License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2016-02-03 21:58:10 +07:00
|
|
|
/* ld script to make ARM Linux kernel
|
|
|
|
* taken from the i386 version by Russell King
|
|
|
|
* Written by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
|
|
|
|
*/
|
|
|
|
|
2016-11-17 06:51:19 +07:00
|
|
|
/* No __ro_after_init data in the .rodata section - which will always be ro */
|
|
|
|
#define RO_AFTER_INIT_DATA
|
|
|
|
|
2017-10-16 19:00:45 +07:00
|
|
|
#include <linux/sizes.h>
|
|
|
|
|
2016-02-03 21:58:10 +07:00
|
|
|
#include <asm-generic/vmlinux.lds.h>
|
|
|
|
#include <asm/cache.h>
|
|
|
|
#include <asm/thread_info.h>
|
|
|
|
#include <asm/memory.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
|
|
|
|
#define PROC_INFO \
|
|
|
|
. = ALIGN(4); \
|
|
|
|
VMLINUX_SYMBOL(__proc_info_begin) = .; \
|
|
|
|
*(.proc.info.init) \
|
|
|
|
VMLINUX_SYMBOL(__proc_info_end) = .;
|
|
|
|
|
|
|
|
#define IDMAP_TEXT \
|
|
|
|
ALIGN_FUNCTION(); \
|
|
|
|
VMLINUX_SYMBOL(__idmap_text_start) = .; \
|
|
|
|
*(.idmap.text) \
|
|
|
|
VMLINUX_SYMBOL(__idmap_text_end) = .; \
|
|
|
|
. = ALIGN(PAGE_SIZE); \
|
|
|
|
VMLINUX_SYMBOL(__hyp_idmap_text_start) = .; \
|
|
|
|
*(.hyp.idmap.text) \
|
|
|
|
VMLINUX_SYMBOL(__hyp_idmap_text_end) = .;
|
|
|
|
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
#define ARM_CPU_DISCARD(x)
|
|
|
|
#define ARM_CPU_KEEP(x) x
|
|
|
|
#else
|
|
|
|
#define ARM_CPU_DISCARD(x) x
|
|
|
|
#define ARM_CPU_KEEP(x)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined(CONFIG_SMP_ON_UP) && !defined(CONFIG_DEBUG_SPINLOCK)) || \
|
|
|
|
defined(CONFIG_GENERIC_BUG)
|
|
|
|
#define ARM_EXIT_KEEP(x) x
|
|
|
|
#define ARM_EXIT_DISCARD(x)
|
|
|
|
#else
|
|
|
|
#define ARM_EXIT_KEEP(x)
|
|
|
|
#define ARM_EXIT_DISCARD(x) x
|
|
|
|
#endif
|
|
|
|
|
|
|
|
OUTPUT_ARCH(arm)
|
|
|
|
ENTRY(stext)
|
|
|
|
|
|
|
|
#ifndef __ARMEB__
|
|
|
|
jiffies = jiffies_64;
|
|
|
|
#else
|
|
|
|
jiffies = jiffies_64 + 4;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
SECTIONS
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* XXX: The linker does not define how output sections are
|
|
|
|
* assigned to input sections when there are multiple statements
|
|
|
|
* matching the same input section name. There is no documented
|
|
|
|
* order of matching.
|
|
|
|
*
|
|
|
|
* unwind exit sections must be discarded before the rest of the
|
|
|
|
* unwind sections get included.
