2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* Linux Security plug
|
|
|
|
*
|
|
|
|
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
|
|
|
|
* Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
|
|
|
|
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
|
|
|
|
* Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
|
|
|
|
* Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
|
IB/core: Enforce PKey security on QPs
Add new LSM hooks to allocate and free security contexts and check for
permission to access a PKey.
Allocate and free a security context when creating and destroying a QP.
This context is used for controlling access to PKeys.
When a request is made to modify a QP that changes the port, PKey index,
or alternate path, check that the QP has permission for the PKey in the
PKey table index on the subnet prefix of the port. If the QP is shared
make sure all handles to the QP also have access.
Store which port and PKey index a QP is using. After the reset to init
transition the user can modify the port, PKey index and alternate path
independently. So port and PKey settings changes can be a merge of the
previous settings and the new ones.
In order to maintain access control if there are PKey table or subnet
prefix change keep a list of all QPs are using each PKey index on
each port. If a change occurs all QPs using that device and port must
have access enforced for the new cache settings.
These changes add a transaction to the QP modify process. Association
with the old port and PKey index must be maintained if the modify fails,
and must be removed if it succeeds. Association with the new port and
PKey index must be established prior to the modify and removed if the
modify fails.
1. When a QP is modified to a particular Port, PKey index or alternate
path insert that QP into the appropriate lists.
2. Check permission to access the new settings.
3. If step 2 grants access attempt to modify the QP.
4a. If steps 2 and 3 succeed remove any prior associations.
4b. If ether fails remove the new setting associations.
If a PKey table or subnet prefix changes walk the list of QPs and
check that they have permission. If not send the QP to the error state
and raise a fatal error event. If it's a shared QP make sure all the
QPs that share the real_qp have permission as well. If the QP that
owns a security structure is denied access the security structure is
marked as such and the QP is added to an error_list. Once the moving
the QP to error is complete the security structure mark is cleared.
Maintaining the lists correctly turns QP destroy into a transaction.
The hardware driver for the device frees the ib_qp structure, so while
the destroy is in progress the ib_qp pointer in the ib_qp_security
struct is undefined. When the destroy process begins the ib_qp_security
structure is marked as destroying. This prevents any action from being
taken on the QP pointer. After the QP is destroyed successfully it
could still listed on an error_list wait for it to be processed by that
flow before cleaning up the structure.
If the destroy fails the QPs port and PKey settings are reinserted into
the appropriate lists, the destroying flag is cleared, and access control
is enforced, in case there were any cache changes during the destroy
flow.
To keep the security changes isolated a new file is used to hold security
related functionality.
Signed-off-by: Daniel Jurgens <danielj@mellanox.com>
Acked-by: Doug Ledford <dledford@redhat.com>
[PM: merge fixup in ib_verbs.h and uverbs_cmd.c]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2017-05-19 19:48:52 +07:00
|
|
|
* Copyright (C) 2016 Mellanox Techonologies
|
2005-04-17 05:20:36 +07:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* Due to this file being licensed under the GPL there is controversy over
|
|
|
|
* whether this permits you to write a module that #includes this file
|
|
|
|
* without placing your module under the GPL. Please consult a lawyer for
|
|
|
|
* advice before doing this.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __LINUX_SECURITY_H
|
|
|
|
#define __LINUX_SECURITY_H
|
|
|
|
|
2005-10-31 06:02:44 +07:00
|
|
|
#include <linux/key.h>
|
2012-02-13 10:58:52 +07:00
|
|
|
#include <linux/capability.h>
|
2016-01-15 05:57:47 +07:00
|
|
|
#include <linux/fs.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
|
|
|
#include <linux/slab.h>
|
2012-02-13 10:58:52 +07:00
|
|
|
#include <linux/err.h>
|
2013-05-22 23:50:34 +07:00
|
|
|
#include <linux/string.h>
|
2015-05-03 05:11:42 +07:00
|
|
|
#include <linux/mm.h>
|
2016-01-24 22:07:32 +07:00
|
|
|
#include <linux/fs.h>
|
2012-02-13 10:58:52 +07:00
|
|
|
|
|
|
|
struct linux_binprm;
|
|
|
|
struct cred;
|
|
|
|
struct rlimit;
|
2018-09-25 16:27:20 +07:00
|
|
|
struct kernel_siginfo;
|
2012-02-13 10:58:52 +07:00
|
|
|
struct sembuf;
|
|
|
|
struct kern_ipc_perm;
|
|
|
|
struct audit_context;
|
|
|
|
struct super_block;
|
|
|
|
struct inode;
|
|
|
|
struct dentry;
|
|
|
|
struct file;
|
|
|
|
struct vfsmount;
|
|
|
|
struct path;
|
|
|
|
struct qstr;
|
|
|
|
struct iattr;
|
|
|
|
struct fown_struct;
|
|
|
|
struct file_operations;
|
|
|
|
struct msg_msg;
|
|
|
|
struct xattr;
|
|
|
|
struct xfrm_sec_ctx;
|
|
|
|
struct mm_struct;
|
2018-11-02 06:07:24 +07:00
|
|
|
struct fs_context;
|
|
|
|
struct fs_parameter;
|
|
|
|
enum fs_value_type;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2019-01-08 07:10:53 +07:00
|
|
|
/* Default (no) options for the capable function */
|
|
|
|
#define CAP_OPT_NONE 0x0
|
2008-11-11 18:02:50 +07:00
|
|
|
/* If capable should audit the security request */
|
2019-01-08 07:10:53 +07:00
|
|
|
#define CAP_OPT_NOAUDIT BIT(1)
|
|
|
|
/* If capable is being called by a setid function */
|
|
|
|
#define CAP_OPT_INSETID BIT(2)
|
2008-11-11 18:02:50 +07:00
|
|
|
|
2018-11-02 06:07:24 +07:00
|
|
|
/* LSM Agnostic defines for fs_context::lsm_flags */
|
2013-05-22 23:50:37 +07:00
|
|
|
#define SECURITY_LSM_NATIVE_LABELS 1
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
struct ctl_table;
|
2008-03-02 03:00:05 +07:00
|
|
|
struct audit_krule;
|
userns: security: make capabilities relative to the user namespace
- Introduce ns_capable to test for a capability in a non-default
user namespace.
- Teach cap_capable to handle capabilities in a non-default
user namespace.
The motivation is to get to the unprivileged creation of new
namespaces. It looks like this gets us 90% of the way there, with
only potential uid confusion issues left.
I still need to handle getting all caps after creation but otherwise I
think I have a good starter patch that achieves all of your goals.
Changelog:
11/05/2010: [serge] add apparmor
12/14/2010: [serge] fix capabilities to created user namespaces
Without this, if user serge creates a user_ns, he won't have
capabilities to the user_ns he created. THis is because we
were first checking whether his effective caps had the caps
he needed and returning -EPERM if not, and THEN checking whether
he was the creator. Reverse those checks.
12/16/2010: [serge] security_real_capable needs ns argument in !security case
01/11/2011: [serge] add task_ns_capable helper
01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion
02/16/2011: [serge] fix a logic bug: the root user is always creator of
init_user_ns, but should not always have capabilities to
it! Fix the check in cap_capable().
02/21/2011: Add the required user_ns parameter to security_capable,
fixing a compile failure.
