Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2007 Casey Schaufler <casey@schaufler-ca.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, version 2.
|
|
|
|
*
|
|
|
|
* Author:
|
|
|
|
* Casey Schaufler <casey@schaufler-ca.com>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
|
|
|
#include <linux/slab.h>
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include "smack.h"
|
|
|
|
|
|
|
|
struct smack_known smack_known_huh = {
|
|
|
|
.smk_known = "?",
|
|
|
|
.smk_secid = 2,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct smack_known smack_known_hat = {
|
|
|
|
.smk_known = "^",
|
|
|
|
.smk_secid = 3,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct smack_known smack_known_star = {
|
|
|
|
.smk_known = "*",
|
|
|
|
.smk_secid = 4,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct smack_known smack_known_floor = {
|
|
|
|
.smk_known = "_",
|
|
|
|
.smk_secid = 5,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct smack_known smack_known_invalid = {
|
|
|
|
.smk_known = "",
|
|
|
|
.smk_secid = 6,
|
|
|
|
};
|
|
|
|
|
2009-01-01 00:54:12 +07:00
|
|
|
struct smack_known smack_known_web = {
|
|
|
|
.smk_known = "@",
|
|
|
|
.smk_secid = 7,
|
|
|
|
};
|
|
|
|
|
2009-03-25 02:53:24 +07:00
|
|
|
LIST_HEAD(smack_known_list);
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The initial value needs to be bigger than any of the
|
|
|
|
* known values above.
|
|
|
|
*/
|
|
|
|
static u32 smack_next_secid = 10;
|
|
|
|
|
2009-04-09 01:40:06 +07:00
|
|
|
/*
|
|
|
|
* what events do we log
|
|
|
|
* can be overwritten at run-time by /smack/logging
|
|
|
|
*/
|
|
|
|
int log_policy = SMACK_AUDIT_DENIED;
|
|
|
|
|
2010-12-07 18:34:01 +07:00
|
|
|
/**
|
|
|
|
* smk_access_entry - look up matching access rule
|
|
|
|
* @subject_label: a pointer to the subject's Smack label
|
|
|
|
* @object_label: a pointer to the object's Smack label
|
2011-01-17 23:05:27 +07:00
|
|
|
* @rule_list: the list of rules to search
|
2010-12-07 18:34:01 +07:00
|
|
|
*
|
|
|
|
* This function looks up the subject/object pair in the
|
2011-01-17 23:05:27 +07:00
|
|
|
* access rule list and returns the access mode. If no
|
|
|
|
* entry is found returns -ENOENT.
|
2010-12-07 18:34:01 +07:00
|
|
|
*
|
|
|
|
* NOTE:
|
|
|
|
*
|
2011-09-21 02:24:36 +07:00
|
|
|
* Earlier versions of this function allowed for labels that
|
|
|
|
* were not on the label list. This was done to allow for
|
|
|
|
* labels to come over the network that had never been seen
|
|
|
|
* before on this host. Unless the receiving socket has the
|
|
|
|
* star label this will always result in a failure check. The
|
|
|
|
* star labeled socket case is now handled in the networking
|
|
|
|
* hooks so there is no case where the label is not on the
|
|
|
|
* label list. Checking to see if the address of two labels
|
|
|
|
* is the same is now a reliable test.
|
|
|
|
*
|
|
|
|
* Do the object check first because that is more
|
|
|
|
* likely to differ.
|
2013-10-12 08:06:39 +07:00
|
|
|
*
|
|
|
|
* Allowing write access implies allowing locking.
|
2010-12-07 18:34:01 +07:00
|
|
|
*/
|
2011-01-17 23:05:27 +07:00
|
|
|
int smk_access_entry(char *subject_label, char *object_label,
|
|
|
|
struct list_head *rule_list)
|
2010-12-07 18:34:01 +07:00
|
|
|
{
|
2011-01-17 23:05:27 +07:00
|
|
|
int may = -ENOENT;
|
2010-12-07 18:34:01 +07:00
|
|
|
struct smack_rule *srp;
|
|
|
|
|
2011-01-17 23:05:27 +07:00
|
|
|
list_for_each_entry_rcu(srp, rule_list, list) {
|
2014-08-29 22:02:55 +07:00
|
|
|
if (srp->smk_object->smk_known == object_label &&
|
2013-05-23 08:43:03 +07:00
|
|
|
srp->smk_subject->smk_known == subject_label) {
|
2011-09-21 02:24:36 +07:00
|
|
|
may = srp->smk_access;
|
|
|
|
break;
|
2010-12-07 18:34:01 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-10-12 08:06:39 +07:00
|
|
|
/*
|
|
|
|
* MAY_WRITE implies MAY_LOCK.
|
|
|
|
*/
|
|
|
|
if ((may & MAY_WRITE) == MAY_WRITE)
|
|
|
|
may |= MAY_LOCK;
|
2010-12-07 18:34:01 +07:00
|
|
|
return may;
|
|
|
|
}
|
|
|
|
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
/**
|
|
|
|
* smk_access - determine if a subject has a specific access to an object
|
2014-08-29 22:02:55 +07:00
|
|
|
* @subject: a pointer to the subject's Smack label entry
|
|
|
|
* @object: a pointer to the object's Smack label entry
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
* @request: the access requested, in "MAY" format
|
2009-04-09 01:40:06 +07:00
|
|
|
* @a : a pointer to the audit data
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
*
|
|
|
|
* This function looks up the subject/object pair in the
|
|
|
|
* access rule list and returns 0 if the access is permitted,
|
|
|
|
* non zero otherwise.
|
|
|
|
*
|
2011-09-21 02:24:36 +07:00
|
|
|
* Smack labels are shared on smack_list
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
int smk_access(struct smack_known *subject, struct smack_known *object,
|
|
|
|
int request, struct smk_audit_info *a)
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
{
|
2011-01-17 23:05:27 +07:00
|
|
|
int may = MAY_NOT;
|
2009-04-09 01:40:06 +07:00
|
|
|
int rc = 0;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Hardcoded comparisons.
|
Smack: Allow an unconfined label in bringup mode
I have vehemently opposed adding a "permissive" mode to Smack
for the simple reasons that it would be subject to massive abuse
and that developers refuse to turn it off come product release.