|
|
|
|
*/
|
|
|
|
/DISCARD/ : {
|
|
|
|
*(.ARM.exidx.exit.text)
|
|
|
|
*(.ARM.extab.exit.text)
|
|
|
|
ARM_CPU_DISCARD(*(.ARM.exidx.cpuexit.text))
|
|
|
|
ARM_CPU_DISCARD(*(.ARM.extab.cpuexit.text))
|
|
|
|
ARM_EXIT_DISCARD(EXIT_TEXT)
|
|
|
|
ARM_EXIT_DISCARD(EXIT_DATA)
|
|
|
|
EXIT_CALL
|
|
|
|
#ifndef CONFIG_MMU
|
|
|
|
*(.text.fixup)
|
|
|
|
*(__ex_table)
|
|
|
|
#endif
|
|
|
|
*(.alt.smp.init)
|
|
|
|
*(.discard)
|
|
|
|
*(.discard.*)
|
|
|
|
}
|
|
|
|
|
|
|
|
. = XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR);
|
2016-02-10 01:34:43 +07:00
|
|
|
_xiprom = .; /* XIP ROM area to be mapped */
|
2016-02-03 21:58:10 +07:00
|
|
|
|
|
|
|
.head.text : {
|
|
|
|
_text = .;
|
|
|
|
HEAD_TEXT
|
|
|
|
}
|
|
|
|
|
|
|
|
.text : { /* Real text segment */
|
|
|
|
_stext = .; /* Text and read-only data */
|
|
|
|
IDMAP_TEXT
|
2017-11-25 06:54:22 +07:00
|
|
|
__entry_text_start = .;
|
|
|
|
*(.entry.text)
|
|
|
|
__entry_text_end = .;
|
2016-02-03 21:58:10 +07:00
|
|
|
IRQENTRY_TEXT
|
|
|
|
TEXT_TEXT
|
|
|
|
SCHED_TEXT
|
2016-10-08 07:02:55 +07:00
|
|
|
CPUIDLE_TEXT
|
2016-02-03 21:58:10 +07:00
|
|
|
LOCK_TEXT
|
|
|
|
KPROBES_TEXT
|
|
|
|
*(.gnu.warning)
|
|
|
|
*(.glue_7)
|
|
|
|
*(.glue_7t)
|
|
|
|
. = ALIGN(4);
|
|
|
|
*(.got) /* Global offset table */
|
|
|
|
ARM_CPU_KEEP(PROC_INFO)
|
|
|
|
}
|
|
|
|
|
|
|
|
RO_DATA(PAGE_SIZE)
|
|
|
|
|
|
|
|
. = ALIGN(4);
|
|
|
|
__ex_table : AT(ADDR(__ex_table) - LOAD_OFFSET) {
|
|
|
|
__start___ex_table = .;
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
*(__ex_table)
|
|
|
|
#endif
|
|
|
|
__stop___ex_table = .;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_ARM_UNWIND
|
|
|
|
/*
|
|
|
|
* Stack unwinding tables
|
|
|
|
*/
|
|
|
|
. = ALIGN(8);
|
|
|
|
.ARM.unwind_idx : {
|
|
|
|
__start_unwind_idx = .;
|
|
|
|
*(.ARM.exidx*)
|
|
|
|
__stop_unwind_idx = .;
|
|
|
|
}
|
|
|
|
.ARM.unwind_tab : {
|
|
|
|
__start_unwind_tab = .;
|
|
|
|
*(.ARM.extab*)
|
|
|
|
__stop_unwind_tab = .;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
NOTES
|
|
|
|
|
|
|
|
_etext = .; /* End of text and rodata section */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The vectors and stubs are relocatable code, and the
|
|
|
|
* only thing that matters is their relative offsets
|
|
|
|
*/
|
|
|
|
__vectors_start = .;
|
ARM: 8515/2: move .vectors and .stubs sections back into the kernel VMA
Commit b9b32bf70f2f ("ARM: use linker magic for vectors and vector stubs")
updated the linker script to emit the .vectors and .stubs sections into a
VMA range that is zero based and disjoint from the normal static kernel
region. The reason for that was that this way, the sections can be placed
exactly 4 KB apart, while the payload of the .vectors section is only 32
bytes.
Since the symbols that are part of the .stubs section are emitted into the
kallsyms table, they appear with zero based addresses as well, e.g.,
00001004 t vector_rst
00001020 t vector_irq
000010a0 t vector_dabt
00001120 t vector_pabt
000011a0 t vector_und
00001220 t vector_addrexcptn
00001240 t vector_fiq
00001240 T vector_fiq_offset
As this confuses perf when it accesses the kallsyms tables, commit
7122c3e9154b ("scripts/link-vmlinux.sh: only filter kernel symbols for
arm") implemented a somewhat ugly special case for ARM, where the value
of CONFIG_PAGE_OFFSET is passed to scripts/kallsyms, and symbols whose
addresses are below it are filtered out. Note that this special case only
applies to CONFIG_XIP_KERNEL=n, not because the issue the patch addresses
exists only in that case, but because finding a limit below which to apply
the filtering is not entirely straightforward.