02/23/2011: Convert some macros to functions as per akpm comments. Some
couldn't be converted because we can't easily forward-declare
them (they are inline if !SECURITY, extern if SECURITY). Add
a current_user_ns function so we can use it in capability.h
without #including cred.h. Move all forward declarations
together to the top of the #ifdef __KERNEL__ section, and use
kernel-doc format.
02/23/2011: Per dhowells, clean up comment in cap_capable().
02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable.
(Original written and signed off by Eric; latest, modified version
acked by him)
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: export current_user_ns() for ecryptfs]
[serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 06:43:17 +07:00
|
|
|
struct user_namespace;
|
2012-02-13 10:58:52 +07:00
|
|
|
struct timezone;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2017-05-19 19:48:53 +07:00
|
|
|
enum lsm_event {
|
|
|
|
LSM_POLICY_CHANGE,
|
|
|
|
};
|
|
|
|
|
2015-05-03 05:11:42 +07:00
|
|
|
/* These functions are in security/commoncap.c */
|
2012-01-04 00:25:14 +07:00
|
|
|
extern int cap_capable(const struct cred *cred, struct user_namespace *ns,
|
2019-01-08 07:10:53 +07:00
|
|
|
int cap, unsigned int opts);
|
2016-04-08 13:02:11 +07:00
|
|
|
extern int cap_settime(const struct timespec64 *ts, const struct timezone *tz);
|
2009-05-07 16:26:19 +07:00
|
|
|
extern int cap_ptrace_access_check(struct task_struct *child, unsigned int mode);
|
security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 17:37:28 +07:00
|
|
|
extern int cap_ptrace_traceme(struct task_struct *parent);
|
2008-04-24 01:10:25 +07:00
|
|
|
extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
extern int cap_capset(struct cred *new, const struct cred *old,
|
|
|
|
const kernel_cap_t *effective,
|
|
|
|
const kernel_cap_t *inheritable,
|
|
|
|
const kernel_cap_t *permitted);
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
extern int cap_bprm_set_creds(struct linux_binprm *bprm);
|
2008-04-29 14:59:41 +07:00
|
|
|
extern int cap_inode_setxattr(struct dentry *dentry, const char *name,
|
|
|
|
const void *value, size_t size, int flags);
|
|
|
|
extern int cap_inode_removexattr(struct dentry *dentry, const char *name);
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 13:31:36 +07:00
|
|
|
extern int cap_inode_need_killpriv(struct dentry *dentry);
|
|
|
|
extern int cap_inode_killpriv(struct dentry *dentry);
|
Introduce v3 namespaced file capabilities
Root in a non-initial user ns cannot be trusted to write a traditional
security.capability xattr. If it were allowed to do so, then any
unprivileged user on the host could map his own uid to root in a private
namespace, write the xattr, and execute the file with privilege on the
host.
However supporting file capabilities in a user namespace is very
desirable. Not doing so means that any programs designed to run with
limited privilege must continue to support other methods of gaining and
dropping privilege. For instance a program installer must detect
whether file capabilities can be assigned, and assign them if so but set
setuid-root otherwise. The program in turn must know how to drop
partial capabilities, and do so only if setuid-root.
This patch introduces v3 of the security.capability xattr. It builds a
vfs_ns_cap_data struct by appending a uid_t rootid to struct
vfs_cap_data. This is the absolute uid_t (that is, the uid_t in user
namespace which mounted the filesystem, usually init_user_ns) of the
root id in whose namespaces the file capabilities may take effect.
When a task asks to write a v2 security.capability xattr, if it is
privileged with respect to the userns which mounted the filesystem, then
nothing should change. Otherwise, the kernel will transparently rewrite
the xattr as a v3 with the appropriate rootid. This is done during the
execution of setxattr() to catch user-space-initiated capability writes.
Subsequently, any task executing the file which has the noted kuid as
its root uid, or which is in a descendent user_ns of such a user_ns,
will run the file with capabilities.
Similarly when asking to read file capabilities, a v3 capability will
be presented as v2 if it applies to the caller's namespace.
If a task writes a v3 security.capability, then it can provide a uid for
the xattr so long as the uid is valid in its own user namespace, and it
is privileged with CAP_SETFCAP over its namespace. The kernel will
translate that rootid to an absolute uid, and write that to disk. After
this, a task in the writer's namespace will not be able to use those
capabilities (unless rootid was 0), but a task in a namespace where the
given uid is root will.
Only a single security.capability xattr may exist at a time for a given
file. A task may overwrite an existing xattr so long as it is
privileged over the inode. Note this is a departure from previous
semantics, which required privilege to remove a security.capability
xattr. This check can be re-added if deemed useful.
This allows a simple setxattr to work, allows tar/untar to work, and
allows us to tar in one namespace and untar in another while preserving
the capability, without risking leaking privilege into a parent
namespace.
Example using tar:
$ cp /bin/sleep sleepx
$ mkdir b1 b2
$ lxc-usernsexec -m b:0:100000:1 -m b:1:$(id -u):1 -- chown 0:0 b1
$ lxc-usernsexec -m b:0:100001:1 -m b:1:$(id -u):1 -- chown 0:0 b2
$ lxc-usernsexec -m b:0:100000:1000 -- tar --xattrs-include=security.capability --xattrs -cf b1/sleepx.tar sleepx
$ lxc-usernsexec -m b:0:100001:1000 -- tar --xattrs-include=security.capability --xattrs -C b2 -xf b1/sleepx.tar
$ lxc-usernsexec -m b:0:100001:1000 -- getcap b2/sleepx
b2/sleepx = cap_sys_admin+ep
# /opt/ltp/testcases/bin/getv3xattr b2/sleepx
v3 xattr, rootid is 100001
A patch to linux-test-project adding a new set of tests for this
functionality is in the nsfscaps branch at github.com/hallyn/ltp
Changelog:
Nov 02 2016: fix invalid check at refuse_fcap_overwrite()
Nov 07 2016: convert rootid from and to fs user_ns
(From ebiederm: mar 28 2017)
commoncap.c: fix typos - s/v4/v3
get_vfs_caps_from_disk: clarify the fs_ns root access check
nsfscaps: change the code split for cap_inode_setxattr()
Apr 09 2017:
don't return v3 cap for caps owned by current root.
return a v2 cap for a true v2 cap in non-init ns
Apr 18 2017:
. Change the flow of fscap writing to support s_user_ns writing.
. Remove refuse_fcap_overwrite(). The value of the previous
xattr doesn't matter.
Apr 24 2017:
. incorporate Eric's incremental diff
. move cap_convert_nscap to setxattr and simplify its usage
May 8, 2017:
. fix leaking dentry refcount in cap_inode_getsecurity
Signed-off-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-05-09 01:11:56 +07:00
|
|
|
extern int cap_inode_getsecurity(struct inode *inode, const char *name,
|
|
|
|
void **buffer, bool alloc);
|
2012-05-31 00:11:37 +07:00
|
|
|
extern int cap_mmap_addr(unsigned long addr);
|
2012-05-31 00:30:51 +07:00
|
|
|
extern int cap_mmap_file(struct file *file, unsigned long reqprot,
|
|
|
|
unsigned long prot, unsigned long flags);
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags);
|
capabilities: implement per-process securebits
Filesystem capability support makes it possible to do away with (set)uid-0
based privilege and use capabilities instead. That is, with filesystem
support for capabilities but without this present patch, it is (conceptually)
possible to manage a system with capabilities alone and never need to obtain
privilege via (set)uid-0.