I still believe that this is true, and still refuse to add a
general "permissive mode". So don't ask again.
Bumjin Im suggested an approach that addresses most of the concerns,
and I have implemented it here. I still believe that we'd be better
off without this sort of thing, but it looks like this minimizes the
abuse potential.
Firstly, you have to configure Smack Bringup Mode. That allows
for "release" software to be ammune from abuse. Second, only one
label gets to be "permissive" at a time. You can use it for
debugging, but that's about it.
A label written to smackfs/unconfined is treated specially.
If either the subject or object label of an access check
matches the "unconfined" label, and the access would not
have been allowed otherwise an audit record and a console
message are generated. The audit record "request" string is
marked with either "(US)" or "(UO)", to indicate that the
request was granted because of an unconfined label. The
fact that an inode was accessed by an unconfined label is
remembered, and subsequent accesses to that "impure"
object are noted in the log. The impurity is not stored in
the filesystem, so a file mislabled as a side effect of
using an unconfined label may still cause concern after
a reboot.
So, it's there, it's dangerous, but so many application
developers seem incapable of living without it I have
given in. I've tried to make it as safe as I can, but
in the end it's still a chain saw.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
|
|
|
*/
|
|
|
|
/*
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
* A star subject can't access any object.
|
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
if (subject == &smack_known_star) {
|
2009-04-09 01:40:06 +07:00
|
|
|
rc = -EACCES;
|
|
|
|
goto out_audit;
|
|
|
|
}
|
2009-01-01 00:54:12 +07:00
|
|
|
/*
|
|
|
|
* An internet object can be accessed by any subject.
|
|
|
|
* Tasks cannot be assigned the internet label.
|
|
|
|
* An internet subject can access any object.
|
|
|
|
*/
|
2014-10-10 06:18:55 +07:00
|
|
|
if (object == &smack_known_web || subject == &smack_known_web)
|
2009-04-09 01:40:06 +07:00
|
|
|
goto out_audit;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
/*
|
|
|
|
* A star object can be accessed by any subject.
|
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
if (object == &smack_known_star)
|
2009-04-09 01:40:06 +07:00
|
|
|
goto out_audit;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
/*
|
|
|
|
* An object can be accessed in any way by a subject
|
|
|
|
* with the same label.
|
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
if (subject->smk_known == object->smk_known)
|
2009-04-09 01:40:06 +07:00
|
|
|
goto out_audit;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
/*
|
2014-10-10 06:18:55 +07:00
|
|
|
* A hat subject can read or lock any object.
|
|
|
|
* A floor object can be read or locked by any subject.
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
*/
|
2014-10-10 06:18:55 +07:00
|
|
|
if ((request & MAY_ANYREAD) == request ||
|
|
|
|
(request & MAY_LOCK) == request) {
|
2014-08-29 22:02:55 +07:00
|
|
|
if (object == &smack_known_floor)
|
2009-04-09 01:40:06 +07:00
|
|
|
goto out_audit;
|
2014-08-29 22:02:55 +07:00
|
|
|
if (subject == &smack_known_hat)
|
2009-04-09 01:40:06 +07:00
|
|
|
goto out_audit;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Beyond here an explicit relationship is required.
|
|
|
|
* If the requested access is contained in the available
|
|
|
|
* access (e.g. read is included in readwrite) it's
|
2011-01-17 23:05:27 +07:00
|
|
|
* good. A negative response from smk_access_entry()
|
|
|
|
* indicates there is no entry for this pair.
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
*/
|
2011-01-17 23:05:27 +07:00
|
|
|
rcu_read_lock();
|
2014-08-29 22:02:55 +07:00
|
|
|
may = smk_access_entry(subject->smk_known, object->smk_known,
|
|
|
|
&subject->smk_rules);
|
2011-01-17 23:05:27 +07:00
|
|
|
rcu_read_unlock();
|
|
|
|
|
2014-08-28 04:51:27 +07:00
|
|
|
if (may <= 0 || (request & may) != request) {
|
|
|
|
rc = -EACCES;
|
2009-04-09 01:40:06 +07:00
|
|
|
goto out_audit;
|
2014-08-28 04:51:27 +07:00
|
|
|
}
|
|
|
|
#ifdef CONFIG_SECURITY_SMACK_BRINGUP
|
|
|
|
/*
|
|
|
|
* Return a positive value if using bringup mode.
|
|
|
|
* This allows the hooks to identify checks that
|
|
|
|
* succeed because of "b" rules.
|
|
|
|
*/
|
|
|
|
if (may & MAY_BRINGUP)
|
Smack: Allow an unconfined label in bringup mode
I have vehemently opposed adding a "permissive" mode to Smack
for the simple reasons that it would be subject to massive abuse
and that developers refuse to turn it off come product release.
I still believe that this is true, and still refuse to add a
general "permissive mode". So don't ask again.
Bumjin Im suggested an approach that addresses most of the concerns,
and I have implemented it here. I still believe that we'd be better
off without this sort of thing, but it looks like this minimizes the
abuse potential.
Firstly, you have to configure Smack Bringup Mode. That allows
for "release" software to be ammune from abuse. Second, only one
label gets to be "permissive" at a time. You can use it for
debugging, but that's about it.
A label written to smackfs/unconfined is treated specially.
If either the subject or object label of an access check
matches the "unconfined" label, and the access would not
have been allowed otherwise an audit record and a console
message are generated. The audit record "request" string is
marked with either "(US)" or "(UO)", to indicate that the
request was granted because of an unconfined label. The
fact that an inode was accessed by an unconfined label is
remembered, and subsequent accesses to that "impure"
object are noted in the log. The impurity is not stored in
the filesystem, so a file mislabled as a side effect of
using an unconfined label may still cause concern after
a reboot.