Since the .vectors and .stubs sections contain position independent code
that is never executed in place, we can emit it at its most likely runtime
VMA (for more recent CPUs), which is 0xffff0000 for the vector table and
0xffff1000 for the stubs. Not only does this fix the perf issue with
kallsyms, allowing us to drop the special case in scripts/kallsyms
entirely, it also gives debuggers a more realistic view of the address
space, and setting breakpoints or single stepping through code in the
vector table or the stubs is more likely to work as expected on CPUs that
use a high vector address. E.g.,
00001240 A vector_fiq_offset
...
c0c35000 T __init_begin
c0c35000 T __vectors_start
c0c35020 T __stubs_start
c0c35020 T __vectors_end
c0c352e0 T _sinittext
c0c352e0 T __stubs_end
...
ffff1004 t vector_rst
ffff1020 t vector_irq
ffff10a0 t vector_dabt
ffff1120 t vector_pabt
ffff11a0 t vector_und
ffff1220 t vector_addrexcptn
ffff1240 T vector_fiq
(Note that vector_fiq_offset is now an absolute symbol, which kallsyms
already ignores by default)
The LMA footprint is identical with or without this change, only the VMAs
are different:
Before:
Idx Name Size VMA LMA File off Algn
...
14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .vectors 00000020 00000000 c0c35000 00a40000 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
16 .stubs 000002c0 00001000 c0c35020 00a41000 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
After:
Idx Name Size VMA LMA File off Algn
...
14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .vectors 00000020 ffff0000 c0c35000 00a40000 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
16 .stubs 000002c0 ffff1000 c0c35020 00a41000 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Chris Brandt <chris.brandt@renesas.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-02-10 17:41:08 +07:00
|
|
|
.vectors 0xffff0000 : AT(__vectors_start) {
|
2016-02-03 21:58:10 +07:00
|
|
|
*(.vectors)
|
|
|
|
}
|
|
|
|
. = __vectors_start + SIZEOF(.vectors);
|
|
|
|
__vectors_end = .;
|
|
|
|
|
|
|
|
__stubs_start = .;
|
ARM: 8515/2: move .vectors and .stubs sections back into the kernel VMA
Commit b9b32bf70f2f ("ARM: use linker magic for vectors and vector stubs")
updated the linker script to emit the .vectors and .stubs sections into a
VMA range that is zero based and disjoint from the normal static kernel
region. The reason for that was that this way, the sections can be placed
exactly 4 KB apart, while the payload of the .vectors section is only 32
bytes.
Since the symbols that are part of the .stubs section are emitted into the
kallsyms table, they appear with zero based addresses as well, e.g.,
00001004 t vector_rst
00001020 t vector_irq
000010a0 t vector_dabt
00001120 t vector_pabt
000011a0 t vector_und
00001220 t vector_addrexcptn
00001240 t vector_fiq
00001240 T vector_fiq_offset
As this confuses perf when it accesses the kallsyms tables, commit
7122c3e9154b ("scripts/link-vmlinux.sh: only filter kernel symbols for
arm") implemented a somewhat ugly special case for ARM, where the value
of CONFIG_PAGE_OFFSET is passed to scripts/kallsyms, and symbols whose
addresses are below it are filtered out. Note that this special case only
applies to CONFIG_XIP_KERNEL=n, not because the issue the patch addresses
exists only in that case, but because finding a limit below which to apply
the filtering is not entirely straightforward.
Since the .vectors and .stubs sections contain position independent code
that is never executed in place, we can emit it at its most likely runtime
VMA (for more recent CPUs), which is 0xffff0000 for the vector table and
0xffff1000 for the stubs. Not only does this fix the perf issue with
kallsyms, allowing us to drop the special case in scripts/kallsyms
entirely, it also gives debuggers a more realistic view of the address
space, and setting breakpoints or single stepping through code in the
vector table or the stubs is more likely to work as expected on CPUs that
use a high vector address. E.g.,
00001240 A vector_fiq_offset
...
c0c35000 T __init_begin
c0c35000 T __vectors_start
c0c35020 T __stubs_start
c0c35020 T __vectors_end
c0c352e0 T _sinittext
c0c352e0 T __stubs_end
...
ffff1004 t vector_rst
ffff1020 t vector_irq
ffff10a0 t vector_dabt
ffff1120 t vector_pabt
ffff11a0 t vector_und
ffff1220 t vector_addrexcptn
ffff1240 T vector_fiq
(Note that vector_fiq_offset is now an absolute symbol, which kallsyms
already ignores by default)
The LMA footprint is identical with or without this change, only the VMAs
are different:
Before:
Idx Name Size VMA LMA File off Algn
...
14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .vectors 00000020 00000000 c0c35000 00a40000 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
16 .stubs 000002c0 00001000 c0c35020 00a41000 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
After:
Idx Name Size VMA LMA File off Algn
...
