linux_dsm_epyc7002/kernel/fork.c

1681 lines
40 KiB
C
Raw Normal View History

/*
* linux/kernel/fork.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* 'fork.c' contains the help-routines for the 'fork' system call
* (see also entry.S and others).
* Fork is rather simple, once you get the hang of it, but the memory
* management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
*/
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/unistd.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/completion.h>
#include <linux/mnt_namespace.h>
#include <linux/personality.h>
#include <linux/mempolicy.h>
#include <linux/sem.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/key.h>
#include <linux/binfmts.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/nsproxy.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/cgroup.h>
#include <linux/security.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/jiffies.h>
#include <linux/futex.h>
[PATCH] io-accounting: core statistics The present per-task IO accounting isn't very useful. It simply counts the number of bytes passed into read() and write(). So if a process reads 1MB from an already-cached file, it is accused of having performed 1MB of I/O, which is wrong. (David Wright had some comments on the applicability of the present logical IO accounting: For billing purposes it is useless but for workload analysis it is very useful read_bytes/read_calls average read request size write_bytes/write_calls average write request size read_bytes/read_blocks ie logical/physical can indicate hit rate or thrashing write_bytes/write_blocks ie logical/physical guess since pdflush writes can be missed I often look for logical larger than physical to see filesystem cache problems. And the bytes/cpusec can help find applications that are dominating the cache and causing slow interactive response from page cache contention. I want to find the IO intensive applications and make sure they are doing efficient IO. Thus the acctcms(sysV) or csacms command would give the high IO commands). This patchset adds new accounting which tries to be more accurate. We account for three things: reads: attempt to count the number of bytes which this process really did cause to be fetched from the storage layer. Done at the submit_bio() level, so it is accurate for block-backed filesystems. I also attempt to wire up NFS and CIFS. writes: attempt to count the number of bytes which this process caused to be sent to the storage layer. This is done at page-dirtying time. The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes the file, it will in fact perform no writeout. But it will have been accounted as having caused 1MB of write. So... cancelled_writes: account the number of bytes which this process caused to not happen, by truncating pagecache. We _could_ just subtract this from the process's `write' accounting. But that means that some processes would be reported to have done negative amounts of write IO, which is silly. So we just report the raw number and punt this decision up to userspace. Now, we _could_ account for writes at the physical I/O level. But - This would require that we track memory-dirtying tasks at the per-page level (would require a new pointer in struct page). - It would mean that IO statistics for a process are usually only available long after that process has exitted. Which means that we probably cannot communicate this info via taskstats. This patch: Wire up the kernel-private data structures and the accessor functions to manipulate them. Cc: Jay Lan <jlan@sgi.com> Cc: Shailabh Nagar <nagar@watson.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Chris Sturtivant <csturtiv@sgi.com> Cc: Tony Ernst <tee@sgi.com> Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net> Cc: David Wright <daw@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 17:19:19 +07:00
#include <linux/task_io_accounting_ops.h>
#include <linux/rcupdate.h>
#include <linux/ptrace.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/memcontrol.h>
#include <linux/profile.h>
#include <linux/rmap.h>
#include <linux/acct.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/freezer.h>
#include <linux/delayacct.h>
#include <linux/taskstats_kern.h>
#include <linux/random.h>
Audit: add TTY input auditing Add TTY input auditing, used to audit system administrator's actions. This is required by various security standards such as DCID 6/3 and PCI to provide non-repudiation of administrator's actions and to allow a review of past actions if the administrator seems to overstep their duties or if the system becomes misconfigured for unknown reasons. These requirements do not make it necessary to audit TTY output as well. Compared to an user-space keylogger, this approach records TTY input using the audit subsystem, correlated with other audit events, and it is completely transparent to the user-space application (e.g. the console ioctls still work). TTY input auditing works on a higher level than auditing all system calls within the session, which would produce an overwhelming amount of mostly useless audit events. Add an "audit_tty" attribute, inherited across fork (). Data read from TTYs by process with the attribute is sent to the audit subsystem by the kernel. The audit netlink interface is extended to allow modifying the audit_tty attribute, and to allow sending explanatory audit events from user-space (for example, a shell might send an event containing the final command, after the interactive command-line editing and history expansion is performed, which might be difficult to decipher from the TTY input alone). Because the "audit_tty" attribute is inherited across fork (), it would be set e.g. for sshd restarted within an audited session. To prevent this, the audit_tty attribute is cleared when a process with no open TTY file descriptors (e.g. after daemon startup) opens a TTY. See https://www.redhat.com/archives/linux-audit/2007-June/msg00000.html for a more detailed rationale document for an older version of this patch. [akpm@linux-foundation.org: build fix] Signed-off-by: Miloslav Trmac <mitr@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Paul Fulghum <paulkf@microgate.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Steve Grubb <sgrubb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 13:40:56 +07:00
#include <linux/tty.h>
#include <linux/proc_fs.h>
#include <linux/blkdev.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
/*
* Protected counters by write_lock_irq(&tasklist_lock)
*/
unsigned long total_forks; /* Handle normal Linux uptimes. */
int nr_threads; /* The idle threads do not count.. */
int max_threads; /* tunable limit on nr_threads */
DEFINE_PER_CPU(unsigned long, process_counts) = 0;
__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
int nr_processes(void)
{
int cpu;
int total = 0;
for_each_online_cpu(cpu)
total += per_cpu(process_counts, cpu);
return total;
}
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
# define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
# define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
static struct kmem_cache *task_struct_cachep;
#endif
/* SLAB cache for signal_struct structures (tsk->signal) */
static struct kmem_cache *signal_cachep;
/* SLAB cache for sighand_struct structures (tsk->sighand) */
struct kmem_cache *sighand_cachep;
/* SLAB cache for files_struct structures (tsk->files) */
struct kmem_cache *files_cachep;
/* SLAB cache for fs_struct structures (tsk->fs) */
struct kmem_cache *fs_cachep;
/* SLAB cache for vm_area_struct structures */
struct kmem_cache *vm_area_cachep;
/* SLAB cache for mm_struct structures (tsk->mm) */
static struct kmem_cache *mm_cachep;
void free_task(struct task_struct *tsk)
{
prop_local_destroy_single(&tsk->dirties);
rename thread_info to stack This finally renames the thread_info field in task structure to stack, so that the assumptions about this field are gone and archs have more freedom about placing the thread_info structure. Nonbroken archs which have a proper thread pointer can do the access to both current thread and task structure via a single pointer. It'll allow for a few more cleanups of the fork code, from which e.g. ia64 could benefit. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> [akpm@linux-foundation.org: build fix] Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Andi Kleen <ak@muc.de> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 16:35:17 +07:00
free_thread_info(tsk->stack);
rt_mutex_debug_task_free(tsk);
free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);
void __put_task_struct(struct task_struct *tsk)
{
WARN_ON(!tsk->exit_state);
WARN_ON(atomic_read(&tsk->usage));
WARN_ON(tsk == current);
security_task_free(tsk);
free_uid(tsk->user);
put_group_info(tsk->group_info);
delayacct_tsk_free(tsk);
if (!profile_handoff_task(tsk))
free_task(tsk);
}
/*
* macro override instead of weak attribute alias, to workaround
* gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
*/
#ifndef arch_task_cache_init
#define arch_task_cache_init()
#endif
void __init fork_init(unsigned long mempages)
{
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
#endif
/* create a slab on which task_structs can be allocated */
task_struct_cachep =
kmem_cache_create("task_struct", sizeof(struct task_struct),
ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
#endif
/* do the arch specific task caches init */
arch_task_cache_init();
/*
* The default maximum number of threads is set to a safe
* value: the thread structures can take up at most half
* of memory.