So, it's there, it's dangerous, but so many application
developers seem incapable of living without it I have
given in. I've tried to make it as safe as I can, but
in the end it's still a chain saw.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
|
|
|
rc = SMACK_BRINGUP_ALLOW;
|
2014-08-28 04:51:27 +07:00
|
|
|
#endif
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
2009-04-09 01:40:06 +07:00
|
|
|
out_audit:
|
Smack: Allow an unconfined label in bringup mode
I have vehemently opposed adding a "permissive" mode to Smack
for the simple reasons that it would be subject to massive abuse
and that developers refuse to turn it off come product release.
I still believe that this is true, and still refuse to add a
general "permissive mode". So don't ask again.
Bumjin Im suggested an approach that addresses most of the concerns,
and I have implemented it here. I still believe that we'd be better
off without this sort of thing, but it looks like this minimizes the
abuse potential.
Firstly, you have to configure Smack Bringup Mode. That allows
for "release" software to be ammune from abuse. Second, only one
label gets to be "permissive" at a time. You can use it for
debugging, but that's about it.
A label written to smackfs/unconfined is treated specially.
If either the subject or object label of an access check
matches the "unconfined" label, and the access would not
have been allowed otherwise an audit record and a console
message are generated. The audit record "request" string is
marked with either "(US)" or "(UO)", to indicate that the
request was granted because of an unconfined label. The
fact that an inode was accessed by an unconfined label is
remembered, and subsequent accesses to that "impure"
object are noted in the log. The impurity is not stored in
the filesystem, so a file mislabled as a side effect of
using an unconfined label may still cause concern after
a reboot.
So, it's there, it's dangerous, but so many application
developers seem incapable of living without it I have
given in. I've tried to make it as safe as I can, but
in the end it's still a chain saw.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
|
|
|
|
|
|
|
#ifdef CONFIG_SECURITY_SMACK_BRINGUP
|
|
|
|
if (rc < 0) {
|
|
|
|
if (object == smack_unconfined)
|
|
|
|
rc = SMACK_UNCONFINED_OBJECT;
|
|
|
|
if (subject == smack_unconfined)
|
|
|
|
rc = SMACK_UNCONFINED_SUBJECT;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2009-04-09 01:40:06 +07:00
|
|
|
#ifdef CONFIG_AUDIT
|
|
|
|
if (a)
|
2014-08-29 22:02:55 +07:00
|
|
|
smack_log(subject->smk_known, object->smk_known,
|
|
|
|
request, rc, a);
|
2009-04-09 01:40:06 +07:00
|
|
|
#endif
|
2014-08-28 04:51:27 +07:00
|
|
|
|
2009-04-09 01:40:06 +07:00
|
|
|
return rc;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2014-03-11 23:07:04 +07:00
|
|
|
* smk_tskacc - determine if a task has a specific access to an object
|
2014-08-29 22:02:55 +07:00
|
|
|
* @tsp: a pointer to the subject's task
|
|
|
|
* @obj_known: a pointer to the object's label entry
|
2009-02-19 02:42:33 +07:00
|
|
|
* @mode: the access requested, in "MAY" format
|
2009-04-09 01:40:06 +07:00
|
|
|
* @a : common audit data
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
*
|
2014-03-11 23:07:04 +07:00
|
|
|
* This function checks the subject task's label/object label pair
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
* in the access rule list and returns 0 if the access is permitted,
|
2014-03-11 23:07:04 +07:00
|
|
|
* non zero otherwise. It allows that the task may have the capability
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
* to override the rules.
|
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
int smk_tskacc(struct task_smack *tsp, struct smack_known *obj_known,
|
2014-03-11 23:07:04 +07:00
|
|
|
u32 mode, struct smk_audit_info *a)
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
{
|
2014-08-29 22:02:55 +07:00
|
|
|
struct smack_known *sbj_known = smk_of_task(tsp);
|
2011-01-17 23:05:27 +07:00
|
|
|
int may;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
int rc;
|
|
|
|
|
2011-01-17 23:05:27 +07:00
|
|
|
/*
|
|
|
|
* Check the global rule list
|
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
rc = smk_access(sbj_known, obj_known, mode, NULL);
|
2014-08-28 04:51:27 +07:00
|
|
|
if (rc >= 0) {
|
2011-01-17 23:05:27 +07:00
|
|
|
/*
|
|
|
|
* If there is an entry in the task's rule list
|
|
|
|
* it can further restrict access.
|
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
may = smk_access_entry(sbj_known->smk_known,
|
|
|
|
obj_known->smk_known,
|
|
|
|
&tsp->smk_rules);
|
2011-01-17 23:05:27 +07:00
|
|
|
if (may < 0)
|
|
|
|
goto out_audit;
|
|
|
|
if ((mode & may) == mode)
|
|
|
|
goto out_audit;
|
|
|
|
rc = -EACCES;
|
|
|
|
}
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
2008-07-31 05:37:11 +07:00
|
|
|
/*
|
2012-06-06 05:28:30 +07:00
|
|
|
* Allow for priviliged to override policy.
|
2008-07-31 05:37:11 +07:00
|
|
|
*/
|
2012-06-06 05:28:30 +07:00
|
|
|
if (rc != 0 && smack_privileged(CAP_MAC_OVERRIDE))
|
2011-01-17 23:05:27 +07:00
|
|
|
rc = 0;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
2009-04-09 01:40:06 +07:00
|
|
|
out_audit:
|
|
|
|
#ifdef CONFIG_AUDIT
|
|
|
|
if (a)
|
2014-08-29 22:02:55 +07:00
|
|
|
smack_log(sbj_known->smk_known, obj_known->smk_known,
|
|
|
|
mode, rc, a);
|
2009-04-09 01:40:06 +07:00
|
|
|
#endif
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2014-03-11 23:07:04 +07:00
|
|
|
/**
|
|
|
|
* smk_curacc - determine if current has a specific access to an object
|
2014-08-29 22:02:55 +07:00
|
|
|
* @obj_known: a pointer to the object's Smack label entry
|
2014-03-11 23:07:04 +07:00
|
|
|
* @mode: the access requested, in "MAY" format
|
|
|
|
* @a : common audit data
|
|
|
|
*
|
|
|
|
* This function checks the current subject label/object label pair
|
|
|
|
* in the access rule list and returns 0 if the access is permitted,
|
|
|
|
* non zero otherwise. It allows that current may have the capability
|
|
|
|
* to override the rules.
