:20:36 +07:00
|
|
|
reg |= adbhid_input_reregister(id, default_id, org_handler_id,
|
|
|
|
cur_handler_id, mouse_kind);
|
|
|
|
}
|
|
|
|
adbhid_input_devcleanup(reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
init_trackpad(int id)
|
|
|
|
{
|
|
|
|
struct adb_request req;
|
|
|
|
unsigned char r1_buffer[8];
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC | ADBREQ_REPLY, 1,
|
|
|
|
ADB_READREG(id,1));
|
|
|
|
if (req.reply_len < 8)
|
2018-09-12 07:18:44 +07:00
|
|
|
pr_err("%s: bad length for reg. 1\n", __func__);
|
2005-04-17 05:20:36 +07:00
|
|
|
else
|
|
|
|
{
|
|
|
|
memcpy(r1_buffer, &req.reply[1], 8);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 9,
|
|
|
|
ADB_WRITEREG(id,1),
|
|
|
|
r1_buffer[0],
|
|
|
|
r1_buffer[1],
|
|
|
|
r1_buffer[2],
|
|
|
|
r1_buffer[3],
|
|
|
|
r1_buffer[4],
|
|
|
|
r1_buffer[5],
|
|
|
|
0x0d,
|
|
|
|
r1_buffer[7]);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 9,
|
|
|
|
ADB_WRITEREG(id,2),
|
|
|
|
0x99,
|
|
|
|
0x94,
|
|
|
|
0x19,
|
|
|
|
0xff,
|
|
|
|
0xb2,
|
|
|
|
0x8a,
|
|
|
|
0x1b,
|
|
|
|
0x50);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 9,
|
|
|
|
ADB_WRITEREG(id,1),
|
|
|
|
r1_buffer[0],
|
|
|
|
r1_buffer[1],
|
|
|
|
r1_buffer[2],
|
|
|
|
r1_buffer[3],
|
|
|
|
r1_buffer[4],
|
|
|
|
r1_buffer[5],
|
|
|
|
0x03, /*r1_buffer[6],*/
|
|
|
|
r1_buffer[7]);
|
|
|
|
|
|
|
|
/* Without this flush, the trackpad may be locked up */
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 1, ADB_FLUSH(id));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
init_trackball(int id)
|
|
|
|
{
|
|
|
|
struct adb_request req;
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 00,0x81);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 01,0x81);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 02,0x81);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 03,0x38);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 00,0x81);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 01,0x81);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 02,0x81);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id,1), 03,0x38);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
init_turbomouse(int id)
|
|
|
|
{
|
|
|
|
struct adb_request req;
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 1, ADB_FLUSH(id));
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 1, ADB_FLUSH(3));
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 9,
|
|
|
|
ADB_WRITEREG(3,2),
|
|
|
|
0xe7,
|
|
|
|
0x8c,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0xff,
|
|
|
|
0xff,
|
|
|
|
0x94);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 1, ADB_FLUSH(3));
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 9,
|
|
|
|
ADB_WRITEREG(3,2),
|
|
|
|
0xa5,
|
|
|
|
0x14,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0x69,
|
|
|
|
0xff,
|
|
|
|
0xff,
|
|
|
|
0x27);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
init_microspeed(int id)
|
|
|
|
{
|
|
|
|
struct adb_request req;
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 1, ADB_FLUSH(id));
|
|
|
|
|
|
|
|
/* This will initialize mice using the Microspeed, MacPoint and
|
|
|
|
other compatible firmware. Bit 12 enables extended protocol.
|
|
|
|
|
|
|
|
Register 1 Listen (4 Bytes)
|
|
|
|
0 - 3 Button is mouse (set also for double clicking!!!)
|
|
|
|
4 - 7 Button is locking (affects change speed also)
|
|
|
|
8 - 11 Button changes speed
|
|
|
|
12 1 = Extended mouse mode, 0 = normal mouse mode
|
|
|
|
13 - 15 unused 0
|
|
|
|
16 - 23 normal speed
|
|
|
|
24 - 31 changed speed
|
|
|
|
|
|
|
|
Register 1 talk holds version and product identification information.
|
|
|
|
Register 1 Talk (4 Bytes):
|
|
|
|
0 - 7 Product code
|
|
|
|
8 - 23 undefined, reserved
|
|
|
|
24 - 31 Version number
|
|
|
|
|
|
|
|
Speed 0 is max. 1 to 255 set speed in increments of 1/256 of max.