Of course, conceptually isn't quite the same as currently possible since few
user applications, certainly not enough to run a viable system, are currently
prepared to leverage capabilities to exercise privilege. Further, many
applications exist that may never get upgraded in this way, and the kernel
will continue to want to support their setuid-0 base privilege needs.
Where pure-capability applications evolve and replace setuid-0 binaries, it is
desirable that there be a mechanisms by which they can contain their
privilege. In addition to leveraging the per-process bounding and inheritable
sets, this should include suppressing the privilege of the uid-0 superuser
from the process' tree of children.
The feature added by this patch can be leveraged to suppress the privilege
associated with (set)uid-0. This suppression requires CAP_SETPCAP to
initiate, and only immediately affects the 'current' process (it is inherited
through fork()/exec()). This reimplementation differs significantly from the
historical support for securebits which was system-wide, unwieldy and which
has ultimately withered to a dead relic in the source of the modern kernel.
With this patch applied a process, that is capable(CAP_SETPCAP), can now drop
all legacy privilege (through uid=0) for itself and all subsequently
fork()'d/exec()'d children with:
prctl(PR_SET_SECUREBITS, 0x2f);
This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is
enabled at configure time.
[akpm@linux-foundation.org: fix uninitialised var warning]
[serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY]
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Paul Moore <paul.moore@hp.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 16:13:40 +07:00
|
|
|
extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
unsigned long arg4, unsigned long arg5);
|
2010-10-15 02:21:18 +07:00
|
|
|
extern int cap_task_setscheduler(struct task_struct *p);
|
2008-04-24 01:10:25 +07:00
|
|
|
extern int cap_task_setioprio(struct task_struct *p, int ioprio);
|
|
|
|
extern int cap_task_setnice(struct task_struct *p, int nice);
|
2007-10-17 13:31:32 +07:00
|
|
|
extern int cap_vm_enough_memory(struct mm_struct *mm, long pages);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
struct msghdr;
|
|
|
|
struct sk_buff;
|
|
|
|
struct sock;
|
|
|
|
struct sockaddr;
|
|
|
|
struct socket;
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
struct flowi;
|
|
|
|
struct dst_entry;
|
|
|
|
struct xfrm_selector;
|
|
|
|
struct xfrm_policy;
|
|
|
|
struct xfrm_state;
|
|
|
|
struct xfrm_user_sec_ctx;
|
2008-07-04 06:47:13 +07:00
|
|
|
struct seq_file;
|
2018-02-14 03:53:21 +07:00
|
|
|
struct sctp_endpoint;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2009-12-16 02:27:45 +07:00
|
|
|
#ifdef CONFIG_MMU
|
2007-06-29 02:55:21 +07:00
|
|
|
extern unsigned long mmap_min_addr;
|
2009-07-31 23:54:11 +07:00
|
|
|
extern unsigned long dac_mmap_min_addr;
|
2009-12-16 02:27:45 +07:00
|
|
|
#else
|
2012-09-25 07:17:38 +07:00
|
|
|
#define mmap_min_addr 0UL
|
2009-12-16 02:27:45 +07:00
|
|
|
#define dac_mmap_min_addr 0UL
|
|
|
|
#endif
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* Values used in the task_security_ops calls
|
|
|
|
*/
|
|
|
|
/* setuid or setgid, id0 == uid or gid */
|
|
|
|
#define LSM_SETID_ID 1
|
|
|
|
|
|
|
|
/* setreuid or setregid, id0 == real, id1 == eff */
|
|
|
|
#define LSM_SETID_RE 2
|
|
|
|
|
|
|
|
/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
|
|
|
|
#define LSM_SETID_RES 4
|
|
|
|
|
|
|
|
/* setfsuid or setfsgid, id0 == fsuid or fsgid */
|
|
|
|
#define LSM_SETID_FS 8
|
|
|
|
|
prlimit,security,selinux: add a security hook for prlimit
When SELinux was first added to the kernel, a process could only get
and set its own resource limits via getrlimit(2) and setrlimit(2), so no
MAC checks were required for those operations, and thus no security hooks
were defined for them. Later, SELinux introduced a hook for setlimit(2)
with a check if the hard limit was being changed in order to be able to
rely on the hard limit value as a safe reset point upon context
transitions.
Later on, when prlimit(2) was added to the kernel with the ability to get
or set resource limits (hard or soft) of another process, LSM/SELinux was
not updated other than to pass the target process to the setrlimit hook.
This resulted in incomplete control over both getting and setting the
resource limits of another process.
Add a new security_task_prlimit() hook to the check_prlimit_permission()
function to provide complete mediation. The hook is only called when
acting on another task, and only if the existing DAC/capability checks
would allow access. Pass flags down to the hook to indicate whether the
prlimit(2) call will read, write, or both read and write the resource
limits of the target process.
The existing security_task_setrlimit() hook is left alone; it continues
to serve a purpose in supporting the ability to make decisions based on
the old and/or new resource limit values when setting limits. This
is consistent with the DAC/capability logic, where
check_prlimit_permission() performs generic DAC/capability checks for
acting on another task, while do_prlimit() performs a capability check
based on a comparison of the old and new resource limits. Fix the
inline documentation for the hook to match the code.