|
|
|
|
*/
|
2014-08-29 22:02:55 +07:00
|
|
|
int smk_curacc(struct smack_known *obj_known,
|
|
|
|
u32 mode, struct smk_audit_info *a)
|
2014-03-11 23:07:04 +07:00
|
|
|
{
|
|
|
|
struct task_smack *tsp = current_security();
|
|
|
|
|
2014-08-29 22:02:55 +07:00
|
|
|
return smk_tskacc(tsp, obj_known, mode, a);
|
2014-03-11 23:07:04 +07:00
|
|
|
}
|
|
|
|
|
2009-04-09 01:40:06 +07:00
|
|
|
#ifdef CONFIG_AUDIT
|
|
|
|
/**
|
|
|
|
* smack_str_from_perm : helper to transalate an int to a
|
|
|
|
* readable string
|
|
|
|
* @string : the string to fill
|
|
|
|
* @access : the int
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static inline void smack_str_from_perm(char *string, int access)
|
|
|
|
{
|
|
|
|
int i = 0;
|
2013-10-12 08:06:39 +07:00
|
|
|
|
2009-04-09 01:40:06 +07:00
|
|
|
if (access & MAY_READ)
|
|
|
|
string[i++] = 'r';
|
|
|
|
if (access & MAY_WRITE)
|
|
|
|
string[i++] = 'w';
|
|
|
|
if (access & MAY_EXEC)
|
|
|
|
string[i++] = 'x';
|
|
|
|
if (access & MAY_APPEND)
|
|
|
|
string[i++] = 'a';
|
2012-11-27 22:29:07 +07:00
|
|
|
if (access & MAY_TRANSMUTE)
|
|
|
|
string[i++] = 't';
|
2013-10-12 08:06:39 +07:00
|
|
|
if (access & MAY_LOCK)
|
|
|
|
string[i++] = 'l';
|
2009-04-09 01:40:06 +07:00
|
|
|
string[i] = '\0';
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* smack_log_callback - SMACK specific information
|
|
|
|
* will be called by generic audit code
|
|
|
|
* @ab : the audit_buffer
|
|
|
|
* @a : audit_data
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static void smack_log_callback(struct audit_buffer *ab, void *a)
|
|
|
|
{
|
|
|
|
struct common_audit_data *ad = a;
|
2012-04-03 23:37:02 +07:00
|
|
|
struct smack_audit_data *sad = ad->smack_audit_data;
|
2009-07-09 21:00:29 +07:00
|
|
|
audit_log_format(ab, "lsm=SMACK fn=%s action=%s",
|
2012-04-03 23:37:02 +07:00
|
|
|
ad->smack_audit_data->function,
|
2009-04-09 01:40:06 +07:00
|
|
|
sad->result ? "denied" : "granted");
|
|
|
|
audit_log_format(ab, " subject=");
|
|
|
|
audit_log_untrustedstring(ab, sad->subject);
|
|
|
|
audit_log_format(ab, " object=");
|
|
|
|
audit_log_untrustedstring(ab, sad->object);
|
2014-03-11 23:07:06 +07:00
|
|
|
if (sad->request[0] == '\0')
|
|
|
|
audit_log_format(ab, " labels_differ");
|
|
|
|
else
|
|
|
|
audit_log_format(ab, " requested=%s", sad->request);
|
2009-04-09 01:40:06 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* smack_log - Audit the granting or denial of permissions.
|
|
|
|
* @subject_label : smack label of the requester
|
|
|
|
* @object_label : smack label of the object being accessed
|
|
|
|
* @request: requested permissions
|
|
|
|
* @result: result from smk_access
|
|
|
|
* @a: auxiliary audit data
|
|
|
|
*
|
|
|
|
* Audit the granting or denial of permissions in accordance
|
|
|
|
* with the policy.
|
|
|
|
*/
|
|
|
|
void smack_log(char *subject_label, char *object_label, int request,
|
|
|
|
int result, struct smk_audit_info *ad)
|
|
|
|
{
|
Smack: Allow an unconfined label in bringup mode
I have vehemently opposed adding a "permissive" mode to Smack
for the simple reasons that it would be subject to massive abuse
and that developers refuse to turn it off come product release.
I still believe that this is true, and still refuse to add a
general "permissive mode". So don't ask again.
Bumjin Im suggested an approach that addresses most of the concerns,
and I have implemented it here. I still believe that we'd be better
off without this sort of thing, but it looks like this minimizes the
abuse potential.
Firstly, you have to configure Smack Bringup Mode. That allows
for "release" software to be ammune from abuse. Second, only one
label gets to be "permissive" at a time. You can use it for
debugging, but that's about it.
A label written to smackfs/unconfined is treated specially.
If either the subject or object label of an access check
matches the "unconfined" label, and the access would not
have been allowed otherwise an audit record and a console
message are generated. The audit record "request" string is
marked with either "(US)" or "(UO)", to indicate that the
request was granted because of an unconfined label. The
fact that an inode was accessed by an unconfined label is
remembered, and subsequent accesses to that "impure"
object are noted in the log. The impurity is not stored in
the filesystem, so a file mislabled as a side effect of
using an unconfined label may still cause concern after
a reboot.