|
|
|
|
*/
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 5,
|
|
|
|
ADB_WRITEREG(id,1),
|
|
|
|
0x20, /* alt speed = 0x20 (rather slow) */
|
|
|
|
0x00, /* norm speed = 0x00 (fastest) */
|
|
|
|
0x10, /* extended protocol, no speed change */
|
|
|
|
0x07); /* all buttons enabled as mouse buttons, no locking */
|
|
|
|
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 1, ADB_FLUSH(id));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
init_ms_a3(int id)
|
|
|
|
{
|
|
|
|
struct adb_request req;
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 3,
|
|
|
|
ADB_WRITEREG(id, 0x2),
|
|
|
|
0x00,
|
|
|
|
0x07);
|
|
|
|
|
|
|
|
adb_request(&req, NULL, ADBREQ_SYNC, 1, ADB_FLUSH(id));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init adbhid_init(void)
|
|
|
|
{
|
|
|
|
#ifndef CONFIG_MAC
|
2006-03-28 19:15:54 +07:00
|
|
|
if (!machine_is(chrp) && !machine_is(powermac))
|
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
#endif
|
|
|
|
|
|
|
|
led_request.complete = 1;
|
|
|
|
|
|
|
|
adbhid_probe();
|
|
|
|
|
[PATCH] Notifier chain update: API changes
The kernel's implementation of notifier chains is unsafe. There is no
protection against entries being added to or removed from a chain while the
chain is in use. The issues were discussed in this thread:
http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2
We noticed that notifier chains in the kernel fall into two basic usage
classes:
"Blocking" chains are always called from a process context
and the callout routines are allowed to sleep;
"Atomic" chains can be called from an atomic context and
the callout routines are not allowed to sleep.
We decided to codify this distinction and make it part of the API. Therefore
this set of patches introduces three new, parallel APIs: one for blocking
notifiers, one for atomic notifiers, and one for "raw" notifiers (which is
really just the old API under a new name). New kinds of data structures are
used for the heads of the chains, and new routines are defined for
registration, unregistration, and calling a chain. The three APIs are
explained in include/linux/notifier.h and their implementation is in
kernel/sys.c.
With atomic and blocking chains, the implementation guarantees that the chain
links will not be corrupted and that chain callers will not get messed up by
entries being added or removed. For raw chains the implementation provides no
guarantees at all; users of this API must provide their own protections. (The
idea was that situations may come up where the assumptions of the atomic and
blocking APIs are not appropriate, so it should be possible for users to
handle these things in their own way.)
There are some limitations, which should not be too hard to live with. For
atomic/blocking chains, registration and unregistration must always be done in
a process context since the chain is protected by a mutex/rwsem. Also, a
callout routine for a non-raw chain must not try to register or unregister
entries on its own chain. (This did happen in a couple of places and the code
had to be changed to avoid it.)
Since atomic chains may be called from within an NMI handler, they cannot use
spinlocks for synchronization. Instead we use RCU. The overhead falls almost
entirely in the unregister routine, which is okay since unregistration is much
less frequent that calling a chain.
Here is the list of chains that we adjusted and their classifications. None
of them use the raw API, so for the moment it is only a placeholder.
ATOMIC CHAINS
-------------
arch/i386/kernel/traps.c: i386die_chain
arch/ia64/kernel/traps.c: ia64die_chain
arch/powerpc/kernel/traps.c: powerpc_die_chain
arch/sparc64/kernel/traps.c: sparc64die_chain
arch/x86_64/kernel/traps.c: die_chain
drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list
kernel/panic.c: panic_notifier_list
kernel/profile.c: task_free_notifier
net/bluetooth/hci_core.c: hci_notifier
net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain
net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain
net/ipv6/addrconf.c: inet6addr_chain
net/netfilter/nf_conntrack_core.c: nf_conntrack_chain
net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain
net/netlink/af_netlink.c: netlink_chain
BLOCKING CHAINS
---------------
arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain
arch/s390/kernel/process.c: idle_chain
arch/x86_64/kernel/process.c idle_notifier
drivers/base/memory.c: memory_chain
drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list
drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list
drivers/macintosh/adb.c: adb_client_list
drivers/macintosh/via-pmu.c sleep_notifier_list
drivers/macintosh/via-pmu68k.c sleep_notifier_list
drivers/macintosh/windfarm_core.c wf_client_list
drivers/usb/core/notify.c usb_notifier_list
drivers/video/fbmem.c fb_notifier_list
kernel/cpu.c cpu_chain
kernel/module.c module_notify_list
kernel/profile.c munmap_notifier
kernel/profile.c task_exit_notifier
kernel/sys.c reboot_notifier_list
net/core/dev.c netdev_chain
net/decnet/dn_dev.c: dnaddr_chain
net/ipv4/devinet.c: inetaddr_chain
It's possible that some of these classifications are wrong. If they are,
please let us know or submit a patch to fix them. Note that any chain that
gets called very frequently should be atomic, because the rwsem read-locking
used for blocking chains is very likely to incur cache misses on SMP systems.
(However, if the chain's callout routines may sleep then the chain cannot be
atomic.)
The patch set was written by Alan Stern and Chandra Seetharaman, incorporating
material written by Keith Owens and suggestions from Paul McKenney and Andrew
Morton.
[jes@sgi.com: restructure the notifier chain initialization macros]
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 16:16:30 +07:00
|
|
|
blocking_notifier_chain_register(&adb_client_list,
|
|
|
|
&adbhid_adb_notifier);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit adbhid_exit(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(adbhid_init);
|
|
|
|
module_exit(adbhid_exit);
|