*/
max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
/*
* we need to allow at least 20 threads to boot a system
*/
if(max_threads < 20)
max_threads = 20;
init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
init_task.signal->rlim[RLIMIT_SIGPENDING] =
init_task.signal->rlim[RLIMIT_NPROC];
}
int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
struct task_struct *src)
{
*dst = *src;
return 0;
}
static struct task_struct *dup_task_struct(struct task_struct *orig)
{
struct task_struct *tsk;
struct thread_info *ti;
int err;
prepare_to_copy(orig);
tsk = alloc_task_struct();
if (!tsk)
return NULL;
ti = alloc_thread_info(tsk);
if (!ti) {
free_task_struct(tsk);
return NULL;
}
err = arch_dup_task_struct(tsk, orig);
if (err)
goto out;
rename thread_info to stack This finally renames the thread_info field in task structure to stack, so that the assumptions about this field are gone and archs have more freedom about placing the thread_info structure. Nonbroken archs which have a proper thread pointer can do the access to both current thread and task structure via a single pointer. It'll allow for a few more cleanups of the fork code, from which e.g. ia64 could benefit. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> [akpm@linux-foundation.org: build fix] Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Andi Kleen <ak@muc.de> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 16:35:17 +07:00
tsk->stack = ti;
err = prop_local_init_single(&tsk->dirties);
if (err)
goto out;
setup_thread_stack(tsk, orig);
#ifdef CONFIG_CC_STACKPROTECTOR
tsk->stack_canary = get_random_int();
#endif
/* One for us, one for whoever does the "release_task()" (usually parent) */
atomic_set(&tsk->usage,2);
atomic_set(&tsk->fs_excl, 0);
#ifdef CONFIG_BLK_DEV_IO_TRACE
tsk->btrace_seq = 0;
#endif
tsk->splice_pipe = NULL;
return tsk;
out:
free_thread_info(ti);
free_task_struct(tsk);
return NULL;
}
#ifdef CONFIG_MMU
static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
{
struct vm_area_struct *mpnt, *tmp, **pprev;
struct rb_node **rb_link, *rb_parent;
int retval;
unsigned long charge;
struct mempolicy *pol;
down_write(&oldmm->mmap_sem);
flush_cache_dup_mm(oldmm);
/*
* Not linked in yet - no deadlock potential:
*/
down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
mm->locked_vm = 0;
mm->mmap = NULL;
mm->mmap_cache = NULL;
mm->free_area_cache = oldmm->mmap_base;
[PATCH] Avoiding mmap fragmentation Ingo recently introduced a great speedup for allocating new mmaps using the free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and causes huge performance increases in thread creation. The downside of this patch is that it does lead to fragmentation in the mmap-ed areas (visible via /proc/self/maps), such that some applications that work fine under 2.4 kernels quickly run out of memory on any 2.6 kernel. The problem is twofold: 1) the free_area_cache is used to continue a search for memory where the last search ended. Before the change new areas were always searched from the base address on. So now new small areas are cluttering holes of all sizes throughout the whole mmap-able region whereas before small holes tended to close holes near the base leaving holes far from the base large and available for larger requests. 2) the free_area_cache also is set to the location of the last munmap-ed area so in scenarios where we allocate e.g. five regions of 1K each, then free regions 4 2 3 in this order the next request for 1K will be placed in the position of the old region 3, whereas before we appended it to the still active region 1, placing it at the location of the old region 2. Before we had 1 free region of 2K, now we only get two free regions of 1K -> fragmentation. The patch addresses thes issues by introducing yet another cache descriptor cached_hole_size that contains the largest known hole size below the current free_area_cache. If a new request comes in the size is compared against the cached_hole_size and if the request can be filled with a hole below free_area_cache the search is started from the base instead. The results look promising: Whereas 2.6.12-rc4 fragments quickly and my (earlier posted) leakme.c test program terminates after 50000+ iterations with 96 distinct and fragmented maps in /proc/self/maps it performs nicely (as expected) with thread creation, Ingo's test_str02 with 20000 threads requires 0.7s system time. Taking out Ingo's patch (un-patch available per request) by basically deleting all mentions of free_area_cache from the kernel and starting the search for new memory always at the respective bases we observe: leakme terminates successfully with 11 distinctive hardly fragmented areas in /proc/self/maps but thread creating is gringdingly slow: 30+s(!) system time for Ingo's test_str02 with 20000 threads. Now - drumroll ;-) the appended patch works fine with leakme: it ends with only 7 distinct areas in /proc/self/maps and also thread creation seems sufficiently fast with 0.71s for 20000 threads. Signed-off-by: Wolfgang Wander <wwc@rentec.com> Credit-to: "Richard Purdie" <rpurdie@rpsys.net> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> (partly) Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:14:49 +07:00
mm->cached_hole_size = ~0UL;
mm->map_count = 0;
cpus_clear(mm->cpu_vm_mask);
mm->mm_rb = RB_ROOT;
rb_link = &mm->mm_rb.rb_node;
rb_parent = NULL;
pprev = &mm->mmap;
for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
struct file *file;
if (mpnt->vm_flags & VM_DONTCOPY) {
long pages = vma_pages(mpnt);
mm->total_vm -= pages;
vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
-pages);
continue;
}
charge = 0;
if (mpnt->vm_flags & VM_ACCOUNT) {
unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
if (security_vm_enough_memory(len))
goto fail_nomem;
charge = len;
}
tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (!tmp)
goto fail_nomem;
*tmp = *mpnt;
pol = mpol_dup(vma_policy(mpnt));
retval = PTR_ERR(pol);
if (IS_ERR(pol))
goto fail_nomem_policy;
vma_set_policy(tmp, pol);
tmp->vm_flags &= ~VM_LOCKED;
tmp->vm_mm = mm;
tmp->vm_next = NULL;
anon_vma_link(tmp);
file = tmp->vm_file;
if (file) {
struct inode *inode = file->f_path.dentry->d_inode;
get_file(file);
if (tmp->vm_flags & VM_DENYWRITE)
atomic_dec(&inode->i_writecount);
/* insert tmp into the share list, just after mpnt */
spin_lock(&file->f_mapping->i_mmap_lock);
tmp->vm_truncate_count = mpnt->vm_truncate_count;
flush_dcache_mmap_lock(file->f_mapping);
vma_prio_tree_add(tmp, mpnt);
flush_dcache_mmap_unlock(file->f_mapping);
spin_unlock(&file->f_mapping->i_mmap_lock);
}
/*
* Link in the new vma and copy the page table entries.
*/
*pprev = tmp;
pprev = &tmp->vm_next;
__vma_link_rb(mm, tmp, rb_link, rb_parent);
rb_link = &tmp->vm_rb.rb_right;
rb_parent = &tmp->vm_rb;
mm->map_count++;
retval = copy_page_range(mm, oldmm, mpnt);
if (tmp->vm_ops && tmp->vm_ops->open)
tmp->vm_ops->open(tmp);
if (retval)
goto out;
}
/* a new mm has just been created */
arch_dup_mmap(oldmm, mm);
retval = 0;
out:
up_write(&mm->mmap_sem);
flush_tlb_mm(oldmm);
up_write(&oldmm->mmap_sem);
return retval;
fail_nomem_policy:
kmem_cache_free(vm_area_cachep, tmp);
fail_nomem:
retval = -ENOMEM;
vm_unacct_memory(charge);
goto out;
}
static inline int mm_alloc_pgd(struct mm_struct * mm)
{
mm->pgd = pgd_alloc(mm);
if (unlikely(!mm->pgd))
return -ENOMEM;
return 0;
}
static inline void mm_free_pgd(struct mm_struct * mm)
{
pgd_free(mm, mm->pgd);
}
#else
#define dup_mmap(mm, oldmm) (0)
#define mm_alloc_pgd(mm) (0)
#define mm_free_pgd(mm)
#endif /* CONFIG_MMU */
__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
#include <linux/init_task.h>
static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
{
atomic_set(&mm->mm_users, 1);
atomic_set(&mm->mm_count, 1);
init_rwsem(&mm->mmap_sem);
INIT_LIST_HEAD(&mm->mmlist);
mm->flags = (current->mm) ? current->mm->flags
: MMF_DUMP_FILTER_DEFAULT;
mm->core_waiters = 0;
mm->nr_ptes = 0;
set_mm_counter(mm, file_rss, 0);
set_mm_counter(mm, anon_rss, 0);
spin_lock_init(&mm->page_table_lock);
rwlock_init(&mm->ioctx_list_lock);
mm->ioctx_list = NULL;
mm->free_area_cache = TASK_UNMAPPED_BASE;
[PATCH] Avoiding mmap fragmentation Ingo recently introduced a great speedup for allocating new mmaps using the free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and causes huge performance increases in thread creation. The downside of this patch is that it does lead to fragmentation in the mmap-ed areas (visible via /proc/self/maps), such that some applications that work fine under 2.4 kernels quickly run out of memory on any 2.6 kernel. The problem is twofold: 1) the free_area_cache is used to continue a search for memory where the last search ended. Before the change new areas were always searched from the base address on. So now new small areas are cluttering holes of all sizes throughout the whole mmap-able region whereas before small holes tended to close holes near the base leaving holes far from the base large and available for larger requests. 2) the free_area_cache also is set to the location of the last munmap-ed area so in scenarios where we allocate e.g. five regions of 1K each, then free regions 4 2 3 in this order the next request for 1K will be placed in the position of the old region 3, whereas before we appended it to the still active region 1, placing it at the location of the old region 2. Before we had 1 free region of 2K, now we only get two free regions of 1K -> fragmentation. The patch addresses thes issues by introducing yet another cache descriptor cached_hole_size that contains the largest known hole size below the current free_area_cache. If a new request comes in the size is compared against the cached_hole_size and if the request can be filled with a hole below free_area_cache the search is started from the base instead. The results look promising: Whereas 2.6.12-rc4 fragments quickly and my (earlier posted) leakme.c test program terminates after 50000+ iterations with 96 distinct and fragmented maps in /proc/self/maps it performs nicely (as expected) with thread creation, Ingo's test_str02 with 20000 threads requires 0.7s system time. Taking out Ingo's patch (un-patch available per request) by basically deleting all mentions of free_area_cache from the kernel and starting the search for new memory always at the respective bases we observe: leakme terminates successfully with 11 distinctive hardly fragmented areas in /proc/self/maps but thread creating is gringdingly slow: 30+s(!) system time for Ingo's test_str02 with 20000 threads. Now - drumroll ;-) the appended patch works fine with leakme: it ends with only 7 distinct areas in /proc/self/maps and also thread creation seems sufficiently fast with 0.71s for 20000 threads. Signed-off-by: Wolfgang Wander <wwc@rentec.com> Credit-to: "Richard Purdie" <rpurdie@rpsys.net> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> (partly) Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:14:49 +07:00
mm->cached_hole_size = ~0UL;
cgroups: add an owner to the mm_struct Remove the mem_cgroup member from mm_struct and instead adds an owner. This approach was suggested by Paul Menage. The advantage of this approach is that, once the mm->owner is known, using the subsystem id, the cgroup can be determined. It also allows several control groups that are virtually grouped by mm_struct, to exist independent of the memory controller i.e., without adding mem_cgroup's for each controller, to mm_struct. A new config option CONFIG_MM_OWNER is added and the memory resource controller selects this config option. This patch also adds cgroup callbacks to notify subsystems when mm->owner changes. The mm_cgroup_changed callback is called with the task_lock() of the new task held and is called just prior to changing the mm->owner. I am indebted to Paul Menage for the several reviews of this patchset and helping me make it lighter and simpler. This patch was tested on a powerpc box, it was compiled with both the MM_OWNER config turned on and off. After the thread group leader exits, it's moved to init_css_state by cgroup_exit(), thus all future charges from runnings threads would be redirected to the init_css_set's subsystem. Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: David Rientjes <rientjes@google.com>, Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Reviewed-by: Paul Menage <menage@google.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 15:00:16 +07:00
mm_init_owner(mm, p);
if (likely(!mm_alloc_pgd(mm))) {
mm->def_flags = 0;
return mm;
}
free_mm(mm);
return NULL;
}
/*
* Allocate and initialize an mm_struct.
*/
struct mm_struct * mm_alloc(void)
{
struct mm_struct * mm;
mm = allocate_mm();
if (mm) {
memset(mm, 0, sizeof(*mm));
mm = mm_init(mm, current);
}
return mm;
}
/*
* Called when the last reference to the mm
* is dropped: either by a lazy thread or by
* mmput. Free the page directory and the mm.