So, it's there, it's dangerous, but so many application
developers seem incapable of living without it I have
given in. I've tried to make it as safe as I can, but
in the end it's still a chain saw.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
|
|
|
#ifdef CONFIG_SECURITY_SMACK_BRINGUP
|
|
|
|
char request_buffer[SMK_NUM_ACCESS_TYPE + 5];
|
|
|
|
#else
|
2009-04-09 01:40:06 +07:00
|
|
|
char request_buffer[SMK_NUM_ACCESS_TYPE + 1];
|
Smack: Allow an unconfined label in bringup mode
I have vehemently opposed adding a "permissive" mode to Smack
for the simple reasons that it would be subject to massive abuse
and that developers refuse to turn it off come product release.
I still believe that this is true, and still refuse to add a
general "permissive mode". So don't ask again.
Bumjin Im suggested an approach that addresses most of the concerns,
and I have implemented it here. I still believe that we'd be better
off without this sort of thing, but it looks like this minimizes the
abuse potential.
Firstly, you have to configure Smack Bringup Mode. That allows
for "release" software to be ammune from abuse. Second, only one
label gets to be "permissive" at a time. You can use it for
debugging, but that's about it.
A label written to smackfs/unconfined is treated specially.
If either the subject or object label of an access check
matches the "unconfined" label, and the access would not
have been allowed otherwise an audit record and a console
message are generated. The audit record "request" string is
marked with either "(US)" or "(UO)", to indicate that the
request was granted because of an unconfined label. The
fact that an inode was accessed by an unconfined label is
remembered, and subsequent accesses to that "impure"
object are noted in the log. The impurity is not stored in
the filesystem, so a file mislabled as a side effect of
using an unconfined label may still cause concern after
a reboot.
So, it's there, it's dangerous, but so many application
developers seem incapable of living without it I have
given in. I've tried to make it as safe as I can, but
in the end it's still a chain saw.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
|
|
|
#endif
|
2009-04-09 01:40:06 +07:00
|
|
|
struct smack_audit_data *sad;
|
|
|
|
struct common_audit_data *a = &ad->a;
|
|
|
|
|
|
|
|
/* check if we have to log the current event */
|
Smack: Allow an unconfined label in bringup mode
I have vehemently opposed adding a "permissive" mode to Smack
for the simple reasons that it would be subject to massive abuse
and that developers refuse to turn it off come product release.
I still believe that this is true, and still refuse to add a
general "permissive mode". So don't ask again.
Bumjin Im suggested an approach that addresses most of the concerns,
and I have implemented it here. I still believe that we'd be better
off without this sort of thing, but it looks like this minimizes the
abuse potential.
Firstly, you have to configure Smack Bringup Mode. That allows
for "release" software to be ammune from abuse. Second, only one
label gets to be "permissive" at a time. You can use it for
debugging, but that's about it.
A label written to smackfs/unconfined is treated specially.
If either the subject or object label of an access check
matches the "unconfined" label, and the access would not
have been allowed otherwise an audit record and a console
message are generated. The audit record "request" string is
marked with either "(US)" or "(UO)", to indicate that the
request was granted because of an unconfined label. The
fact that an inode was accessed by an unconfined label is
remembered, and subsequent accesses to that "impure"
object are noted in the log. The impurity is not stored in
the filesystem, so a file mislabled as a side effect of
using an unconfined label may still cause concern after
a reboot.
So, it's there, it's dangerous, but so many application
developers seem incapable of living without it I have
given in. I've tried to make it as safe as I can, but
in the end it's still a chain saw.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
|
|
|
if (result < 0 && (log_policy & SMACK_AUDIT_DENIED) == 0)
|
2009-04-09 01:40:06 +07:00
|
|
|
return;
|
|
|
|
if (result == 0 && (log_policy & SMACK_AUDIT_ACCEPT) == 0)
|
|
|
|
return;
|
|
|
|
|
2012-04-03 23:37:02 +07:00
|
|
|
sad = a->smack_audit_data;
|
|
|
|
|
|
|
|
if (sad->function == NULL)
|
|
|
|
sad->function = "unknown";
|
2009-04-09 01:40:06 +07:00
|
|
|
|
|
|
|
/* end preparing the audit data */
|
|
|
|
smack_str_from_perm(request_buffer, request);
|
|
|
|
sad->subject = subject_label;
|
|
|
|
sad->object = object_label;
|
Smack: Allow an unconfined label in bringup mode
I have vehemently opposed adding a "permissive" mode to Smack
for the simple reasons that it would be subject to massive abuse
and that developers refuse to turn it off come product release.
I still believe that this is true, and still refuse to add a
general "permissive mode". So don't ask again.
Bumjin Im suggested an approach that addresses most of the concerns,
and I have implemented it here. I still believe that we'd be better
off without this sort of thing, but it looks like this minimizes the
abuse potential.
Firstly, you have to configure Smack Bringup Mode. That allows
for "release" software to be ammune from abuse. Second, only one
label gets to be "permissive" at a time. You can use it for
debugging, but that's about it.
A label written to smackfs/unconfined is treated specially.
If either the subject or object label of an access check
matches the "unconfined" label, and the access would not
have been allowed otherwise an audit record and a console
message are generated. The audit record "request" string is
marked with either "(US)" or "(UO)", to indicate that the
request was granted because of an unconfined label. The
fact that an inode was accessed by an unconfined label is
remembered, and subsequent accesses to that "impure"
object are noted in the log. The impurity is not stored in
the filesystem, so a file mislabled as a side effect of
using an unconfined label may still cause concern after
a reboot.