Implement the new hook for SELinux. For setting resource limits, we
reuse the existing setrlimit permission. Note that this does overload
the setrlimit permission to mean the ability to set the resource limit
(soft or hard) of another process or the ability to change one's own
hard limit. For getting resource limits, a new getrlimit permission
is defined. This was not originally defined since getrlimit(2) could
only be used to obtain a process' own limits.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-02-17 19:57:00 +07:00
|
|
|
/* Flags for security_task_prlimit(). */
|
|
|
|
#define LSM_PRLIMIT_READ 1
|
|
|
|
#define LSM_PRLIMIT_WRITE 2
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* forward declares to avoid warnings */
|
|
|
|
struct sched_param;
|
2006-07-25 13:32:50 +07:00
|
|
|
struct request_sock;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
/* bprm->unsafe reasons */
|
2005-04-17 05:20:36 +07:00
|
|
|
#define LSM_UNSAFE_SHARE 1
|
|
|
|
#define LSM_UNSAFE_PTRACE 2
|
2017-01-23 11:26:31 +07:00
|
|
|
#define LSM_UNSAFE_NO_NEW_PRIVS 4
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2009-12-16 02:27:45 +07:00
|
|
|
#ifdef CONFIG_MMU
|
2009-09-24 05:57:19 +07:00
|
|
|
extern int mmap_min_addr_handler(struct ctl_table *table, int write,
|
2009-08-08 01:53:57 +07:00
|
|
|
void __user *buffer, size_t *lenp, loff_t *ppos);
|
2009-12-16 02:27:45 +07:00
|
|
|
#endif
|
2009-08-08 01:53:57 +07:00
|
|
|
|
2011-06-07 02:29:25 +07:00
|
|
|
/* security_inode_init_security callback function to write xattrs */
|
|
|
|
typedef int (*initxattrs) (struct inode *inode,
|
|
|
|
const struct xattr *xattr_array, void *fs_data);
|
|
|
|
|
2018-07-14 01:05:56 +07:00
|
|
|
|
|
|
|
/* Keep the kernel_load_data_id enum in sync with kernel_read_file_id */
|
|
|
|
#define __data_id_enumify(ENUM, dummy) LOADING_ ## ENUM,
|
|
|
|
#define __data_id_stringify(dummy, str) #str,
|
|
|
|
|
|
|
|
enum kernel_load_data_id {
|
|
|
|
__kernel_read_file_id(__data_id_enumify)
|
|
|
|
};
|
|
|
|
|
|
|
|
static const char * const kernel_load_data_str[] = {
|
|
|
|
__kernel_read_file_id(__data_id_stringify)
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline const char *kernel_load_data_id_str(enum kernel_load_data_id id)
|
|
|
|
{
|
|
|
|
if ((unsigned)id >= LOADING_MAX_ID)
|
|
|
|
return kernel_load_data_str[LOADING_UNKNOWN];
|
|
|
|
|
|
|
|
return kernel_load_data_str[id];
|
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
#ifdef CONFIG_SECURITY
|
|
|
|
|
2017-05-19 19:48:53 +07:00
|
|
|
int call_lsm_notifier(enum lsm_event event, void *data);
|
|
|
|
int register_lsm_notifier(struct notifier_block *nb);
|
|
|
|
int unregister_lsm_notifier(struct notifier_block *nb);
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* prototypes */
|
2008-04-24 01:10:25 +07:00
|
|
|
extern int security_init(void);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2007-10-17 13:31:32 +07:00
|
|
|
/* Security operations */
|
2015-01-21 22:54:10 +07:00
|
|
|
int security_binder_set_context_mgr(struct task_struct *mgr);
|
|
|
|
int security_binder_transaction(struct task_struct *from,
|
|
|
|
struct task_struct *to);
|
|
|
|
int security_binder_transfer_binder(struct task_struct *from,
|
|
|
|
struct task_struct *to);
|
|
|
|
int security_binder_transfer_file(struct task_struct *from,
|
|
|
|
struct task_struct *to, struct file *file);
|
2009-05-07 16:26:19 +07:00
|
|
|
int security_ptrace_access_check(struct task_struct *child, unsigned int mode);
|
security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 17:37:28 +07:00
|
|
|
int security_ptrace_traceme(struct task_struct *parent);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_capget(struct task_struct *target,
|
2008-04-24 01:10:25 +07:00
|
|
|
kernel_cap_t *effective,
|
|
|
|
kernel_cap_t *inheritable,
|
|
|
|
kernel_cap_t *permitted);
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
int security_capset(struct cred *new, const struct cred *old,
|
|
|
|
const kernel_cap_t *effective,
|
|
|
|
const kernel_cap_t *inheritable,
|
|
|
|
const kernel_cap_t *permitted);
|
2019-01-08 07:10:53 +07:00
|
|
|
int security_capable(const struct cred *cred,
|
|
|
|
struct user_namespace *ns,
|
|
|
|
int cap,
|
|
|
|
unsigned int opts);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_quotactl(int cmds, int type, int id, struct super_block *sb);
|
|
|
|
int security_quota_on(struct dentry *dentry);
|
2010-11-16 06:36:29 +07:00
|
|
|
int security_syslog(int type);
|
2016-04-08 13:02:11 +07:00
|
|
|
int security_settime64(const struct timespec64 *ts, const struct timezone *tz);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
int security_bprm_set_creds(struct linux_binprm *bprm);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_bprm_check(struct linux_binprm *bprm);
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
void security_bprm_committing_creds(struct linux_binprm *bprm);
|
|
|
|
void security_bprm_committed_creds(struct linux_binprm *bprm);
|
2018-12-24 04:02:47 +07:00
|
|
|
int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc);
|
2018-11-02 06:07:24 +07:00
|
|
|
int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_sb_alloc(struct super_block *sb);
|
|
|
|
void security_sb_free(struct super_block *sb);
|
2018-12-14 01:41:47 +07:00
|
|
|
void security_free_mnt_opts(void **mnt_opts);
|
|
|
|
int security_sb_eat_lsm_opts(char *options, void **mnt_opts);
|
|
|
|
int security_sb_remount(struct super_block *sb, void *mnt_opts);
|
2018-12-05 23:58:35 +07:00
|
|
|
int security_sb_kern_mount(struct super_block *sb);
|
2008-07-04 06:47:13 +07:00
|
|
|
int security_sb_show_options(struct seq_file *m, struct super_block *sb);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_sb_statfs(struct dentry *dentry);
|
2016-03-26 01:52:53 +07:00
|
|
|
int security_sb_mount(const char *dev_name, const struct path *path,
|
2012-10-11 22:42:01 +07:00
|
|
|
const char *type, unsigned long flags, void *data);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_sb_umount(struct vfsmount *mnt, int flags);
|
2016-03-26 02:31:19 +07:00
|
|
|
int security_sb_pivotroot(const struct path *old_path, const struct path *new_path);
|
2013-05-22 23:50:36 +07:00
|
|
|
int security_sb_set_mnt_opts(struct super_block *sb,
|
2018-12-14 01:41:47 +07:00
|
|
|
void *mnt_opts,
|
2013-05-22 23:50:36 +07:00
|
|
|
unsigned long kern_flags,
|
|
|
|
unsigned long *set_kern_flags);
|
selinux: make security_sb_clone_mnt_opts return an error on context mismatch
I had the following problem reported a while back. If you mount the
same filesystem twice using NFSv4 with different contexts, then the
second context= option is ignored. For instance:
# mount server:/export /mnt/test1
# mount server:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0
# ls -dZ /mnt/test1
drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test1
# ls -dZ /mnt/test2
drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test2
When we call into SELinux to set the context of a "cloned" superblock,
it will currently just bail out when it notices that we're reusing an
existing superblock. Since the existing superblock is already set up and
presumably in use, we can't go overwriting its context with the one from
the "original" sb. Because of this, the second context= option in this
case cannot take effect.
This patch fixes this by turning security_sb_clone_mnt_opts into an int
return operation. When it finds that the "new" superblock that it has
been handed is already set up, it checks to see whether the contexts on
the old superblock match it. If it does, then it will just return
success, otherwise it'll return -EBUSY and emit a printk to tell the
admin why the second mount failed.
Note that this patch may cause casualties. The NFSv4 code relies on
being able to walk down to an export from the pseudoroot. If you mount
filesystems that are nested within one another with different contexts,
then this patch will make those mounts fail in new and "exciting" ways.
For instance, suppose that /export is a separate filesystem on the
server:
# mount server:/ /mnt/test1
# mount salusa:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0
mount.nfs: an incorrect mount option was specified
...with the printk in the ring buffer. Because we *might* eventually
walk down to /mnt/test1/export, the mount is denied due to this patch.
The second mount needs the pseudoroot superblock, but that's already
present with the wrong context.
OTOH, if we mount these in the reverse order, then both mounts work,
because the pseudoroot superblock created when mounting /export is
discarded once that mount is done. If we then however try to walk into
that directory, the automount fails for the similar reasons:
# cd /mnt/test1/scratch/
-bash: cd: /mnt/test1/scratch: Device or resource busy
The story I've gotten from the SELinux folks that I've talked to is that
this is desirable behavior. In SELinux-land, mounting the same data
under different contexts is wrong -- there can be only one.