*/
void __mmdrop(struct mm_struct *mm)
{
BUG_ON(mm == &init_mm);
mm_free_pgd(mm);
destroy_context(mm);
free_mm(mm);
}
EXPORT_SYMBOL_GPL(__mmdrop);
/*
* Decrement the use count and release all resources for an mm.
*/
void mmput(struct mm_struct *mm)
{
might_sleep();
if (atomic_dec_and_test(&mm->mm_users)) {
exit_aio(mm);
exit_mmap(mm);
set_mm_exe_file(mm, NULL);
if (!list_empty(&mm->mmlist)) {
spin_lock(&mmlist_lock);
list_del(&mm->mmlist);
spin_unlock(&mmlist_lock);
}
put_swap_token(mm);
mmdrop(mm);
}
}
EXPORT_SYMBOL_GPL(mmput);
/**
* get_task_mm - acquire a reference to the task's mm
*
* Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
* this kernel workthread has transiently adopted a user mm with use_mm,
* to do its AIO) is not set and if so returns a reference to it, after
* bumping up the use count. User must release the mm via mmput()
* after use. Typically used by /proc and ptrace.
*/
struct mm_struct *get_task_mm(struct task_struct *task)
{
struct mm_struct *mm;
task_lock(task);
mm = task->mm;
if (mm) {
if (task->flags & PF_BORROWED_MM)
mm = NULL;
else
atomic_inc(&mm->mm_users);
}
task_unlock(task);
return mm;
}
EXPORT_SYMBOL_GPL(get_task_mm);
/* Please note the differences between mmput and mm_release.
* mmput is called whenever we stop holding onto a mm_struct,
* error success whatever.
*
* mm_release is called after a mm_struct has been removed
* from the current process.
*
* This difference is important for error handling, when we
* only half set up a mm_struct for a new process and need to restore
* the old one. Because we mmput the new mm_struct before
* restoring the old one. . .
* Eric Biederman 10 January 1998
*/
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
struct completion *vfork_done = tsk->vfork_done;
/* Get rid of any cached register state */
deactivate_mm(tsk, mm);
/* notify parent sleeping on vfork() */
if (vfork_done) {
tsk->vfork_done = NULL;
complete(vfork_done);
}
/*
* If we're exiting normally, clear a user-space tid field if
* requested. We leave this alone when dying by signal, to leave
* the value intact in a core dump, and to save the unnecessary
* trouble otherwise. Userland only wants this done for a sys_exit.
*/
if (tsk->clear_child_tid
&& !(tsk->flags & PF_SIGNALED)
&& atomic_read(&mm->mm_users) > 1) {
u32 __user * tidptr = tsk->clear_child_tid;
tsk->clear_child_tid = NULL;
/*
* We don't check the error code - if userspace has
* not set up a proper pointer then tough luck.
*/
put_user(0, tidptr);
sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
}
}
/*
* Allocate a new mm structure and copy contents from the
* mm structure of the passed in task structure.
*/
struct mm_struct *dup_mm(struct task_struct *tsk)
{
struct mm_struct *mm, *oldmm = current->mm;
int err;
if (!oldmm)
return NULL;
mm = allocate_mm();
if (!mm)
goto fail_nomem;
memcpy(mm, oldmm, sizeof(*mm));
/* Initializing for Swap token stuff */
mm->token_priority = 0;
mm->last_interval = 0;
if (!mm_init(mm, tsk))
goto fail_nomem;
if (init_new_context(tsk, mm))
goto fail_nocontext;
dup_mm_exe_file(oldmm, mm);
err = dup_mmap(mm, oldmm);
if (err)
goto free_pt;
mm->hiwater_rss = get_mm_rss(mm);
mm->hiwater_vm = mm->total_vm;
return mm;
free_pt:
mmput(mm);
fail_nomem:
return NULL;
fail_nocontext:
/*
* If init_new_context() failed, we cannot use mmput() to free the mm
* because it calls destroy_context()
*/
mm_free_pgd(mm);
free_mm(mm);
return NULL;
}
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
{
struct mm_struct * mm, *oldmm;
int retval;
tsk->min_flt = tsk->maj_flt = 0;
tsk->nvcsw = tsk->nivcsw = 0;
tsk->mm = NULL;
tsk->active_mm = NULL;
/*
* Are we cloning a kernel thread?
*
* We need to steal a active VM for that..
*/
oldmm = current->mm;
if (!oldmm)
return 0;
if (clone_flags & CLONE_VM) {
atomic_inc(&oldmm->mm_users);
mm = oldmm;
goto good_mm;
}
retval = -ENOMEM;
mm = dup_mm(tsk);
if (!mm)
goto fail_nomem;
good_mm:
/* Initializing for Swap token stuff */
mm->token_priority = 0;
mm->last_interval = 0;
tsk->mm = mm;
tsk->active_mm = mm;
return 0;
fail_nomem:
return retval;
}
static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
{
struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
/* We don't need to lock fs - think why ;-) */
if (fs) {
atomic_set(&fs->count, 1);
rwlock_init(&fs->lock);
fs->umask = old->umask;
read_lock(&old->lock);
fs->root = old->root;
path_get(&old->root);
fs->pwd = old->pwd;
path_get(&old->pwd);
if (old->altroot.dentry) {
fs->altroot = old->altroot;
path_get(&old->altroot);
} else {
fs->altroot.mnt = NULL;
fs->altroot.dentry = NULL;
}
read_unlock(&old->lock);
}
return fs;
}
struct fs_struct *copy_fs_struct(struct fs_struct *old)
{
return __copy_fs_struct(old);
}
EXPORT_SYMBOL_GPL(copy_fs_struct);
static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
{
if (clone_flags & CLONE_FS) {
atomic_inc(&current->fs->count);
return 0;
}
tsk->fs = __copy_fs_struct(current->fs);
if (!tsk->fs)
return -ENOMEM;
return 0;
}
static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
{
struct files_struct *oldf, *newf;
int error = 0;
/*
* A background process may not have any files ...
*/
oldf = current->files;
if (!oldf)
goto out;
if (clone_flags & CLONE_FILES) {
atomic_inc(&oldf->count);
goto out;
}
newf = dup_fd(oldf, &error);
if (!newf)
goto out;
tsk->files = newf;
error = 0;
out:
return error;
}
static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
{
#ifdef CONFIG_BLOCK
struct io_context *ioc = current->io_context;
if (!ioc)
return 0;
/*
* Share io context with parent, if CLONE_IO is set
*/
if (clone_flags & CLONE_IO) {
tsk->io_context = ioc_task_link(ioc);
if (unlikely(!tsk->io_context))
return -ENOMEM;
} else if (ioprio_valid(ioc->ioprio)) {
tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
if (unlikely(!tsk->io_context))
return -ENOMEM;
tsk->io_context->ioprio = ioc->ioprio;
}
#endif
return 0;
}
static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
{
struct sighand_struct *sig;
if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
atomic_inc(&current->sighand->count);
return 0;
}
sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
rcu_assign_pointer(tsk->sighand, sig);
if (!sig)
return -ENOMEM;
atomic_set(&sig->count, 1);
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
return 0;
}
void __cleanup_sighand(struct sighand_struct *sighand)
{
if (atomic_dec_and_test(&sighand->count))
kmem_cache_free(sighand_cachep, sighand);
}
static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
{
struct signal_struct *sig;
int ret;
if (clone_flags & CLONE_THREAD) {
atomic_inc(&current->signal->count);
atomic_inc(&current->signal->live);
return 0;
}
sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
tsk->signal = sig;
if (!sig)
return -ENOMEM;
ret = copy_thread_group_keys(tsk);
if (ret < 0) {
kmem_cache_free(signal_cachep, sig);
return ret;
}
atomic_set(&sig->count, 1);
atomic_set(&sig->live, 1);
init_waitqueue_head(&sig->wait_chldexit);
sig->flags = 0;
sig->group_exit_code = 0;
sig->group_exit_task = NULL;
sig->group_stop_count = 0;
sig->curr_target = tsk;
init_sigpending(&sig->shared_pending);
INIT_LIST_HEAD(&sig->posix_timers);
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sig->it_real_incr.tv64 = 0;
sig->real_timer.function = it_real_fn;
sig->it_virt_expires = cputime_zero;
sig->it_virt_incr = cputime_zero;
sig->it_prof_expires = cputime_zero;
sig->it_prof_incr = cputime_zero;
sig->leader = 0; /* session leadership doesn't inherit */
sig->tty_old_pgrp = NULL;
sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
sig->gtime = cputime_zero;
sig->cgtime = cputime_zero;
sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
sig->sum_sched_runtime = 0;
INIT_LIST_HEAD(&sig->cpu_timers[0]);
INIT_LIST_HEAD(&sig->cpu_timers[1]);
INIT_LIST_HEAD(&sig->cpu_timers[2]);
taskstats_tgid_init(sig);
task_lock(current->group_leader);
memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
task_unlock(current->group_leader);
if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
/*
* New sole thread in the process gets an expiry time
* of the whole CPU time limit.