So, it's there, it's dangerous, but so many application
developers seem incapable of living without it I have
given in. I've tried to make it as safe as I can, but
in the end it's still a chain saw.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
2015-03-22 08:26:40 +07:00
|
|
|
#ifdef CONFIG_SECURITY_SMACK_BRINGUP
|
|
|
|
/*
|
|
|
|
* The result may be positive in bringup mode.
|
|
|
|
* A positive result is an allow, but not for normal reasons.
|
|
|
|
* Mark it as successful, but don't filter it out even if
|
|
|
|
* the logging policy says to do so.
|
|
|
|
*/
|
|
|
|
if (result == SMACK_UNCONFINED_SUBJECT)
|
|
|
|
strcat(request_buffer, "(US)");
|
|
|
|
else if (result == SMACK_UNCONFINED_OBJECT)
|
|
|
|
strcat(request_buffer, "(UO)");
|
|
|
|
|
|
|
|
if (result > 0)
|
|
|
|
result = 0;
|
|
|
|
#endif
|
2009-04-09 01:40:06 +07:00
|
|
|
sad->request = request_buffer;
|
|
|
|
sad->result = result;
|
|
|
|
|
2012-04-03 05:48:12 +07:00
|
|
|
common_lsm_audit(a, smack_log_callback, NULL);
|
2009-04-09 01:40:06 +07:00
|
|
|
}
|
|
|
|
#else /* #ifdef CONFIG_AUDIT */
|
|
|
|
void smack_log(char *subject_label, char *object_label, int request,
|
|
|
|
int result, struct smk_audit_info *ad)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-05-07 05:22:02 +07:00
|
|
|
DEFINE_MUTEX(smack_known_lock);
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
2013-06-11 19:55:13 +07:00
|
|
|
struct hlist_head smack_known_hash[SMACK_HASH_SLOTS];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* smk_insert_entry - insert a smack label into a hash map,
|
|
|
|
*
|
|
|
|
* this function must be called under smack_known_lock
|
|
|
|
*/
|
|
|
|
void smk_insert_entry(struct smack_known *skp)
|
|
|
|
{
|
|
|
|
unsigned int hash;
|
|
|
|
struct hlist_head *head;
|
|
|
|
|
|
|
|
hash = full_name_hash(skp->smk_known, strlen(skp->smk_known));
|
|
|
|
head = &smack_known_hash[hash & (SMACK_HASH_SLOTS - 1)];
|
|
|
|
|
|
|
|
hlist_add_head_rcu(&skp->smk_hashed, head);
|
|
|
|
list_add_rcu(&skp->list, &smack_known_list);
|
|
|
|
}
|
|
|
|
|
2011-09-21 02:24:36 +07:00
|
|
|
/**
|
|
|
|
* smk_find_entry - find a label on the list, return the list entry
|
|
|
|
* @string: a text string that might be a Smack label
|
|
|
|
*
|
|
|
|
* Returns a pointer to the entry in the label list that
|
2015-04-20 22:12:54 +07:00
|
|
|
* matches the passed string or NULL if not found.
|
2011-09-21 02:24:36 +07:00
|
|
|
*/
|
|
|
|
struct smack_known *smk_find_entry(const char *string)
|
|
|
|
{
|
2013-06-11 19:55:13 +07:00
|
|
|
unsigned int hash;
|
|
|
|
struct hlist_head *head;
|
2011-09-21 02:24:36 +07:00
|
|
|
struct smack_known *skp;
|
|
|
|
|
2013-06-11 19:55:13 +07:00
|
|
|
hash = full_name_hash(string, strlen(string));
|
|
|
|
head = &smack_known_hash[hash & (SMACK_HASH_SLOTS - 1)];
|
|
|
|
|
|
|
|
hlist_for_each_entry_rcu(skp, head, smk_hashed)
|
2012-05-07 05:22:02 +07:00
|
|
|
if (strcmp(skp->smk_known, string) == 0)
|
2011-09-21 02:24:36 +07:00
|
|
|
return skp;
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
/**
|
2011-10-19 01:21:36 +07:00
|
|
|
* smk_parse_smack - parse smack label from a text string
|
|
|
|
* @string: a text string that might contain a Smack label
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
* @len: the maximum size, or zero if it is NULL terminated.
|
2012-05-07 05:22:02 +07:00
|
|
|
*
|
2015-04-20 22:12:54 +07:00
|
|
|
* Returns a pointer to the clean label or an error code.
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
*/
|
2012-05-07 05:22:02 +07:00
|
|
|
char *smk_parse_smack(const char *string, int len)
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
{
|
2012-05-07 05:22:02 +07:00
|
|
|
char *smack;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
int i;
|
|
|
|
|
2012-05-07 05:22:02 +07:00
|
|
|
if (len <= 0)
|
|
|
|
len = strlen(string) + 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reserve a leading '-' as an indicator that
|
|
|
|
* this isn't a label, but an option to interfaces
|
|
|
|
* including /smack/cipso and /smack/cipso2
|
|
|
|
*/
|
|
|
|
if (string[0] == '-')
|
2015-04-20 22:12:54 +07:00
|
|
|
return ERR_PTR(-EINVAL);
|
2012-05-07 05:22:02 +07:00
|
|
|
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
if (string[i] > '~' || string[i] <= ' ' || string[i] == '/' ||
|
|
|
|
string[i] == '"' || string[i] == '\\' || string[i] == '\'')
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (i == 0 || i >= SMK_LONGLABEL)
|
2015-04-20 22:12:54 +07:00
|
|
|
return ERR_PTR(-EINVAL);
|
2012-05-07 05:22:02 +07:00
|
|
|
|
|
|
|
smack = kzalloc(i + 1, GFP_KERNEL);
|
2015-04-20 22:12:54 +07:00
|
|
|
if (smack == NULL)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
strncpy(smack, string, i);
|
2014-11-08 21:48:05 +07:00
|
|
|
|
2012-05-07 05:22:02 +07:00
|
|
|
return smack;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* smk_netlbl_mls - convert a catset to netlabel mls categories
|
|
|
|
* @catset: the Smack categories
|
|
|
|
* @sap: where to put the netlabel categories
|
|
|
|
*
|
|
|
|
* Allocates and fills attr.mls
|
|
|
|
* Returns 0 on success, error code on failure.