Cc: Steve Dickson <steved@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2013-04-01 19:14:24 +07:00
|
|
|
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
|
2017-06-05 22:45:04 +07:00
|
|
|
struct super_block *newsb,
|
|
|
|
unsigned long kern_flags,
|
|
|
|
unsigned long *set_kern_flags);
|
2018-12-15 11:42:21 +07:00
|
|
|
int security_add_mnt_opt(const char *option, const char *val,
|
|
|
|
int len, void **mnt_opts);
|
2013-05-22 23:50:34 +07:00
|
|
|
int security_dentry_init_security(struct dentry *dentry, int mode,
|
2016-07-21 03:06:15 +07:00
|
|
|
const struct qstr *name, void **ctx,
|
2013-05-22 23:50:34 +07:00
|
|
|
u32 *ctxlen);
|
2016-07-13 21:44:52 +07:00
|
|
|
int security_dentry_create_files_as(struct dentry *dentry, int mode,
|
|
|
|
struct qstr *name,
|
|
|
|
const struct cred *old,
|
|
|
|
struct cred *new);
|
2007-12-01 01:00:35 +07:00
|
|
|
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_alloc(struct inode *inode);
|
|
|
|
void security_inode_free(struct inode *inode);
|
|
|
|
int security_inode_init_security(struct inode *inode, struct inode *dir,
|
2011-06-07 02:29:25 +07:00
|
|
|
const struct qstr *qstr,
|
|
|
|
initxattrs initxattrs, void *fs_data);
|
|
|
|
int security_old_inode_init_security(struct inode *inode, struct inode *dir,
|
2013-07-25 03:44:02 +07:00
|
|
|
const struct qstr *qstr, const char **name,
|
2011-06-07 02:29:25 +07:00
|
|
|
void **value, size_t *len);
|
2011-07-26 12:42:34 +07:00
|
|
|
int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
|
|
|
|
struct dentry *new_dentry);
|
|
|
|
int security_inode_unlink(struct inode *dir, struct dentry *dentry);
|
|
|
|
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
|
2008-04-24 01:10:25 +07:00
|
|
|
const char *old_name);
|
2011-07-26 12:41:39 +07:00
|
|
|
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_rmdir(struct inode *dir, struct dentry *dentry);
|
2011-07-26 12:52:52 +07:00
|
|
|
int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
|
2014-04-01 22:08:43 +07:00
|
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
|
|
unsigned int flags);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_readlink(struct dentry *dentry);
|
2015-03-23 09:37:39 +07:00
|
|
|
int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
|
|
|
|
bool rcu);
|
2008-07-17 20:37:02 +07:00
|
|
|
int security_inode_permission(struct inode *inode, int mask);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_setattr(struct dentry *dentry, struct iattr *attr);
|
2015-03-09 06:28:30 +07:00
|
|
|
int security_inode_getattr(const struct path *path);
|
2008-04-29 14:59:41 +07:00
|
|
|
int security_inode_setxattr(struct dentry *dentry, const char *name,
|
|
|
|
const void *value, size_t size, int flags);
|
|
|
|
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
|
|
|
|
const void *value, size_t size, int flags);
|
|
|
|
int security_inode_getxattr(struct dentry *dentry, const char *name);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_listxattr(struct dentry *dentry);
|
2008-04-29 14:59:41 +07:00
|
|
|
int security_inode_removexattr(struct dentry *dentry, const char *name);
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 13:31:36 +07:00
|
|
|
int security_inode_need_killpriv(struct dentry *dentry);
|
|
|
|
int security_inode_killpriv(struct dentry *dentry);
|
2015-12-24 23:09:39 +07:00
|
|
|
int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags);
|
|
|
|
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size);
|
2015-12-24 23:09:39 +07:00
|
|
|
void security_inode_getsecid(struct inode *inode, u32 *secid);
|
2016-07-13 22:13:56 +07:00
|
|
|
int security_inode_copy_up(struct dentry *src, struct cred **new);
|
2016-07-13 21:44:49 +07:00
|
|
|
int security_inode_copy_up_xattr(const char *name);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_file_permission(struct file *file, int mask);
|
|
|
|
int security_file_alloc(struct file *file);
|
|
|
|
void security_file_free(struct file *file);
|
|
|
|
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
|
2012-05-31 04:11:23 +07:00
|
|
|
int security_mmap_file(struct file *file, unsigned long prot,
|
|
|
|
unsigned long flags);
|
2012-05-31 00:30:51 +07:00
|
|
|
int security_mmap_addr(unsigned long addr);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
|
2008-04-24 01:10:25 +07:00
|
|
|
unsigned long prot);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_file_lock(struct file *file, unsigned int cmd);
|
|
|
|
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg);
|
2014-08-22 22:27:32 +07:00
|
|
|
void security_file_set_fowner(struct file *file);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_file_send_sigiotask(struct task_struct *tsk,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct fown_struct *fown, int sig);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_file_receive(struct file *file);
|
2018-07-11 00:25:29 +07:00
|
|
|
int security_file_open(struct file *file);
|
2017-03-24 18:46:33 +07:00
|
|
|
int security_task_alloc(struct task_struct *task, unsigned long clone_flags);
|
2011-12-22 03:17:03 +07:00
|
|
|
void security_task_free(struct task_struct *task);
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 15:14:21 +07:00
|
|
|
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp);
|
2008-11-14 06:39:17 +07:00
|
|
|
void security_cred_free(struct cred *cred);
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp);
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 15:14:21 +07:00
|
|
|
void security_transfer_creds(struct cred *new, const struct cred *old);
|
2018-01-09 04:36:19 +07:00
|
|
|
void security_cred_getsecid(const struct cred *c, u32 *secid);
|
2008-11-14 06:39:28 +07:00
|
|
|
int security_kernel_act_as(struct cred *new, u32 secid);
|
|
|
|
int security_kernel_create_files_as(struct cred *new, struct inode *inode);
|
2009-11-03 12:35:32 +07:00
|
|
|
int security_kernel_module_request(char *kmod_name);
|
2018-07-14 01:05:56 +07:00
|
|
|
int security_kernel_load_data(enum kernel_load_data_id id);
|
2016-01-31 10:23:26 +07:00
|
|
|
int security_kernel_read_file(struct file *file, enum kernel_read_file_id id);
|
2016-01-24 22:07:32 +07:00
|
|
|
int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
|
|
|
|
enum kernel_read_file_id id);
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
int security_task_fix_setuid(struct cred *new, const struct cred *old,
|
|
|
|
int flags);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_task_setpgid(struct task_struct *p, pid_t pgid);
|
|
|
|
int security_task_getpgid(struct task_struct *p);
|
|
|
|
int security_task_getsid(struct task_struct *p);
|
|
|
|
void security_task_getsecid(struct task_struct *p, u32 *secid);
|
|
|
|
int security_task_setnice(struct task_struct *p, int nice);
|
|
|
|
int security_task_setioprio(struct task_struct *p, int ioprio);
|
|
|
|
int security_task_getioprio(struct task_struct *p);
|
prlimit,security,selinux: add a security hook for prlimit
When SELinux was first added to the kernel, a process could only get
and set its own resource limits via getrlimit(2) and setrlimit(2), so no
MAC checks were required for those operations, and thus no security hooks
were defined for them. Later, SELinux introduced a hook for setlimit(2)
with a check if the hard limit was being changed in order to be able to
rely on the hard limit value as a safe reset point upon context
transitions.