*/
tsk->it_prof_expires =
secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
}
acct_init_pacct(&sig->pacct);
Audit: add TTY input auditing Add TTY input auditing, used to audit system administrator's actions. This is required by various security standards such as DCID 6/3 and PCI to provide non-repudiation of administrator's actions and to allow a review of past actions if the administrator seems to overstep their duties or if the system becomes misconfigured for unknown reasons. These requirements do not make it necessary to audit TTY output as well. Compared to an user-space keylogger, this approach records TTY input using the audit subsystem, correlated with other audit events, and it is completely transparent to the user-space application (e.g. the console ioctls still work). TTY input auditing works on a higher level than auditing all system calls within the session, which would produce an overwhelming amount of mostly useless audit events. Add an "audit_tty" attribute, inherited across fork (). Data read from TTYs by process with the attribute is sent to the audit subsystem by the kernel. The audit netlink interface is extended to allow modifying the audit_tty attribute, and to allow sending explanatory audit events from user-space (for example, a shell might send an event containing the final command, after the interactive command-line editing and history expansion is performed, which might be difficult to decipher from the TTY input alone). Because the "audit_tty" attribute is inherited across fork (), it would be set e.g. for sshd restarted within an audited session. To prevent this, the audit_tty attribute is cleared when a process with no open TTY file descriptors (e.g. after daemon startup) opens a TTY. See https://www.redhat.com/archives/linux-audit/2007-June/msg00000.html for a more detailed rationale document for an older version of this patch. [akpm@linux-foundation.org: build fix] Signed-off-by: Miloslav Trmac <mitr@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Paul Fulghum <paulkf@microgate.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Steve Grubb <sgrubb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 13:40:56 +07:00
tty_audit_fork(sig);
return 0;
}
void __cleanup_signal(struct signal_struct *sig)
{
exit_thread_group_keys(sig);
kmem_cache_free(signal_cachep, sig);
}
static void cleanup_signal(struct task_struct *tsk)
{
struct signal_struct *sig = tsk->signal;
atomic_dec(&sig->live);
if (atomic_dec_and_test(&sig->count))
__cleanup_signal(sig);
}
static void copy_flags(unsigned long clone_flags, struct task_struct *p)
{
unsigned long new_flags = p->flags;
new_flags &= ~PF_SUPERPRIV;
new_flags |= PF_FORKNOEXEC;
if (!(clone_flags & CLONE_PTRACE))
p->ptrace = 0;
p->flags = new_flags;
clear_freeze_flag(p);
}
asmlinkage long sys_set_tid_address(int __user *tidptr)
{
current->clear_child_tid = tidptr;
return task_pid_vnr(current);
}
static void rt_mutex_init_task(struct task_struct *p)
{
spin_lock_init(&p->pi_lock);
#ifdef CONFIG_RT_MUTEXES
plist_head_init(&p->pi_waiters, &p->pi_lock);
p->pi_blocked_on = NULL;
#endif
}
cgroups: add an owner to the mm_struct Remove the mem_cgroup member from mm_struct and instead adds an owner. This approach was suggested by Paul Menage. The advantage of this approach is that, once the mm->owner is known, using the subsystem id, the cgroup can be determined. It also allows several control groups that are virtually grouped by mm_struct, to exist independent of the memory controller i.e., without adding mem_cgroup's for each controller, to mm_struct. A new config option CONFIG_MM_OWNER is added and the memory resource controller selects this config option. This patch also adds cgroup callbacks to notify subsystems when mm->owner changes. The mm_cgroup_changed callback is called with the task_lock() of the new task held and is called just prior to changing the mm->owner. I am indebted to Paul Menage for the several reviews of this patchset and helping me make it lighter and simpler. This patch was tested on a powerpc box, it was compiled with both the MM_OWNER config turned on and off. After the thread group leader exits, it's moved to init_css_state by cgroup_exit(), thus all future charges from runnings threads would be redirected to the init_css_set's subsystem. Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: David Rientjes <rientjes@google.com>, Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Reviewed-by: Paul Menage <menage@google.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 15:00:16 +07:00
#ifdef CONFIG_MM_OWNER
void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
{
mm->owner = p;
}
#endif /* CONFIG_MM_OWNER */
/*
* This creates a new process as a copy of the old one,
* but does not actually start it yet.
*
* It copies the registers, and all the appropriate
* parts of the process environment (as per the clone
* flags). The actual kick-off is left to the caller.
*/
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid)
{
int retval;
struct task_struct *p;
int cgroup_callbacks_done = 0;
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* Thread groups must share signals as well, and detached threads
* can only be started up within the thread group.
*/
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL);
/*
* Shared signal handlers imply shared VM. By way of the above,
* thread groups also imply shared VM. Blocking this case allows
* for various simplifications in other code.
*/
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL);
retval = security_task_create(clone_flags);
if (retval)
goto fork_out;
retval = -ENOMEM;
p = dup_task_struct(current);
if (!p)
goto fork_out;
rt_mutex_init_task(p);
ftrace: trace irq disabled critical timings This patch adds latency tracing for critical timings (how long interrupts are disabled for). "irqsoff" is added to /debugfs/tracing/available_tracers Note: tracing_max_latency also holds the max latency for irqsoff (in usecs). (default to large number so one must start latency tracing) tracing_thresh threshold (in usecs) to always print out if irqs off is detected to be longer than stated here. If irq_thresh is non-zero, then max_irq_latency is ignored. Here's an example of a trace with ftrace_enabled = 0 ======= preemption latency trace v1.1.5 on 2.6.24-rc7 Signed-off-by: Ingo Molnar <mingo@elte.hu> -------------------------------------------------------------------- latency: 100 us, #3/3, CPU#1 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: _spin_lock_irqsave+0x2a/0xb7 => ended at: _spin_unlock_irqrestore+0x32/0x5f _------=> CPU# / _-----=> irqs-off | / _----=> need-resched || / _---=> hardirq/softirq ||| / _--=> preempt-depth |||| / ||||| delay cmd pid ||||| time | caller \ / ||||| \ | / swapper-0 1d.s3 0us+: _spin_lock_irqsave+0x2a/0xb7 (e1000_update_stats+0x47/0x64c [e1000]) swapper-0 1d.s3 100us : _spin_unlock_irqrestore+0x32/0x5f (e1000_update_stats+0x641/0x64c [e1000]) swapper-0 1d.s3 100us : trace_hardirqs_on_caller+0x75/0x89 (_spin_unlock_irqrestore+0x32/0x5f) vim:ft=help ======= And this is a trace with ftrace_enabled == 1 ======= preemption latency trace v1.1.5 on 2.6.24-rc7 -------------------------------------------------------------------- latency: 102 us, #12/12, CPU#1 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: _spin_lock_irqsave+0x2a/0xb7 => ended at: _spin_unlock_irqrestore+0x32/0x5f _------=> CPU# / _-----=> irqs-off | / _----=> need-resched || / _---=> hardirq/softirq ||| / _--=> preempt-depth |||| / ||||| delay cmd pid ||||| time | caller \ / ||||| \ | / swapper-0 1dNs3 0us+: _spin_lock_irqsave+0x2a/0xb7 (e1000_update_stats+0x47/0x64c [e1000]) swapper-0 1dNs3 46us : e1000_read_phy_reg+0x16/0x225 [e1000] (e1000_update_stats+0x5e2/0x64c [e1000]) swapper-0 1dNs3 46us : e1000_swfw_sync_acquire+0x10/0x99 [e1000] (e1000_read_phy_reg+0x49/0x225 [e1000]) swapper-0 1dNs3 46us : e1000_get_hw_eeprom_semaphore+0x12/0xa6 [e1000] (e1000_swfw_sync_acquire+0x36/0x99 [e1000]) swapper-0 1dNs3 47us : __const_udelay+0x9/0x47 (e1000_read_phy_reg+0x116/0x225 [e1000]) swapper-0 1dNs3 47us+: __delay+0x9/0x50 (__const_udelay+0x45/0x47) swapper-0 1dNs3 97us : preempt_schedule+0xc/0x84 (__delay+0x4e/0x50) swapper-0 1dNs3 98us : e1000_swfw_sync_release+0xc/0x55 [e1000] (e1000_read_phy_reg+0x211/0x225 [e1000]) swapper-0 1dNs3 99us+: e1000_put_hw_eeprom_semaphore+0x9/0x35 [e1000] (e1000_swfw_sync_release+0x50/0x55 [e1000]) swapper-0 1dNs3 101us : _spin_unlock_irqrestore+0xe/0x5f (e1000_update_stats+0x641/0x64c [e1000]) swapper-0 1dNs3 102us : _spin_unlock_irqrestore+0x32/0x5f (e1000_update_stats+0x641/0x64c [e1000]) swapper-0 1dNs3 102us : trace_hardirqs_on_caller+0x75/0x89 (_spin_unlock_irqrestore+0x32/0x5f) vim:ft=help ======= Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_LOCKDEP)
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
retval = -EAGAIN;
if (atomic_read(&p->user->processes) >=
p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
p->user != current->nsproxy->user_ns->root_user)
goto bad_fork_free;
}
atomic_inc(&p->user->__count);
atomic_inc(&p->user->processes);
get_group_info(p->group_info);
/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn't hurt, the check is only there
* to stop root fork bombs.