14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .vectors 00000020 ffff0000 c0c35000 00a40000 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
16 .stubs 000002c0 ffff1000 c0c35020 00a41000 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Chris Brandt <chris.brandt@renesas.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-02-10 17:41:08 +07:00
|
|
|
.stubs ADDR(.vectors) + 0x1000 : AT(__stubs_start) {
|
2016-02-03 21:58:10 +07:00
|
|
|
*(.stubs)
|
|
|
|
}
|
|
|
|
. = __stubs_start + SIZEOF(.stubs);
|
|
|
|
__stubs_end = .;
|
|
|
|
|
ARM: 8515/2: move .vectors and .stubs sections back into the kernel VMA
Commit b9b32bf70f2f ("ARM: use linker magic for vectors and vector stubs")
updated the linker script to emit the .vectors and .stubs sections into a
VMA range that is zero based and disjoint from the normal static kernel
region. The reason for that was that this way, the sections can be placed
exactly 4 KB apart, while the payload of the .vectors section is only 32
bytes.
Since the symbols that are part of the .stubs section are emitted into the
kallsyms table, they appear with zero based addresses as well, e.g.,
00001004 t vector_rst
00001020 t vector_irq
000010a0 t vector_dabt
00001120 t vector_pabt
000011a0 t vector_und
00001220 t vector_addrexcptn
00001240 t vector_fiq
00001240 T vector_fiq_offset
As this confuses perf when it accesses the kallsyms tables, commit
7122c3e9154b ("scripts/link-vmlinux.sh: only filter kernel symbols for
arm") implemented a somewhat ugly special case for ARM, where the value
of CONFIG_PAGE_OFFSET is passed to scripts/kallsyms, and symbols whose
addresses are below it are filtered out. Note that this special case only
applies to CONFIG_XIP_KERNEL=n, not because the issue the patch addresses
exists only in that case, but because finding a limit below which to apply
the filtering is not entirely straightforward.
Since the .vectors and .stubs sections contain position independent code
that is never executed in place, we can emit it at its most likely runtime
VMA (for more recent CPUs), which is 0xffff0000 for the vector table and
0xffff1000 for the stubs. Not only does this fix the perf issue with
kallsyms, allowing us to drop the special case in scripts/kallsyms
entirely, it also gives debuggers a more realistic view of the address
space, and setting breakpoints or single stepping through code in the
vector table or the stubs is more likely to work as expected on CPUs that
use a high vector address. E.g.,
00001240 A vector_fiq_offset
...
c0c35000 T __init_begin
c0c35000 T __vectors_start
c0c35020 T __stubs_start
c0c35020 T __vectors_end
c0c352e0 T _sinittext
c0c352e0 T __stubs_end
...
ffff1004 t vector_rst
ffff1020 t vector_irq
ffff10a0 t vector_dabt
ffff1120 t vector_pabt
ffff11a0 t vector_und
ffff1220 t vector_addrexcptn
ffff1240 T vector_fiq
(Note that vector_fiq_offset is now an absolute symbol, which kallsyms
already ignores by default)
The LMA footprint is identical with or without this change, only the VMAs
are different:
Before:
Idx Name Size VMA LMA File off Algn
...
14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .vectors 00000020 00000000 c0c35000 00a40000 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
16 .stubs 000002c0 00001000 c0c35020 00a41000 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
After:
Idx Name Size VMA LMA File off Algn
...
14 .notes 00000024 c0c34020 c0c34020 00a34020 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .vectors 00000020 ffff0000 c0c35000 00a40000 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
16 .stubs 000002c0 ffff1000 c0c35020 00a41000 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
17 .init.text 0006b1b8 c0c352e0 c0c352e0 00a452e0 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
...