Later on, when prlimit(2) was added to the kernel with the ability to get
or set resource limits (hard or soft) of another process, LSM/SELinux was
not updated other than to pass the target process to the setrlimit hook.
This resulted in incomplete control over both getting and setting the
resource limits of another process.
Add a new security_task_prlimit() hook to the check_prlimit_permission()
function to provide complete mediation. The hook is only called when
acting on another task, and only if the existing DAC/capability checks
would allow access. Pass flags down to the hook to indicate whether the
prlimit(2) call will read, write, or both read and write the resource
limits of the target process.
The existing security_task_setrlimit() hook is left alone; it continues
to serve a purpose in supporting the ability to make decisions based on
the old and/or new resource limit values when setting limits. This
is consistent with the DAC/capability logic, where
check_prlimit_permission() performs generic DAC/capability checks for
acting on another task, while do_prlimit() performs a capability check
based on a comparison of the old and new resource limits. Fix the
inline documentation for the hook to match the code.
Implement the new hook for SELinux. For setting resource limits, we
reuse the existing setrlimit permission. Note that this does overload
the setrlimit permission to mean the ability to set the resource limit
(soft or hard) of another process or the ability to change one's own
hard limit. For getting resource limits, a new getrlimit permission
is defined. This was not originally defined since getrlimit(2) could
only be used to obtain a process' own limits.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-02-17 19:57:00 +07:00
|
|
|
int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
|
|
|
|
unsigned int flags);
|
2009-08-26 23:41:16 +07:00
|
|
|
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
|
|
|
|
struct rlimit *new_rlim);
|
2010-10-15 02:21:18 +07:00
|
|
|
int security_task_setscheduler(struct task_struct *p);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_task_getscheduler(struct task_struct *p);
|
|
|
|
int security_task_movememory(struct task_struct *p);
|
2018-09-25 16:27:20 +07:00
|
|
|
int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
|
usb, signal, security: only pass the cred, not the secid, to kill_pid_info_as_cred and security_task_kill
commit d178bc3a708f39cbfefc3fab37032d3f2511b4ec ("user namespace: usb:
make usb urbs user namespace aware (v2)") changed kill_pid_info_as_uid
to kill_pid_info_as_cred, saving and passing a cred structure instead of
uids. Since the secid can be obtained from the cred, drop the secid fields
from the usb_dev_state and async structures, and drop the secid argument to
kill_pid_info_as_cred. Replace the secid argument to security_task_kill
with the cred. Update SELinux, Smack, and AppArmor to use the cred, which
avoids the need for Smack and AppArmor to use a secid at all in this hook.
Further changes to Smack might still be required to take full advantage of
this change, since it should now be possible to perform capability
checking based on the supplied cred. The changes to Smack and AppArmor
have only been compile-tested.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2017-09-08 23:40:01 +07:00
|
|
|
int sig, const struct cred *cred);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
unsigned long arg4, unsigned long arg5);
|
2007-10-17 13:31:32 +07:00
|
|
|
void security_task_to_inode(struct task_struct *p, struct inode *inode);
|
|
|
|
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag);
|
2008-03-02 02:51:09 +07:00
|
|
|
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_msg_msg_alloc(struct msg_msg *msg);
|
|
|
|
void security_msg_msg_free(struct msg_msg *msg);
|
2018-03-23 09:22:26 +07:00
|
|
|
int security_msg_queue_alloc(struct kern_ipc_perm *msq);
|
|
|
|
void security_msg_queue_free(struct kern_ipc_perm *msq);
|
|
|
|
int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg);
|
|
|
|
int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd);
|
|
|
|
int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct msg_msg *msg, int msqflg);
|
2018-03-23 09:22:26 +07:00
|
|
|
int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct task_struct *target, long type, int mode);
|
2018-03-23 09:08:27 +07:00
|
|
|
int security_shm_alloc(struct kern_ipc_perm *shp);
|
|
|
|
void security_shm_free(struct kern_ipc_perm *shp);
|
|
|
|
int security_shm_associate(struct kern_ipc_perm *shp, int shmflg);
|
|
|
|
int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd);
|
|
|
|
int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg);
|
2018-03-23 08:52:43 +07:00
|
|
|
int security_sem_alloc(struct kern_ipc_perm *sma);
|
|
|
|
void security_sem_free(struct kern_ipc_perm *sma);
|
|
|
|
int security_sem_associate(struct kern_ipc_perm *sma, int semflg);
|
|
|
|
int security_sem_semctl(struct kern_ipc_perm *sma, int cmd);
|
|
|
|
int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
|
2007-10-17 13:31:32 +07:00
|
|
|
unsigned nsops, int alter);
|
2008-04-24 01:10:25 +07:00
|
|
|
void security_d_instantiate(struct dentry *dentry, struct inode *inode);
|
2018-09-22 07:16:59 +07:00
|
|
|
int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
|
|
|
|
char **value);
|
|
|
|
int security_setprocattr(const char *lsm, const char *name, void *value,
|
|
|
|
size_t size);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_netlink_send(struct sock *sk, struct sk_buff *skb);
|
2013-05-22 23:50:35 +07:00
|
|
|
int security_ismaclabel(const char *name);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen);
|
2008-04-30 02:52:51 +07:00
|
|
|
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid);
|
2007-10-17 13:31:32 +07:00
|
|
|
void security_release_secctx(char *secdata, u32 seclen);
|
|
|
|
|
2015-12-24 23:09:40 +07:00
|
|
|
void security_inode_invalidate_secctx(struct inode *inode);
|
2009-09-04 01:25:57 +07:00
|
|
|
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen);
|
|
|
|
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen);
|
|
|
|
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen);
|
2005-04-17 05:20:36 +07:00
|
|
|
#else /* CONFIG_SECURITY */
|
2008-03-05 22:31:54 +07:00
|
|
|
|
2017-05-19 19:48:53 +07:00
|
|
|
static inline int call_lsm_notifier(enum lsm_event event, void *data)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int register_lsm_notifier(struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int unregister_lsm_notifier(struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-12-14 01:41:47 +07:00
|
|
|
static inline void security_free_mnt_opts(void **mnt_opts)
|
2008-03-05 22:31:54 +07:00
|
|
|
{
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the default capabilities functionality. Most of these functions
|
|
|
|
* are just stubbed out, but a few must call the proper capable code.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline int security_init(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-01-21 22:54:10 +07:00
|
|
|
static inline int security_binder_set_context_mgr(struct task_struct *mgr)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_binder_transaction(struct task_struct *from,
|
|
|
|
struct task_struct *to)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_binder_transfer_binder(struct task_struct *from,
|
|
|
|
struct task_struct *to)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_binder_transfer_file(struct task_struct *from,
|
|
|
|
struct task_struct *to,
|
|
|
|
struct file *file)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-05-07 16:26:19 +07:00
|
|
|
static inline int security_ptrace_access_check(struct task_struct *child,
|
security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 17:37:28 +07:00
|
|
|
unsigned int mode)
|
|
|
|
{
|
2009-05-07 16:26:19 +07:00
|
|
|