*/
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count;
if (p->binfmt && !try_module_get(p->binfmt->module))
goto bad_fork_cleanup_put_domain;
p->did_exec = 0;
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
copy_flags(clone_flags, p);
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
#ifdef CONFIG_PREEMPT_RCU
p->rcu_read_lock_nesting = 0;
p->rcu_flipctr_idx = 0;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
p->vfork_done = NULL;
spin_lock_init(&p->alloc_lock);
clear_tsk_thread_flag(p, TIF_SIGPENDING);
init_sigpending(&p->pending);
p->utime = cputime_zero;
p->stime = cputime_zero;
p->gtime = cputime_zero;
p->utimescaled = cputime_zero;
p->stimescaled = cputime_zero;
p->prev_utime = cputime_zero;
p->prev_stime = cputime_zero;
softlockup: automatically detect hung TASK_UNINTERRUPTIBLE tasks this patch extends the soft-lockup detector to automatically detect hung TASK_UNINTERRUPTIBLE tasks. Such hung tasks are printed the following way: ------------------> INFO: task prctl:3042 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message prctl D fd5e3793 0 3042 2997 f6050f38 00000046 00000001 fd5e3793 00000009 c06d8264 c06dae80 00000286 f6050f40 f6050f00 f7d34d90 f7d34fc8 c1e1be80 00000001 f6050000 00000000 f7e92d00 00000286 f6050f18 c0489d1a f6050f40 00006605 00000000 c0133a5b Call Trace: [<c04883a5>] schedule_timeout+0x6d/0x8b [<c04883d8>] schedule_timeout_uninterruptible+0x15/0x17 [<c0133a76>] msleep+0x10/0x16 [<c0138974>] sys_prctl+0x30/0x1e2 [<c0104c52>] sysenter_past_esp+0x5f/0xa5 ======================= 2 locks held by prctl/3042: #0: (&sb->s_type->i_mutex_key#5){--..}, at: [<c0197d11>] do_fsync+0x38/0x7a #1: (jbd_handle){--..}, at: [<c01ca3d2>] journal_start+0xc7/0xe9 <------------------ the current default timeout is 120 seconds. Such messages are printed up to 10 times per bootup. If the system has crashed already then the messages are not printed. if lockdep is enabled then all held locks are printed as well. this feature is a natural extension to the softlockup-detector (kernel locked up without scheduling) and to the NMI watchdog (kernel locked up with IRQs disabled). [ Gautham R Shenoy <ego@in.ibm.com>: CPU hotplug fixes. ] [ Andrew Morton <akpm@linux-foundation.org>: build warning fix. ] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
2008-01-26 03:08:02 +07:00
#ifdef CONFIG_DETECT_SOFTLOCKUP
p->last_switch_count = 0;
p->last_switch_timestamp = 0;
#endif
#ifdef CONFIG_TASK_XACCT
p->rchar = 0; /* I/O counter: bytes read */
p->wchar = 0; /* I/O counter: bytes written */
p->syscr = 0; /* I/O counter: read syscalls */
p->syscw = 0; /* I/O counter: write syscalls */
#endif
[PATCH] io-accounting: core statistics The present per-task IO accounting isn't very useful. It simply counts the number of bytes passed into read() and write(). So if a process reads 1MB from an already-cached file, it is accused of having performed 1MB of I/O, which is wrong. (David Wright had some comments on the applicability of the present logical IO accounting: For billing purposes it is useless but for workload analysis it is very useful read_bytes/read_calls average read request size write_bytes/write_calls average write request size read_bytes/read_blocks ie logical/physical can indicate hit rate or thrashing write_bytes/write_blocks ie logical/physical guess since pdflush writes can be missed I often look for logical larger than physical to see filesystem cache problems. And the bytes/cpusec can help find applications that are dominating the cache and causing slow interactive response from page cache contention. I want to find the IO intensive applications and make sure they are doing efficient IO. Thus the acctcms(sysV) or csacms command would give the high IO commands). This patchset adds new accounting which tries to be more accurate. We account for three things: reads: attempt to count the number of bytes which this process really did cause to be fetched from the storage layer. Done at the submit_bio() level, so it is accurate for block-backed filesystems. I also attempt to wire up NFS and CIFS. writes: attempt to count the number of bytes which this process caused to be sent to the storage layer. This is done at page-dirtying time. The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes the file, it will in fact perform no writeout. But it will have been accounted as having caused 1MB of write. So... cancelled_writes: account the number of bytes which this process caused to not happen, by truncating pagecache. We _could_ just subtract this from the process's `write' accounting. But that means that some processes would be reported to have done negative amounts of write IO, which is silly. So we just report the raw number and punt this decision up to userspace. Now, we _could_ account for writes at the physical I/O level. But - This would require that we track memory-dirtying tasks at the per-page level (would require a new pointer in struct page). - It would mean that IO statistics for a process are usually only available long after that process has exitted. Which means that we probably cannot communicate this info via taskstats. This patch: Wire up the kernel-private data structures and the accessor functions to manipulate them. Cc: Jay Lan <jlan@sgi.com> Cc: Shailabh Nagar <nagar@watson.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Chris Sturtivant <csturtiv@sgi.com> Cc: Tony Ernst <tee@sgi.com> Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net> Cc: David Wright <daw@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 17:19:19 +07:00
task_io_accounting_init(p);
acct_clear_integrals(p);
p->it_virt_expires = cputime_zero;
p->it_prof_expires = cputime_zero;
p->it_sched_expires = 0;
INIT_LIST_HEAD(&p->cpu_timers[0]);
INIT_LIST_HEAD(&p->cpu_timers[1]);
INIT_LIST_HEAD(&p->cpu_timers[2]);
p->lock_depth = -1; /* -1 = no lock */
do_posix_clock_monotonic_gettime(&p->start_time);
p->real_start_time = p->start_time;
monotonic_to_bootbased(&p->real_start_time);
#ifdef CONFIG_SECURITY
p->security = NULL;
#endif
capabilities: introduce per-process capability bounding set The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:45 +07:00
p->cap_bset = current->cap_bset;
p->io_context = NULL;
p->audit_context = NULL;
cgroup_fork(p);
#ifdef CONFIG_NUMA
p->mempolicy = mpol_dup(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
retval = PTR_ERR(p->mempolicy);
p->mempolicy = NULL;
goto bad_fork_cleanup_cgroup;
}
mpol_fix_fork_child_flag(p);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
p->irq_events = 0;
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
p->hardirqs_enabled = 1;
#else
p->hardirqs_enabled = 0;
#endif
p->hardirq_enable_ip = 0;
p->hardirq_enable_event = 0;
p->hardirq_disable_ip = _THIS_IP_;
p->hardirq_disable_event = 0;
p->softirqs_enabled = 1;
p->softirq_enable_ip = _THIS_IP_;
p->softirq_enable_event = 0;
p->softirq_disable_ip = 0;
p->softirq_disable_event = 0;
p->hardirq_context = 0;
p->softirq_context = 0;
#endif
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 14:24:50 +07:00
#ifdef CONFIG_LOCKDEP
p->lockdep_depth = 0; /* no locks held yet */
p->curr_chain_key = 0;
p->lockdep_recursion = 0;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
p->blocked_on = NULL; /* not blocked yet */
#endif
sched: fix copy_namespace() <-> sched_fork() dependency in do_fork Sukadev Bhattiprolu reported a kernel crash with control groups. There are couple of problems discovered by Suka's test: - The test requires the cgroup filesystem to be mounted with atleast the cpu and ns options (i.e both namespace and cpu controllers are active in the same hierarchy). # mkdir /dev/cpuctl # mount -t cgroup -ocpu,ns none cpuctl (or simply) # mount -t cgroup none cpuctl -> Will activate all controllers in same hierarchy. - The test invokes clone() with CLONE_NEWNS set. This causes a a new child to be created, also a new group (do_fork->copy_namespaces->ns_cgroup_clone-> cgroup_clone) and the child is attached to the new group (cgroup_clone-> attach_task->sched_move_task). At this point in time, the child's scheduler related fields are uninitialized (including its on_rq field, which it has inherited from parent). As a result sched_move_task thinks its on runqueue, when it isn't. As a solution to this problem, I moved sched_fork() call, which initializes scheduler related fields on a new task, before copy_namespaces(). I am not sure though whether moving up will cause other side-effects. Do you see any issue? - The second problem exposed by this test is that task_new_fair() assumes that parent and child will be part of the same group (which needn't be as this test shows). As a result, cfs_rq->curr can be NULL for the child. The solution is to test for curr pointer being NULL in task_new_fair(). With the patch below, I could run ns_exec() fine w/o a crash. Reported-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-10 04:39:39 +07:00
/* Perform scheduler related setup. Assign this task to a CPU. */
sched_fork(p, clone_flags);
if ((retval = security_task_alloc(p)))
goto bad_fork_cleanup_policy;
if ((retval = audit_alloc(p)))
goto bad_fork_cleanup_security;
/* copy all the process information */
if ((retval = copy_semundo(clone_flags, p)))
goto bad_fork_cleanup_audit;
if ((retval = copy_files(clone_flags, p)))
goto bad_fork_cleanup_semundo;
if ((retval = copy_fs(clone_flags, p)))
goto bad_fork_cleanup_files;
if ((retval = copy_sighand(clone_flags, p)))
goto bad_fork_cleanup_fs;
if ((retval = copy_signal(clone_flags, p)))
goto bad_fork_cleanup_sighand;
if ((retval = copy_mm(clone_flags, p)))
goto bad_fork_cleanup_signal;
if ((retval = copy_keys(clone_flags, p)))
goto bad_fork_cleanup_mm;
if ((retval = copy_namespaces(clone_flags, p)))
goto bad_fork_cleanup_keys;
if ((retval = copy_io(clone_flags, p)))
goto bad_fork_cleanup_namespaces;
retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
if (retval)
goto bad_fork_cleanup_io;
if (pid != &init_struct_pid) {
retval = -ENOMEM;
pid = alloc_pid(task_active_pid_ns(p));
if (!pid)
goto bad_fork_cleanup_io;
if (clone_flags & CLONE_NEWPID) {
retval = pid_ns_prepare_proc(task_active_pid_ns(p));
if (retval < 0)
goto bad_fork_free_pid;
}
}
p->pid = pid_nr(pid);
p->tgid = p->pid;
if (clone_flags & CLONE_THREAD)
p->tgid = current->tgid;
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
/*
* Clear TID on mm_release()?
*/
p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
#ifdef CONFIG_FUTEX
p->robust_list = NULL;
#ifdef CONFIG_COMPAT
p->compat_robust_list = NULL;
#endif
INIT_LIST_HEAD(&p->pi_state_list);
p->pi_state_cache = NULL;
#endif
[PATCH] Fix sigaltstack corruption among cloned threads This patch fixes alternate signal stack corruption among cloned threads with CLONE_SIGHAND (and CLONE_VM) for linux-2.6.16-rc6. The value of alternate signal stack is currently inherited after a call of clone(... CLONE_SIGHAND | CLONE_VM). But if sigaltstack is set by a parent thread, and then if multiple cloned child threads (+ parent threads) call signal handler at the same time, some threads may be conflicted - because they share to use the same alternative signal stack region. Finally they get sigsegv. It's an undesirable race condition. Note that child threads created from NPTL pthread_create() also hit this conflict when the parent thread uses sigaltstack, without my patch. To fix this problem, this patch clears the child threads' sigaltstack information like exec(). This behavior follows the SUSv3 specification. In SUSv3, pthread_create() says "The alternate stack shall not be inherited (when new threads are initialized)". It means that sigaltstack should be cleared when sigaltstack memory space is shared by cloned threads with CLONE_SIGHAND. Note that I chose "if (clone_flags & CLONE_SIGHAND)" line because: - If clone_flags line is not existed, fork() does not inherit sigaltstack. - CLONE_VM is another choice, but vfork() does not inherit sigaltstack. - CLONE_SIGHAND implies CLONE_VM, and it looks suitable. - CLONE_THREAD is another candidate, and includes CLONE_SIGHAND + CLONE_VM, but this flag has a bit different semantics. I decided to use CLONE_SIGHAND. [ Changed to test for CLONE_VM && !CLONE_VFORK after discussion --Linus ] Signed-off-by: GOTO Masanori <gotom@sanori.org> Cc: Roland McGrath <roland@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Acked-by: Linus Torvalds <torvalds@osdl.org> Cc: Ulrich Drepper <drepper@redhat.com> Cc: Jakub Jelinek <jakub@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-14 12:20:44 +07:00
/*
* sigaltstack should be cleared when sharing the same VM
*/
if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
p->sas_ss_sp = p->sas_ss_size = 0;
/*
* Syscall tracing should be turned off in the child regardless
* of CLONE_PTRACE.