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Chris Brandt <chris.brandt@renesas.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-02-10 17:41:08 +07:00
|
|
|
PROVIDE(vector_fiq_offset = vector_fiq - ADDR(.vectors));
|
|
|
|
|
2016-02-03 21:58:10 +07:00
|
|
|
INIT_TEXT_SECTION(8)
|
|
|
|
.exit.text : {
|
|
|
|
ARM_EXIT_KEEP(EXIT_TEXT)
|
|
|
|
}
|
|
|
|
.init.proc.info : {
|
|
|
|
ARM_CPU_DISCARD(PROC_INFO)
|
|
|
|
}
|
|
|
|
.init.arch.info : {
|
|
|
|
__arch_info_begin = .;
|
|
|
|
*(.arch.info.init)
|
|
|
|
__arch_info_end = .;
|
|
|
|
}
|
|
|
|
.init.tagtable : {
|
|
|
|
__tagtable_begin = .;
|
|
|
|
*(.taglist.init)
|
|
|
|
__tagtable_end = .;
|
|
|
|
}
|
2017-08-30 04:58:41 +07:00
|
|
|
.init.rodata : {
|
2016-02-03 21:58:10 +07:00
|
|
|
INIT_SETUP(16)
|
|
|
|
INIT_CALLS
|
|
|
|
CON_INITCALL
|
|
|
|
SECURITY_INITCALL
|
|
|
|
INIT_RAM_FS
|
|
|
|
}
|
|
|
|
|
2017-10-16 19:00:45 +07:00
|
|
|
#ifdef CONFIG_ARM_MPU
|
|
|
|
. = ALIGN(SZ_128K);
|
2016-02-03 21:58:10 +07:00
|
|
|
#endif
|
2016-02-10 01:34:43 +07:00
|
|
|
_exiprom = .; /* End of XIP ROM area */
|
2016-02-03 21:58:10 +07:00
|
|
|
|
2017-08-30 04:58:41 +07:00
|
|
|
/*
|
|
|
|
* From this point, stuff is considered writable and will be copied to RAM
|
|
|
|
*/
|
|
|
|
__data_loc = ALIGN(4); /* location in file */
|
|
|
|
. = PAGE_OFFSET + TEXT_OFFSET; /* location in memory */
|
|
|
|
#undef LOAD_OFFSET
|
|
|
|
#define LOAD_OFFSET (PAGE_OFFSET + TEXT_OFFSET - __data_loc)
|
|
|
|
|
|
|
|
. = ALIGN(THREAD_SIZE);
|
|
|
|
_sdata = .;
|
|
|
|
RW_DATA_SECTION(L1_CACHE_BYTES, PAGE_SIZE, THREAD_SIZE)
|
|
|
|
.data.ro_after_init : AT(ADDR(.data.ro_after_init) - LOAD_OFFSET) {
|
|
|
|
*(.data..ro_after_init)
|
|
|
|
}
|
|
|
|
_edata = .;
|
2016-02-03 21:58:10 +07:00
|
|
|
|
2017-08-30 04:58:41 +07:00
|
|
|
. = ALIGN(PAGE_SIZE);
|
|
|
|
__init_begin = .;
|
|
|
|
.init.data : AT(ADDR(.init.data) - LOAD_OFFSET) {
|
2016-02-03 21:58:10 +07:00
|
|
|
INIT_DATA
|
2017-08-30 04:58:41 +07:00
|
|
|
}
|
|
|
|
.exit.data : AT(ADDR(.exit.data) - LOAD_OFFSET) {
|
2016-02-03 21:58:10 +07:00
|
|
|
ARM_EXIT_KEEP(EXIT_DATA)
|
|
|
|
}
|
2017-08-30 04:58:41 +07:00
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
PERCPU_SECTION(L1_CACHE_BYTES)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* End of copied data. We need a dummy section to get its LMA.
|
|
|
|
* Also located before final ALIGN() as trailing padding is not stored
|
|
|
|
* in the resulting binary file and useless to copy.
|
|
|
|
*/
|
|
|
|
.data.endmark : AT(ADDR(.data.endmark) - LOAD_OFFSET) { }
|
|
|
|
_edata_loc = LOADADDR(.data.endmark);
|
2016-02-03 21:58:10 +07:00
|
|
|
|
2017-08-30 04:58:41 +07:00
|
|
|
. = ALIGN(PAGE_SIZE);
|
|
|
|
__init_end = .;
|
2017-03-30 22:49:27 +07:00
|
|
|
|
2016-02-03 21:58:10 +07:00
|
|
|
#ifdef CONFIG_HAVE_TCM
|
|
|
|
/*
|
|
|
|
* We align everything to a page boundary so we can
|
|
|
|
* free it after init has commenced and TCM contents have
|
|
|
|
* been copied to its destination.
|
|
|
|
*/
|
|
|
|
.tcm_start : {
|
|
|
|
. = ALIGN(PAGE_SIZE);
|
|
|
|
__tcm_start = .;
|
|
|
|
__itcm_start = .;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Link these to the ITCM RAM
|
|
|
|
* Put VMA to the TCM address and LMA to the common RAM
|
|
|
|
* and we'll upload the contents from RAM to TCM and free
|
|
|
|
* the used RAM after that.