return cap_ptrace_access_check(child, mode);
|
security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 17:37:28 +07:00
|
|
|
}
|
|
|
|
|
2008-08-17 08:34:20 +07:00
|
|
|
static inline int security_ptrace_traceme(struct task_struct *parent)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 17:37:28 +07:00
|
|
|
return cap_ptrace_traceme(parent);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_capget(struct task_struct *target,
|
2005-04-17 05:20:36 +07:00
|
|
|
kernel_cap_t *effective,
|
|
|
|
kernel_cap_t *inheritable,
|
|
|
|
kernel_cap_t *permitted)
|
|
|
|
{
|
2008-04-24 01:10:25 +07:00
|
|
|
return cap_capget(target, effective, inheritable, permitted);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
static inline int security_capset(struct cred *new,
|
|
|
|
const struct cred *old,
|
|
|
|
const kernel_cap_t *effective,
|
|
|
|
const kernel_cap_t *inheritable,
|
|
|
|
const kernel_cap_t *permitted)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
return cap_capset(new, old, effective, inheritable, permitted);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2012-01-04 00:25:15 +07:00
|
|
|
static inline int security_capable(const struct cred *cred,
|
2019-01-08 07:10:53 +07:00
|
|
|
struct user_namespace *ns,
|
|
|
|
int cap,
|
|
|
|
unsigned int opts)
|
2008-11-11 18:02:50 +07:00
|
|
|
{
|
2019-01-08 07:10:53 +07:00
|
|
|
return cap_capable(cred, ns, cap, opts);
|
2006-03-25 18:07:41 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_quotactl(int cmds, int type, int id,
|
|
|
|
struct super_block *sb)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_quota_on(struct dentry *dentry)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-11-16 06:36:29 +07:00
|
|
|
static inline int security_syslog(int type)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2010-11-16 06:36:29 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2016-04-08 13:02:11 +07:00
|
|
|
static inline int security_settime64(const struct timespec64 *ts,
|
|
|
|
const struct timezone *tz)
|
|
|
|
{
|
|
|
|
return cap_settime(ts, tz);
|
|
|
|
}
|
|
|
|
|
2008-12-03 01:31:46 +07:00
|
|
|
static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
|
2008-10-30 04:01:20 +07:00
|
|
|
{
|
2015-05-03 05:11:42 +07:00
|
|
|
return __vm_enough_memory(mm, pages, cap_vm_enough_memory(mm, pages));
|
2008-10-30 04:01:20 +07:00
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
static inline int security_bprm_set_creds(struct linux_binprm *bprm)
|
2008-04-24 01:10:25 +07:00
|
|
|
{
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
return cap_bprm_set_creds(bprm);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
static inline int security_bprm_check(struct linux_binprm *bprm)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
static inline void security_bprm_committing_creds(struct linux_binprm *bprm)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:24 +07:00
|
|
|
static inline void security_bprm_committed_creds(struct linux_binprm *bprm)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2018-12-24 04:02:47 +07:00
|
|
|
static inline int security_fs_context_dup(struct fs_context *fc,
|
|
|
|
struct fs_context *src_fc)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2018-11-02 06:07:24 +07:00
|
|
|
static inline int security_fs_context_parse_param(struct fs_context *fc,
|
|
|
|
struct fs_parameter *param)
|
|
|
|
{
|
|
|
|
return -ENOPARAM;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_sb_alloc(struct super_block *sb)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline void security_sb_free(struct super_block *sb)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2018-11-18 00:09:18 +07:00
|
|
|
static inline int security_sb_eat_lsm_opts(char *options,
|
2018-12-14 01:41:47 +07:00
|
|
|
void **mnt_opts)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-12-02 11:06:57 +07:00
|
|
|
static inline int security_sb_remount(struct super_block *sb,
|
2018-12-14 01:41:47 +07:00
|
|
|
void *mnt_opts)
|
2011-03-04 04:09:14 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-12-05 23:58:35 +07:00
|
|
|
static inline int security_sb_kern_mount(struct super_block *sb)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-07-04 06:47:13 +07:00
|
|
|
static inline int security_sb_show_options(struct seq_file *m,
|
|
|
|
struct super_block *sb)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_sb_statfs(struct dentry *dentry)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 01:52:53 +07:00
|
|
|
static inline int security_sb_mount(const char *dev_name, const struct path *path,
|
2012-10-11 22:42:01 +07:00
|
|
|
const char *type, unsigned long flags,
|
2005-04-17 05:20:36 +07:00
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_sb_umount(struct vfsmount *mnt, int flags)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 02:31:19 +07:00
|
|
|
static inline int security_sb_pivotroot(const struct path *old_path,
|
|
|
|
const struct path *new_path)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-03-05 22:31:54 +07:00
|
|
|
static inline int security_sb_set_mnt_opts(struct super_block *sb,
|
2018-12-14 01:41:47 +07:00
|
|
|
void *mnt_opts,
|
2013-05-22 23:50:36 +07:00
|
|
|
unsigned long kern_flags,
|
|
|
|
unsigned long *set_kern_flags)
|
2008-03-05 22:31:54 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
selinux: make security_sb_clone_mnt_opts return an error on context mismatch
I had the following problem reported a while back. If you mount the
same filesystem twice using NFSv4 with different contexts, then the
second context= option is ignored. For instance:
# mount server:/export /mnt/test1
# mount server:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0
# ls -dZ /mnt/test1
drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test1
# ls -dZ /mnt/test2
drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test2
When we call into SELinux to set the context of a "cloned" superblock,
it will currently just bail out when it notices that we're reusing an
existing superblock. Since the existing superblock is already set up and
presumably in use, we can't go overwriting its context with the one from
the "original" sb. Because of this, the second context= option in this
case cannot take effect.
This patch fixes this by turning security_sb_clone_mnt_opts into an int
return operation. When it finds that the "new" superblock that it has
been handed is already set up, it checks to see whether the contexts on
the old superblock match it. If it does, then it will just return
success, otherwise it'll return -EBUSY and emit a printk to tell the
admin why the second mount failed.
Note that this patch may cause casualties. The NFSv4 code relies on
being able to walk down to an export from the pseudoroot. If you mount
filesystems that are nested within one another with different contexts,
then this patch will make those mounts fail in new and "exciting" ways.
For instance, suppose that /export is a separate filesystem on the
server:
# mount server:/ /mnt/test1
# mount salusa:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0
mount.nfs: an incorrect mount option was specified
...with the printk in the ring buffer. Because we *might* eventually
walk down to /mnt/test1/export, the mount is denied due to this patch.
The second mount needs the pseudoroot superblock, but that's already
present with the wrong context.
OTOH, if we mount these in the reverse order, then both mounts work,
because the pseudoroot superblock created when mounting /export is
discarded once that mount is done. If we then however try to walk into
that directory, the automount fails for the similar reasons:
# cd /mnt/test1/scratch/
-bash: cd: /mnt/test1/scratch: Device or resource busy
The story I've gotten from the SELinux folks that I've talked to is that
this is desirable behavior. In SELinux-land, mounting the same data
under different contexts is wrong -- there can be only one.