*/
clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
[PATCH] UML Support - Ptrace: adds the host SYSEMU support, for UML and general usage Jeff Dike <jdike@addtoit.com>, Paolo 'Blaisorblade' Giarrusso <blaisorblade_spam@yahoo.it>, Bodo Stroesser <bstroesser@fujitsu-siemens.com> Adds a new ptrace(2) mode, called PTRACE_SYSEMU, resembling PTRACE_SYSCALL except that the kernel does not execute the requested syscall; this is useful to improve performance for virtual environments, like UML, which want to run the syscall on their own. In fact, using PTRACE_SYSCALL means stopping child execution twice, on entry and on exit, and each time you also have two context switches; with SYSEMU you avoid the 2nd stop and so save two context switches per syscall. Also, some architectures don't have support in the host for changing the syscall number via ptrace(), which is currently needed to skip syscall execution (UML turns any syscall into getpid() to avoid it being executed on the host). Fixing that is hard, while SYSEMU is easier to implement. * This version of the patch includes some suggestions of Jeff Dike to avoid adding any instructions to the syscall fast path, plus some other little changes, by myself, to make it work even when the syscall is executed with SYSENTER (but I'm unsure about them). It has been widely tested for quite a lot of time. * Various fixed were included to handle the various switches between various states, i.e. when for instance a syscall entry is traced with one of PT_SYSCALL / _SYSEMU / _SINGLESTEP and another one is used on exit. Basically, this is done by remembering which one of them was used even after the call to ptrace_notify(). * We're combining TIF_SYSCALL_EMU with TIF_SYSCALL_TRACE or TIF_SINGLESTEP to make do_syscall_trace() notice that the current syscall was started with SYSEMU on entry, so that no notification ought to be done in the exit path; this is a bit of a hack, so this problem is solved in another way in next patches. * Also, the effects of the patch: "Ptrace - i386: fix Syscall Audit interaction with singlestep" are cancelled; they are restored back in the last patch of this series. Detailed descriptions of the patches doing this kind of processing follow (but I've already summed everything up). * Fix behaviour when changing interception kind #1. In do_syscall_trace(), we check the status of the TIF_SYSCALL_EMU flag only after doing the debugger notification; but the debugger might have changed the status of this flag because he continued execution with PTRACE_SYSCALL, so this is wrong. This patch fixes it by saving the flag status before calling ptrace_notify(). * Fix behaviour when changing interception kind #2: avoid intercepting syscall on return when using SYSCALL again. A guest process switching from using PTRACE_SYSEMU to PTRACE_SYSCALL crashes. The problem is in arch/i386/kernel/entry.S. The current SYSEMU patch inhibits the syscall-handler to be called, but does not prevent do_syscall_trace() to be called after this for syscall completion interception. The appended patch fixes this. It reuses the flag TIF_SYSCALL_EMU to remember "we come from PTRACE_SYSEMU and now are in PTRACE_SYSCALL", since the flag is unused in the depicted situation. * Fix behaviour when changing interception kind #3: avoid intercepting syscall on return when using SINGLESTEP. When testing 2.6.9 and the skas3.v6 patch, with my latest patch and had problems with singlestepping on UML in SKAS with SYSEMU. It looped receiving SIGTRAPs without moving forward. EIP of the traced process was the same for all SIGTRAPs. What's missing is to handle switching from PTRACE_SYSCALL_EMU to PTRACE_SINGLESTEP in a way very similar to what is done for the change from PTRACE_SYSCALL_EMU to PTRACE_SYSCALL_TRACE. I.e., after calling ptrace(PTRACE_SYSEMU), on the return path, the debugger is notified and then wake ups the process; the syscall is executed (or skipped, when do_syscall_trace() returns 0, i.e. when using PTRACE_SYSEMU), and do_syscall_trace() is called again. Since we are on the return path of a SYSEMU'd syscall, if the wake up is performed through ptrace(PTRACE_SYSCALL), we must still avoid notifying the parent of the syscall exit. Now, this behaviour is extended even to resuming with PTRACE_SINGLESTEP. Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 05:57:18 +07:00
#ifdef TIF_SYSCALL_EMU
clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif
clear_all_latency_tracing(p);
/* Our parent execution domain becomes current domain
These must match for thread signalling to apply */
p->parent_exec_id = p->self_exec_id;
/* ok, now we should be set up.. */
p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
p->pdeath_signal = 0;
p->exit_state = 0;
/*
* Ok, make it visible to the rest of the system.
* We dont wake it up yet.
*/
p->group_leader = p;
INIT_LIST_HEAD(&p->thread_group);
INIT_LIST_HEAD(&p->ptrace_children);
INIT_LIST_HEAD(&p->ptrace_list);
/* Now that the task is set up, run cgroup callbacks if
* necessary. We need to run them before the task is visible
* on the tasklist. */
cgroup_fork_callbacks(p);
cgroup_callbacks_done = 1;
/* Need tasklist lock for parent etc handling! */
write_lock_irq(&tasklist_lock);
/*
* The task hasn't been attached yet, so its cpus_allowed mask will
* not be changed, nor will its assigned CPU.
*
* The cpus_allowed mask of the parent may have changed after it was
* copied first time - so re-copy it here, then check the child's CPU
* to ensure it is on a valid CPU (and if not, just force it back to
* parent's CPU). This avoids alot of nasty races.
*/
p->cpus_allowed = current->cpus_allowed;
p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
!cpu_online(task_cpu(p))))
set_task_cpu(p, smp_processor_id());
/* CLONE_PARENT re-uses the old parent */
if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
p->real_parent = current->real_parent;
else
p->real_parent = current;
p->parent = p->real_parent;
spin_lock(&current->sighand->siglock);
/*
* Process group and session signals need to be delivered to just the
* parent before the fork or both the parent and the child after the
* fork. Restart if a signal comes in before we add the new process to
* it's process group.
* A fatal signal pending means that current will exit, so the new
* thread can't slip out of an OOM kill (or normal SIGKILL).
*/
recalc_sigpending();
if (signal_pending(current)) {
spin_unlock(&current->sighand->siglock);
write_unlock_irq(&tasklist_lock);
retval = -ERESTARTNOINTR;
goto bad_fork_free_pid;
}
if (clone_flags & CLONE_THREAD) {
p->group_leader = current->group_leader;
list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
if (!cputime_eq(current->signal->it_virt_expires,
cputime_zero) ||
!cputime_eq(current->signal->it_prof_expires,
cputime_zero) ||
current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
!list_empty(&current->signal->cpu_timers[0]) ||
!list_empty(&current->signal->cpu_timers[1]) ||
!list_empty(&current->signal->cpu_timers[2])) {
/*
* Have child wake up on its first tick to check
* for process CPU timers.
*/
p->it_prof_expires = jiffies_to_cputime(1);
}
}
if (likely(p->pid)) {
add_parent(p);
if (unlikely(p->ptrace & PT_PTRACED))
__ptrace_link(p, current->parent);
if (thread_group_leader(p)) {
if (clone_flags & CLONE_NEWPID)
p->nsproxy->pid_ns->child_reaper = p;
p->signal->leader_pid = pid;
p->signal->tty = current->signal->tty;
set_task_pgrp(p, task_pgrp_nr(current));
set_task_session(p, task_session_nr(current));
attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
attach_pid(p, PIDTYPE_SID, task_session(current));
list_add_tail_rcu(&p->tasks, &init_task.tasks);
__get_cpu_var(process_counts)++;
}
attach_pid(p, PIDTYPE_PID, pid);
nr_threads++;
}
total_forks++;
spin_unlock(&current->sighand->siglock);
write_unlock_irq(&tasklist_lock);
proc_fork_connector(p);
Task Control Groups: shared cgroup subsystem group arrays Replace the struct css_set embedded in task_struct with a pointer; all tasks that have the same set of memberships across all hierarchies will share a css_set object, and will be linked via their css_sets field to the "tasks" list_head in the css_set. Assuming that many tasks share the same cgroup assignments, this reduces overall space usage and keeps the size of the task_struct down (three pointers added to task_struct compared to a non-cgroups kernel, no matter how many subsystems are registered). [akpm@linux-foundation.org: fix a printk] [akpm@linux-foundation.org: build fix] Signed-off-by: Paul Menage <menage@google.com> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Jackson <pj@sgi.com> Cc: Kirill Korotaev <dev@openvz.org> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Jackson <pj@sgi.com> Cc: Kirill Korotaev <dev@openvz.org> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 13:39:36 +07:00
cgroup_post_fork(p);
return p;
bad_fork_free_pid:
if (pid != &init_struct_pid)
free_pid(pid);
bad_fork_cleanup_io:
put_io_context(p->io_context);
bad_fork_cleanup_namespaces:
exit_task_namespaces(p);
bad_fork_cleanup_keys:
exit_keys(p);
bad_fork_cleanup_mm:
if (p->mm)
mmput(p->mm);
bad_fork_cleanup_signal:
cleanup_signal(p);
bad_fork_cleanup_sighand:
__cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
exit_fs(p); /* blocking */
bad_fork_cleanup_files:
exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
exit_sem(p);
bad_fork_cleanup_audit:
audit_free(p);
bad_fork_cleanup_security:
security_task_free(p);
bad_fork_cleanup_policy:
#ifdef CONFIG_NUMA
mpol_put(p->mempolicy);
bad_fork_cleanup_cgroup:
#endif
cgroup_exit(p, cgroup_callbacks_done);
delayacct_tsk_free(p);
if (p->binfmt)
module_put(p->binfmt->module);
bad_fork_cleanup_put_domain:
module_put(task_thread_info(p)->exec_domain->module);
bad_fork_cleanup_count:
put_group_info(p->group_info);
atomic_dec(&p->user->processes);
free_uid(p->user);
bad_fork_free:
free_task(p);
fork_out:
return ERR_PTR(retval);
}
noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
{
memset(regs, 0, sizeof(struct pt_regs));
return regs;
}
struct task_struct * __cpuinit fork_idle(int cpu)
{
struct task_struct *task;
struct pt_regs regs;
task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
&init_struct_pid);
if (!IS_ERR(task))
init_idle(task, cpu);
return task;
}
static int fork_traceflag(unsigned clone_flags)
{
if (clone_flags & CLONE_UNTRACED)
return 0;
else if (clone_flags & CLONE_VFORK) {
if (current->ptrace & PT_TRACE_VFORK)
return PTRACE_EVENT_VFORK;
} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
if (current->ptrace & PT_TRACE_CLONE)
return PTRACE_EVENT_CLONE;
} else if (current->ptrace & PT_TRACE_FORK)
return PTRACE_EVENT_FORK;
return 0;
}
/*
* Ok, this is the main fork-routine.