|
|
|
|
*/
|
|
|
|
.text_itcm ITCM_OFFSET : AT(__itcm_start)
|
|
|
|
{
|
|
|
|
__sitcm_text = .;
|
|
|
|
*(.tcm.text)
|
|
|
|
*(.tcm.rodata)
|
|
|
|
. = ALIGN(4);
|
|
|
|
__eitcm_text = .;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset the dot pointer, this is needed to create the
|
|
|
|
* relative __dtcm_start below (to be used as extern in code).
|
|
|
|
*/
|
|
|
|
. = ADDR(.tcm_start) + SIZEOF(.tcm_start) + SIZEOF(.text_itcm);
|
|
|
|
|
|
|
|
.dtcm_start : {
|
|
|
|
__dtcm_start = .;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* TODO: add remainder of ITCM as well, that can be used for data! */
|
|
|
|
.data_dtcm DTCM_OFFSET : AT(__dtcm_start)
|
|
|
|
{
|
|
|
|
. = ALIGN(4);
|
|
|
|
__sdtcm_data = .;
|
|
|
|
*(.tcm.data)
|
|
|
|
. = ALIGN(4);
|
|
|
|
__edtcm_data = .;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reset the dot pointer or the linker gets confused */
|
|
|
|
. = ADDR(.dtcm_start) + SIZEOF(.data_dtcm);
|
|
|
|
|
|
|
|
/* End marker for freeing TCM copy in linked object */
|
|
|
|
.tcm_end : AT(ADDR(.dtcm_start) + SIZEOF(.data_dtcm)){
|
|
|
|
. = ALIGN(PAGE_SIZE);
|
|
|
|
__tcm_end = .;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-08-25 02:54:47 +07:00
|
|
|
BSS_SECTION(0, 0, 8)
|
2016-02-03 21:58:10 +07:00
|
|
|
_end = .;
|
|
|
|
|
|
|
|
STABS_DEBUG
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These must never be empty
|
|
|
|
* If you have to comment these two assert statements out, your
|
|
|
|
* binutils is too old (for other reasons as well)
|
|
|
|
*/
|
|
|
|
ASSERT((__proc_info_end - __proc_info_begin), "missing CPU support")
|
|
|
|
ASSERT((__arch_info_end - __arch_info_begin), "no machine record defined")
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The HYP init code can't be more than a page long,
|
|
|
|
* and should not cross a page boundary.
|
|
|
|
* The above comment applies as well.
|
|
|
|
*/
|
|
|
|
ASSERT(__hyp_idmap_text_end - (__hyp_idmap_text_start & PAGE_MASK) <= PAGE_SIZE,
|
|
|
|
"HYP init code too big or misaligned")
|
2017-08-25 11:54:18 +07:00
|
|
|
|
|
|
|
#ifdef CONFIG_XIP_DEFLATED_DATA
|
|
|
|
/*
|
|
|
|
* The .bss is used as a stack area for __inflate_kernel_data() whose stack
|
|
|
|
* frame is 9568 bytes. Make sure it has extra room left.
|
|
|
|
*/
|
|
|
|
ASSERT((_end - __bss_start) >= 12288, ".bss too small for CONFIG_XIP_DEFLATED_DATA")
|
|
|
|
#endif
|
2017-10-16 19:00:45 +07:00
|
|
|
|
|
|
|
#ifdef CONFIG_ARM_MPU
|
|
|
|
/*
|
|
|
|
* Due to PMSAv7 restriction on base address and size we have to
|
|
|
|
* enforce minimal alignment restrictions. It was seen that weaker
|
|
|
|
* alignment restriction on _xiprom will likely force XIP address
|
|
|
|
* space spawns multiple MPU regions thus it is likely we run in
|
|
|
|
* situation when we are reprogramming MPU region we run on with
|
|
|
|
* something which doesn't cover reprogramming code itself, so as soon
|
|
|
|
* as we update MPU settings we'd immediately try to execute straight
|
|
|
|
* from background region which is XN.
|
|
|
|
* It seem that alignment in 1M should suit most users.
|
|
|
|
* _exiprom is aligned as 1/8 of 1M so can be covered by subregion
|
|
|
|
* disable
|
|
|
|
*/
|
|
|
|
ASSERT(!(_xiprom & (SZ_1M - 1)), "XIP start address may cause MPU programming issues")
|
|
|
|
ASSERT(!(_exiprom & (SZ_128K - 1)), "XIP end address may cause MPU programming issues")
|
|
|
|
#endif
|