|
|
|
|
*/
|
|
|
|
int smk_netlbl_mls(int level, char *catset, struct netlbl_lsm_secattr *sap,
|
|
|
|
int len)
|
|
|
|
{
|
|
|
|
unsigned char *cp;
|
|
|
|
unsigned char m;
|
|
|
|
int cat;
|
|
|
|
int rc;
|
|
|
|
int byte;
|
|
|
|
|
|
|
|
sap->flags |= NETLBL_SECATTR_MLS_CAT;
|
|
|
|
sap->attr.mls.lvl = level;
|
2014-08-01 22:17:17 +07:00
|
|
|
sap->attr.mls.cat = NULL;
|
2012-05-07 05:22:02 +07:00
|
|
|
|
|
|
|
for (cat = 1, cp = catset, byte = 0; byte < len; cp++, byte++)
|
|
|
|
for (m = 0x80; m != 0; m >>= 1, cat++) {
|
|
|
|
if ((m & *cp) == 0)
|
|
|
|
continue;
|
2014-08-01 22:17:37 +07:00
|
|
|
rc = netlbl_catmap_setbit(&sap->attr.mls.cat,
|
|
|
|
cat, GFP_ATOMIC);
|
2012-05-07 05:22:02 +07:00
|
|
|
if (rc < 0) {
|
2014-08-01 22:17:37 +07:00
|
|
|
netlbl_catmap_free(sap->attr.mls.cat);
|
2012-05-07 05:22:02 +07:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2011-10-19 01:21:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* smk_import_entry - import a label, return the list entry
|
|
|
|
* @string: a text string that might be a Smack label
|
|
|
|
* @len: the maximum size, or zero if it is NULL terminated.
|
|
|
|
*
|
|
|
|
* Returns a pointer to the entry in the label list that
|
2015-04-20 22:12:54 +07:00
|
|
|
* matches the passed string, adding it if necessary,
|
|
|
|
* or an error code.
|
2011-10-19 01:21:36 +07:00
|
|
|
*/
|
|
|
|
struct smack_known *smk_import_entry(const char *string, int len)
|
|
|
|
{
|
|
|
|
struct smack_known *skp;
|
2012-05-07 05:22:02 +07:00
|
|
|
char *smack;
|
|
|
|
int slen;
|
|
|
|
int rc;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
2012-05-07 05:22:02 +07:00
|
|
|
smack = smk_parse_smack(string, len);
|
2015-04-20 22:12:54 +07:00
|
|
|
if (IS_ERR(smack))
|
|
|
|
return ERR_CAST(smack);
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
|
|
|
mutex_lock(&smack_known_lock);
|
|
|
|
|
2011-09-21 02:24:36 +07:00
|
|
|
skp = smk_find_entry(smack);
|
2012-05-07 05:22:02 +07:00
|
|
|
if (skp != NULL)
|
|
|
|
goto freeout;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
2012-05-07 05:22:02 +07:00
|
|
|
skp = kzalloc(sizeof(*skp), GFP_KERNEL);
|
2015-04-20 22:12:54 +07:00
|
|
|
if (skp == NULL) {
|
|
|
|
skp = ERR_PTR(-ENOMEM);
|
2012-05-07 05:22:02 +07:00
|
|
|
goto freeout;
|
2015-04-20 22:12:54 +07:00
|
|
|
}
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
2012-05-07 05:22:02 +07:00
|
|
|
skp->smk_known = smack;
|
|
|
|
skp->smk_secid = smack_next_secid++;
|
|
|
|
skp->smk_netlabel.domain = skp->smk_known;
|
|
|
|
skp->smk_netlabel.flags =
|
|
|
|
NETLBL_SECATTR_DOMAIN | NETLBL_SECATTR_MLS_LVL;
|
|
|
|
/*
|
|
|
|
* If direct labeling works use it.
|
|
|
|
* Otherwise use mapped labeling.
|
|
|
|
*/
|
|
|
|
slen = strlen(smack);
|
|
|
|
if (slen < SMK_CIPSOLEN)
|
|
|
|
rc = smk_netlbl_mls(smack_cipso_direct, skp->smk_known,
|
|
|
|
&skp->smk_netlabel, slen);
|
|
|
|
else
|
|
|
|
rc = smk_netlbl_mls(smack_cipso_mapped, (char *)&skp->smk_secid,
|
|
|
|
&skp->smk_netlabel, sizeof(skp->smk_secid));
|
|
|
|
|
|
|
|
if (rc >= 0) {
|
|
|
|
INIT_LIST_HEAD(&skp->smk_rules);
|
|
|
|
mutex_init(&skp->smk_rules_lock);
|
|
|
|
/*
|
|
|
|
* Make sure that the entry is actually
|
|
|
|
* filled before putting it on the list.
|
|
|
|
*/
|
2013-06-11 19:55:13 +07:00
|
|
|
smk_insert_entry(skp);
|
2012-05-07 05:22:02 +07:00
|
|
|
goto unlockout;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* smk_netlbl_mls failed.
|
|
|
|
*/
|
|
|
|
kfree(skp);
|
2015-04-20 22:12:54 +07:00
|
|
|
skp = ERR_PTR(rc);
|
2012-05-07 05:22:02 +07:00
|
|
|
freeout:
|
|
|
|
kfree(smack);
|
|
|
|
unlockout:
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
mutex_unlock(&smack_known_lock);
|
|
|
|
|
|
|
|
return skp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* smack_from_secid - find the Smack label associated with a secid
|
|
|
|
* @secid: an integer that might be associated with a Smack label
|
|
|
|
*
|
2013-05-23 08:43:03 +07:00
|
|
|
* Returns a pointer to the appropriate Smack label entry if there is one,
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
* otherwise a pointer to the invalid Smack label.
|
|
|
|
*/
|
2013-05-23 08:43:03 +07:00
|
|
|
struct smack_known *smack_from_secid(const u32 secid)
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
{
|
|
|
|
struct smack_known *skp;
|
|
|
|
|
2009-03-25 02:53:24 +07:00
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(skp, &smack_known_list, list) {
|
|
|
|
if (skp->smk_secid == secid) {
|
|
|
|
rcu_read_unlock();
|
2013-05-23 08:43:03 +07:00
|
|
|
return skp;
|
2009-03-25 02:53:24 +07:00
|
|
|
}
|
|
|
|
}
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If we got this far someone asked for the translation
|
|
|
|
* of a secid that is not on the list.
|
|
|
|
*/
|
2009-03-25 02:53:24 +07:00
|
|
|
rcu_read_unlock();
|
2013-05-23 08:43:03 +07:00
|
|
|
return &smack_known_invalid;
|
Smack: Simplified Mandatory Access Control Kernel
Smack is the Simplified Mandatory Access Control Kernel.