*
* It copies the process, and if successful kick-starts
* it and waits for it to finish using the VM if required.
*/
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = 0;
[PATCH] pidhash: Refactor the pid hash table Simplifies the code, reduces the need for 4 pid hash tables, and makes the code more capable. In the discussions I had with Oleg it was felt that to a large extent the cleanup itself justified the work. With struct pid being dynamically allocated meant we could create the hash table entry when the pid was allocated and free the hash table entry when the pid was freed. Instead of playing with the hash lists when ever a process would attach or detach to a process. For myself the fact that it gave what my previous task_ref patch gave for free with simpler code was a big win. The problem is that if you hold a reference to struct task_struct you lock in 10K of low memory. If you do that in a user controllable way like /proc does, with an unprivileged but hostile user space application with typical resource limits of 1000 fds and 100 processes I can trigger the OOM killer by consuming all of low memory with task structs, on a machine wight 1GB of low memory. If I instead hold a reference to struct pid which holds a pointer to my task_struct, I don't suffer from that problem because struct pid is 2 orders of magnitude smaller. In fact struct pid is small enough that most other kernel data structures dwarf it, so simply limiting the number of referring data structures is enough to prevent exhaustion of low memory. This splits the current struct pid into two structures, struct pid and struct pid_link, and reduces our number of hash tables from PIDTYPE_MAX to just one. struct pid_link is the per process linkage into the hash tables and lives in struct task_struct. struct pid is given an indepedent lifetime, and holds pointers to each of the pid types. The independent life of struct pid simplifies attach_pid, and detach_pid, because we are always manipulating the list of pids and not the hash table. In addition in giving struct pid an indpendent life it makes the concept much more powerful. Kernel data structures can now embed a struct pid * instead of a pid_t and not suffer from pid wrap around problems or from keeping unnecessarily large amounts of memory allocated. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31 17:31:42 +07:00
long nr;
/*
* We hope to recycle these flags after 2.6.26
*/
if (unlikely(clone_flags & CLONE_STOPPED)) {
static int __read_mostly count = 100;
if (count > 0 && printk_ratelimit()) {
char comm[TASK_COMM_LEN];
count--;
printk(KERN_INFO "fork(): process `%s' used deprecated "
"clone flags 0x%lx\n",
get_task_comm(comm, current),
clone_flags & CLONE_STOPPED);
}
}
if (unlikely(current->ptrace)) {
trace = fork_traceflag (clone_flags);
if (trace)
clone_flags |= CLONE_PTRACE;
}
p = copy_process(clone_flags, stack_start, regs, stack_size,
child_tidptr, NULL);
/*
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly.
*/
if (!IS_ERR(p)) {
struct completion vfork;
nr = task_pid_vnr(p);
if (clone_flags & CLONE_PARENT_SETTID)
put_user(nr, parent_tidptr);
if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
}
if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
/*
* We'll start up with an immediate SIGSTOP.
*/
sigaddset(&p->pending.signal, SIGSTOP);
set_tsk_thread_flag(p, TIF_SIGPENDING);
}
if (!(clone_flags & CLONE_STOPPED))
wake_up_new_task(p, clone_flags);
else
__set_task_state(p, TASK_STOPPED);
if (unlikely (trace)) {
[PATCH] pidhash: Refactor the pid hash table Simplifies the code, reduces the need for 4 pid hash tables, and makes the code more capable. In the discussions I had with Oleg it was felt that to a large extent the cleanup itself justified the work. With struct pid being dynamically allocated meant we could create the hash table entry when the pid was allocated and free the hash table entry when the pid was freed. Instead of playing with the hash lists when ever a process would attach or detach to a process. For myself the fact that it gave what my previous task_ref patch gave for free with simpler code was a big win. The problem is that if you hold a reference to struct task_struct you lock in 10K of low memory. If you do that in a user controllable way like /proc does, with an unprivileged but hostile user space application with typical resource limits of 1000 fds and 100 processes I can trigger the OOM killer by consuming all of low memory with task structs, on a machine wight 1GB of low memory. If I instead hold a reference to struct pid which holds a pointer to my task_struct, I don't suffer from that problem because struct pid is 2 orders of magnitude smaller. In fact struct pid is small enough that most other kernel data structures dwarf it, so simply limiting the number of referring data structures is enough to prevent exhaustion of low memory. This splits the current struct pid into two structures, struct pid and struct pid_link, and reduces our number of hash tables from PIDTYPE_MAX to just one. struct pid_link is the per process linkage into the hash tables and lives in struct task_struct. struct pid is given an indepedent lifetime, and holds pointers to each of the pid types. The independent life of struct pid simplifies attach_pid, and detach_pid, because we are always manipulating the list of pids and not the hash table. In addition in giving struct pid an indpendent life it makes the concept much more powerful. Kernel data structures can now embed a struct pid * instead of a pid_t and not suffer from pid wrap around problems or from keeping unnecessarily large amounts of memory allocated. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31 17:31:42 +07:00
current->ptrace_message = nr;
ptrace_notify ((trace << 8) | SIGTRAP);
}
if (clone_flags & CLONE_VFORK) {
freezer_do_not_count();
wait_for_completion(&vfork);
freezer_count();
if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
current->ptrace_message = nr;
ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
}
}
} else {
[PATCH] pidhash: Refactor the pid hash table Simplifies the code, reduces the need for 4 pid hash tables, and makes the code more capable. In the discussions I had with Oleg it was felt that to a large extent the cleanup itself justified the work. With struct pid being dynamically allocated meant we could create the hash table entry when the pid was allocated and free the hash table entry when the pid was freed. Instead of playing with the hash lists when ever a process would attach or detach to a process. For myself the fact that it gave what my previous task_ref patch gave for free with simpler code was a big win. The problem is that if you hold a reference to struct task_struct you lock in 10K of low memory. If you do that in a user controllable way like /proc does, with an unprivileged but hostile user space application with typical resource limits of 1000 fds and 100 processes I can trigger the OOM killer by consuming all of low memory with task structs, on a machine wight 1GB of low memory. If I instead hold a reference to struct pid which holds a pointer to my task_struct, I don't suffer from that problem because struct pid is 2 orders of magnitude smaller. In fact struct pid is small enough that most other kernel data structures dwarf it, so simply limiting the number of referring data structures is enough to prevent exhaustion of low memory. This splits the current struct pid into two structures, struct pid and struct pid_link, and reduces our number of hash tables from PIDTYPE_MAX to just one. struct pid_link is the per process linkage into the hash tables and lives in struct task_struct. struct pid is given an indepedent lifetime, and holds pointers to each of the pid types. The independent life of struct pid simplifies attach_pid, and detach_pid, because we are always manipulating the list of pids and not the hash table. In addition in giving struct pid an indpendent life it makes the concept much more powerful. Kernel data structures can now embed a struct pid * instead of a pid_t and not suffer from pid wrap around problems or from keeping unnecessarily large amounts of memory allocated. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31 17:31:42 +07:00
nr = PTR_ERR(p);
}
[PATCH] pidhash: Refactor the pid hash table Simplifies the code, reduces the need for 4 pid hash tables, and makes the code more capable. In the discussions I had with Oleg it was felt that to a large extent the cleanup itself justified the work. With struct pid being dynamically allocated meant we could create the hash table entry when the pid was allocated and free the hash table entry when the pid was freed. Instead of playing with the hash lists when ever a process would attach or detach to a process. For myself the fact that it gave what my previous task_ref patch gave for free with simpler code was a big win. The problem is that if you hold a reference to struct task_struct you lock in 10K of low memory. If you do that in a user controllable way like /proc does, with an unprivileged but hostile user space application with typical resource limits of 1000 fds and 100 processes I can trigger the OOM killer by consuming all of low memory with task structs, on a machine wight 1GB of low memory. If I instead hold a reference to struct pid which holds a pointer to my task_struct, I don't suffer from that problem because struct pid is 2 orders of magnitude smaller. In fact struct pid is small enough that most other kernel data structures dwarf it, so simply limiting the number of referring data structures is enough to prevent exhaustion of low memory. This splits the current struct pid into two structures, struct pid and struct pid_link, and reduces our number of hash tables from PIDTYPE_MAX to just one. struct pid_link is the per process linkage into the hash tables and lives in struct task_struct. struct pid is given an indepedent lifetime, and holds pointers to each of the pid types. The independent life of struct pid simplifies attach_pid, and detach_pid, because we are always manipulating the list of pids and not the hash table. In addition in giving struct pid an indpendent life it makes the concept much more powerful. Kernel data structures can now embed a struct pid * instead of a pid_t and not suffer from pid wrap around problems or from keeping unnecessarily large amounts of memory allocated. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31 17:31:42 +07:00
return nr;
}
#ifndef ARCH_MIN_MMSTRUCT_ALIGN
#define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif
static void sighand_ctor(struct kmem_cache *cachep, void *data)
{
struct sighand_struct *sighand = data;
spin_lock_init(&sighand->siglock);
init_waitqueue_head(&sighand->signalfd_wqh);
}
void __init proc_caches_init(void)
{
sighand_cachep = kmem_cache_create("sighand_cache",
sizeof(struct sighand_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
sighand_ctor);
signal_cachep = kmem_cache_create("signal_cache",
sizeof(struct signal_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
files_cachep = kmem_cache_create("files_cache",
sizeof(struct files_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
fs_cachep = kmem_cache_create("fs_cache",
sizeof(struct fs_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
vm_area_cachep = kmem_cache_create("vm_area_struct",
sizeof(struct vm_area_struct), 0,
SLAB_PANIC, NULL);
mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
}
/*
* Check constraints on flags passed to the unshare system call and
* force unsharing of additional process context as appropriate.