Smack implements mandatory access control (MAC) using labels
attached to tasks and data containers, including files, SVIPC,
and other tasks. Smack is a kernel based scheme that requires
an absolute minimum of application support and a very small
amount of configuration data.
Smack uses extended attributes and
provides a set of general mount options, borrowing technics used
elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides
a pseudo-filesystem smackfs that is used for manipulation of
system Smack attributes.
The patch, patches for ls and sshd, a README, a startup script,
and x86 binaries for ls and sshd are also available on
http://www.schaufler-ca.com
Development has been done using Fedora Core 7 in a virtual machine
environment and on an old Sony laptop.
Smack provides mandatory access controls based on the label attached
to a task and the label attached to the object it is attempting to
access. Smack labels are deliberately short (1-23 characters) text
strings. Single character labels using special characters are reserved
for system use. The only operation applied to Smack labels is equality
comparison. No wildcards or expressions, regular or otherwise, are
used. Smack labels are composed of printable characters and may not
include "/".
A file always gets the Smack label of the task that created it.
Smack defines and uses these labels:
"*" - pronounced "star"
"_" - pronounced "floor"
"^" - pronounced "hat"
"?" - pronounced "huh"
The access rules enforced by Smack are, in order:
1. Any access requested by a task labeled "*" is denied.
2. A read or execute access requested by a task labeled "^"
is permitted.
3. A read or execute access requested on an object labeled "_"
is permitted.
4. Any access requested on an object labeled "*" is permitted.
5. Any access requested by a task on an object with the same
label is permitted.
6. Any access requested that is explicitly defined in the loaded
rule set is permitted.
7. Any other access is denied.
Rules may be explicitly defined by writing subject,object,access
triples to /smack/load.
Smack rule sets can be easily defined that describe Bell&LaPadula
sensitivity, Biba integrity, and a variety of interesting
configurations. Smack rule sets can be modified on the fly to
accommodate changes in the operating environment or even the time
of day.
Some practical use cases:
Hierarchical levels. The less common of the two usual uses
for MLS systems is to define hierarchical levels, often
unclassified, confidential, secret, and so on. To set up smack
to support this, these rules could be defined:
C Unclass rx
S C rx
S Unclass rx
TS S rx
TS C rx
TS Unclass rx
A TS process can read S, C, and Unclass data, but cannot write it.
An S process can read C and Unclass. Note that specifying that
TS can read S and S can read C does not imply TS can read C, it
has to be explicitly stated.
Non-hierarchical categories. This is the more common of the
usual uses for an MLS system. Since the default rule is that a
subject cannot access an object with a different label no
access rules are required to implement compartmentalization.
A case that the Bell & LaPadula policy does not allow is demonstrated
with this Smack access rule:
A case that Bell&LaPadula does not allow that Smack does:
ESPN ABC r
ABC ESPN r
On my portable video device I have two applications, one that
shows ABC programming and the other ESPN programming. ESPN wants
to show me sport stories that show up as news, and ABC will
only provide minimal information about a sports story if ESPN
is covering it. Each side can look at the other's info, neither
can change the other. Neither can see what FOX is up to, which
is just as well all things considered.
Another case that I especially like:
SatData Guard w
Guard Publish w
A program running with the Guard label opens a UDP socket and
accepts messages sent by a program running with a SatData label.
The Guard program inspects the message to ensure it is wholesome
and if it is sends it to a program running with the Publish label.
This program then puts the information passed in an appropriate
place. Note that the Guard program cannot write to a Publish
file system object because file system semanitic require read as
well as write.
The four cases (categories, levels, mutual read, guardbox) here
are all quite real, and problems I've been asked to solve over
the years. The first two are easy to do with traditonal MLS systems
while the last two you can't without invoking privilege, at least
for a while.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Cc: Joshua Brindle <method@manicmethod.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: "Ahmed S. Darwish" <darwish.07@gmail.com>
Cc: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:50 +07:00
|
|
|
}
|
2015-06-02 16:23:48 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Unless a process is running with one of these labels
|
|
|
|
* even having CAP_MAC_OVERRIDE isn't enough to grant
|
|
|
|
* privilege to violate MAC policy. If no labels are
|
|
|
|
* designated (the empty list case) capabilities apply to
|
|
|
|
* everyone.
|
|
|
|
*/
|
|
|
|
LIST_HEAD(smack_onlycap_list);
|
|
|
|
DEFINE_MUTEX(smack_onlycap_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is the task privileged and allowed to be privileged
|
|
|
|
* by the onlycap rule.
|
|
|
|
*
|
|
|
|
* Returns 1 if the task is allowed to be privileged, 0 if it's not.
|
|
|
|
*/
|
|
|
|
int smack_privileged(int cap)
|
|
|
|
{
|
|
|
|
struct smack_known *skp = smk_of_current();
|
|
|
|
struct smack_onlycap *sop;
|
|
|
|
|
2015-08-10 21:54:25 +07:00
|
|
|
/*
|
|
|
|
* All kernel tasks are privileged
|
|
|
|
*/
|
|
|
|
if (unlikely(current->flags & PF_KTHREAD))
|
|
|
|
return 1;
|
|
|
|
|
2015-06-02 16:23:48 +07:00
|
|
|
if (!capable(cap))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
if (list_empty(&smack_onlycap_list)) {
|
|
|
|
rcu_read_unlock();
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(sop, &smack_onlycap_list, list) {
|
|
|
|
if (sop->smk_label == skp) {
|
|
|
|
rcu_read_unlock();
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|