*/
static void check_unshare_flags(unsigned long *flags_ptr)
{
/*
* If unsharing a thread from a thread group, must also
* unshare vm.
*/
if (*flags_ptr & CLONE_THREAD)
*flags_ptr |= CLONE_VM;
/*
* If unsharing vm, must also unshare signal handlers.
*/
if (*flags_ptr & CLONE_VM)
*flags_ptr |= CLONE_SIGHAND;
/*
* If unsharing signal handlers and the task was created
* using CLONE_THREAD, then must unshare the thread
*/
if ((*flags_ptr & CLONE_SIGHAND) &&
(atomic_read(&current->signal->count) > 1))
*flags_ptr |= CLONE_THREAD;
/*
* If unsharing namespace, must also unshare filesystem information.
*/
if (*flags_ptr & CLONE_NEWNS)
*flags_ptr |= CLONE_FS;
}
/*
* Unsharing of tasks created with CLONE_THREAD is not supported yet
*/
static int unshare_thread(unsigned long unshare_flags)
{
if (unshare_flags & CLONE_THREAD)
return -EINVAL;
return 0;
}
/*
* Unshare the filesystem structure if it is being shared
*/
static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
{
struct fs_struct *fs = current->fs;
if ((unshare_flags & CLONE_FS) &&
(fs && atomic_read(&fs->count) > 1)) {
*new_fsp = __copy_fs_struct(current->fs);
if (!*new_fsp)
return -ENOMEM;
}
return 0;
}
/*
* Unsharing of sighand is not supported yet
*/
static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
{
struct sighand_struct *sigh = current->sighand;
if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
return -EINVAL;
else
return 0;
}
/*
* Unshare vm if it is being shared
*/
static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
{
struct mm_struct *mm = current->mm;
if ((unshare_flags & CLONE_VM) &&
(mm && atomic_read(&mm->mm_users) > 1)) {
return -EINVAL;
}
return 0;
}
/*
* Unshare file descriptor table if it is being shared
*/
static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
{
struct files_struct *fd = current->files;
int error = 0;
if ((unshare_flags & CLONE_FILES) &&
(fd && atomic_read(&fd->count) > 1)) {
*new_fdp = dup_fd(fd, &error);
if (!*new_fdp)
return error;
}
return 0;
}
/*
* unshare allows a process to 'unshare' part of the process
* context which was originally shared using clone. copy_*
* functions used by do_fork() cannot be used here directly
* because they modify an inactive task_struct that is being
* constructed. Here we are modifying the current, active,
* task_struct.
*/
asmlinkage long sys_unshare(unsigned long unshare_flags)
{
int err = 0;
struct fs_struct *fs, *new_fs = NULL;
struct sighand_struct *new_sigh = NULL;
struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
struct files_struct *fd, *new_fd = NULL;
Make access to task's nsproxy lighter When someone wants to deal with some other taks's namespaces it has to lock the task and then to get the desired namespace if the one exists. This is slow on read-only paths and may be impossible in some cases. E.g. Oleg recently noticed a race between unshare() and the (sent for review in cgroups) pid namespaces - when the task notifies the parent it has to know the parent's namespace, but taking the task_lock() is impossible there - the code is under write locked tasklist lock. On the other hand switching the namespace on task (daemonize) and releasing the namespace (after the last task exit) is rather rare operation and we can sacrifice its speed to solve the issues above. The access to other task namespaces is proposed to be performed like this: rcu_read_lock(); nsproxy = task_nsproxy(tsk); if (nsproxy != NULL) { / * * work with the namespaces here * e.g. get the reference on one of them * / } / * * NULL task_nsproxy() means that this task is * almost dead (zombie) * / rcu_read_unlock(); This patch has passed the review by Eric and Oleg :) and, of course, tested. [clg@fr.ibm.com: fix unshare()] [ebiederm@xmission.com: Update get_net_ns_by_pid] Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 13:39:54 +07:00
struct nsproxy *new_nsproxy = NULL;
int do_sysvsem = 0;
check_unshare_flags(&unshare_flags);
/* Return -EINVAL for all unsupported flags */
err = -EINVAL;
if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
CLONE_NEWNET))
goto bad_unshare_out;
/*
* CLONE_NEWIPC must also detach from the undolist: after switching
* to a new ipc namespace, the semaphore arrays from the old
* namespace are unreachable.
*/
if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
do_sysvsem = 1;
if ((err = unshare_thread(unshare_flags)))
goto bad_unshare_out;
if ((err = unshare_fs(unshare_flags, &new_fs)))
goto bad_unshare_cleanup_thread;
if ((err = unshare_sighand(unshare_flags, &new_sigh)))
goto bad_unshare_cleanup_fs;
if ((err = unshare_vm(unshare_flags, &new_mm)))
goto bad_unshare_cleanup_sigh;
if ((err = unshare_fd(unshare_flags, &new_fd)))
goto bad_unshare_cleanup_vm;
if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
new_fs)))
goto bad_unshare_cleanup_fd;
if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
if (do_sysvsem) {
/*
* CLONE_SYSVSEM is equivalent to sys_exit().
*/
exit_sem(current);
}
if (new_nsproxy) {
Make access to task's nsproxy lighter When someone wants to deal with some other taks's namespaces it has to lock the task and then to get the desired namespace if the one exists. This is slow on read-only paths and may be impossible in some cases. E.g. Oleg recently noticed a race between unshare() and the (sent for review in cgroups) pid namespaces - when the task notifies the parent it has to know the parent's namespace, but taking the task_lock() is impossible there - the code is under write locked tasklist lock. On the other hand switching the namespace on task (daemonize) and releasing the namespace (after the last task exit) is rather rare operation and we can sacrifice its speed to solve the issues above. The access to other task namespaces is proposed to be performed like this: rcu_read_lock(); nsproxy = task_nsproxy(tsk); if (nsproxy != NULL) { / * * work with the namespaces here * e.g. get the reference on one of them * / } / * * NULL task_nsproxy() means that this task is * almost dead (zombie) * / rcu_read_unlock(); This patch has passed the review by Eric and Oleg :) and, of course, tested. [clg@fr.ibm.com: fix unshare()] [ebiederm@xmission.com: Update get_net_ns_by_pid] Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 13:39:54 +07:00
switch_task_namespaces(current, new_nsproxy);
new_nsproxy = NULL;
}
Make access to task's nsproxy lighter When someone wants to deal with some other taks's namespaces it has to lock the task and then to get the desired namespace if the one exists. This is slow on read-only paths and may be impossible in some cases. E.g. Oleg recently noticed a race between unshare() and the (sent for review in cgroups) pid namespaces - when the task notifies the parent it has to know the parent's namespace, but taking the task_lock() is impossible there - the code is under write locked tasklist lock. On the other hand switching the namespace on task (daemonize) and releasing the namespace (after the last task exit) is rather rare operation and we can sacrifice its speed to solve the issues above. The access to other task namespaces is proposed to be performed like this: rcu_read_lock(); nsproxy = task_nsproxy(tsk); if (nsproxy != NULL) { / * * work with the namespaces here * e.g. get the reference on one of them * / } / * * NULL task_nsproxy() means that this task is * almost dead (zombie) * / rcu_read_unlock(); This patch has passed the review by Eric and Oleg :) and, of course, tested. [clg@fr.ibm.com: fix unshare()] [ebiederm@xmission.com: Update get_net_ns_by_pid] Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 13:39:54 +07:00
task_lock(current);
if (new_fs) {
fs = current->fs;
current->fs = new_fs;
new_fs = fs;
}
if (new_mm) {
mm = current->mm;
active_mm = current->active_mm;
current->mm = new_mm;
current->active_mm = new_mm;
activate_mm(active_mm, new_mm);
new_mm = mm;
}
if (new_fd) {
fd = current->files;
current->files = new_fd;
new_fd = fd;
}
task_unlock(current);
}
if (new_nsproxy)
put_nsproxy(new_nsproxy);
bad_unshare_cleanup_fd:
if (new_fd)
put_files_struct(new_fd);
bad_unshare_cleanup_vm:
if (new_mm)
mmput(new_mm);
bad_unshare_cleanup_sigh:
if (new_sigh)
if (atomic_dec_and_test(&new_sigh->count))
kmem_cache_free(sighand_cachep, new_sigh);
bad_unshare_cleanup_fs:
if (new_fs)
put_fs_struct(new_fs);
bad_unshare_cleanup_thread:
bad_unshare_out:
return err;
}
/*
* Helper to unshare the files of the current task.
* We don't want to expose copy_files internals to
* the exec layer of the kernel.
*/
int unshare_files(struct files_struct **displaced)
{
struct task_struct *task = current;
struct files_struct *copy = NULL;
int error;
error = unshare_fd(CLONE_FILES, &copy);
if (error || !copy) {
*displaced = NULL;
return error;
}
*displaced = task->files;
task_lock(task);
task->files = copy;
task_unlock(task);
return 0;
}