Cc: Steve Dickson <steved@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2013-04-01 19:14:24 +07:00
|
|
|
static inline int security_sb_clone_mnt_opts(const struct super_block *oldsb,
|
2017-06-05 22:45:04 +07:00
|
|
|
struct super_block *newsb,
|
|
|
|
unsigned long kern_flags,
|
|
|
|
unsigned long *set_kern_flags)
|
selinux: make security_sb_clone_mnt_opts return an error on context mismatch
I had the following problem reported a while back. If you mount the
same filesystem twice using NFSv4 with different contexts, then the
second context= option is ignored. For instance:
# mount server:/export /mnt/test1
# mount server:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0
# ls -dZ /mnt/test1
drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test1
# ls -dZ /mnt/test2
drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test2
When we call into SELinux to set the context of a "cloned" superblock,
it will currently just bail out when it notices that we're reusing an
existing superblock. Since the existing superblock is already set up and
presumably in use, we can't go overwriting its context with the one from
the "original" sb. Because of this, the second context= option in this
case cannot take effect.
This patch fixes this by turning security_sb_clone_mnt_opts into an int
return operation. When it finds that the "new" superblock that it has
been handed is already set up, it checks to see whether the contexts on
the old superblock match it. If it does, then it will just return
success, otherwise it'll return -EBUSY and emit a printk to tell the
admin why the second mount failed.
Note that this patch may cause casualties. The NFSv4 code relies on
being able to walk down to an export from the pseudoroot. If you mount
filesystems that are nested within one another with different contexts,
then this patch will make those mounts fail in new and "exciting" ways.
For instance, suppose that /export is a separate filesystem on the
server:
# mount server:/ /mnt/test1
# mount salusa:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0
mount.nfs: an incorrect mount option was specified
...with the printk in the ring buffer. Because we *might* eventually
walk down to /mnt/test1/export, the mount is denied due to this patch.
The second mount needs the pseudoroot superblock, but that's already
present with the wrong context.
OTOH, if we mount these in the reverse order, then both mounts work,
because the pseudoroot superblock created when mounting /export is
discarded once that mount is done. If we then however try to walk into
that directory, the automount fails for the similar reasons:
# cd /mnt/test1/scratch/
-bash: cd: /mnt/test1/scratch: Device or resource busy
The story I've gotten from the SELinux folks that I've talked to is that
this is desirable behavior. In SELinux-land, mounting the same data
under different contexts is wrong -- there can be only one.
Cc: Steve Dickson <steved@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2013-04-01 19:14:24 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2008-03-05 22:31:54 +07:00
|
|
|
|
2018-12-15 11:42:21 +07:00
|
|
|
static inline int security_add_mnt_opt(const char *option, const char *val,
|
|
|
|
int len, void **mnt_opts)
|
2008-03-05 22:31:54 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_alloc(struct inode *inode)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline void security_inode_free(struct inode *inode)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
2005-09-10 03:01:35 +07:00
|
|
|
|
2013-05-22 23:50:34 +07:00
|
|
|
static inline int security_dentry_init_security(struct dentry *dentry,
|
|
|
|
int mode,
|
2016-07-21 03:06:15 +07:00
|
|
|
const struct qstr *name,
|
2013-05-22 23:50:34 +07:00
|
|
|
void **ctx,
|
|
|
|
u32 *ctxlen)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
2016-07-13 21:44:52 +07:00
|
|
|
static inline int security_dentry_create_files_as(struct dentry *dentry,
|
|
|
|
int mode, struct qstr *name,
|
|
|
|
const struct cred *old,
|
|
|
|
struct cred *new)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-05-22 23:50:34 +07:00
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_init_security(struct inode *inode,
|
2005-09-10 03:01:35 +07:00
|
|
|
struct inode *dir,
|
2011-02-01 23:05:39 +07:00
|
|
|
const struct qstr *qstr,
|
2014-08-28 18:43:09 +07:00
|
|
|
const initxattrs xattrs,
|
2011-06-07 02:29:25 +07:00
|
|
|
void *fs_data)
|
2005-09-10 03:01:35 +07:00
|
|
|
{
|
2011-08-15 20:09:16 +07:00
|
|
|
return 0;
|
2005-09-10 03:01:35 +07:00
|
|
|
}
|
2008-04-24 01:10:25 +07:00
|
|
|
|
2011-08-15 20:09:16 +07:00
|
|
|
static inline int security_old_inode_init_security(struct inode *inode,
|
|
|
|
struct inode *dir,
|
|
|
|
const struct qstr *qstr,
|
2013-07-25 03:44:02 +07:00
|
|
|
const char **name,
|
|
|
|
void **value, size_t *len)
|
2011-08-11 11:22:51 +07:00
|
|
|
{
|
2012-01-03 19:14:29 +07:00
|
|
|
return -EOPNOTSUPP;
|
2011-08-11 11:22:51 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_create(struct inode *dir,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct dentry *dentry,
|
2011-07-26 12:42:34 +07:00
|
|
|
umode_t mode)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_link(struct dentry *old_dentry,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct inode *dir,
|
|
|
|
struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_unlink(struct inode *dir,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_symlink(struct inode *dir,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct dentry *dentry,
|
|
|
|
const char *old_name)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_mkdir(struct inode *dir,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct dentry *dentry,
|
|
|
|
int mode)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_rmdir(struct inode *dir,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_mknod(struct inode *dir,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct dentry *dentry,
|
|
|
|
int mode, dev_t dev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_rename(struct inode *old_dir,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct dentry *old_dentry,
|
|
|
|
struct inode *new_dir,
|
2014-04-01 22:08:43 +07:00
|
|
|
struct dentry *new_dentry,
|
|
|
|
unsigned int flags)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_readlink(struct dentry *dentry)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-03-23 09:37:39 +07:00
|
|
|
static inline int security_inode_follow_link(struct dentry *dentry,
|
|
|
|
struct inode *inode,
|
|
|
|
bool rcu)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-07-17 20:37:02 +07:00
|
|
|
static inline int security_inode_permission(struct inode *inode, int mask)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_setattr(struct dentry *dentry,
|
2005-04-17 05:20:36 +07:00
|
|
|
struct iattr *attr)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-03-09 06:28:30 +07:00
|
|
|
static inline int security_inode_getattr(const struct path *path)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-29 14:59:41 +07:00
|
|
|
static inline int security_inode_setxattr(struct dentry *dentry,
|
|
|
|
const char *name, const void *value, size_t size, int flags)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return cap_inode_setxattr(dentry, name, value, size, flags);
|
|
|
|
}
|
|
|
|
|
2008-04-29 14:59:41 +07:00
|
|
|
static inline void security_inode_post_setxattr(struct dentry *dentry,
|
|
|
|
const char *name, const void *value, size_t size, int flags)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2008-04-29 14:59:41 +07:00
|
|
|
static inline int security_inode_getxattr(struct dentry *dentry,
|
|
|
|
const char *name)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_inode_listxattr(struct dentry *dentry)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-29 14:59:41 +07:00
|
|
|
static inline int security_inode_removexattr(struct dentry *dentry,
|
|
|
|
const char *name)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return cap_inode_removexattr(dentry, name);
|
|
|
|
}
|
|
|
|
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 13:31:36 +07:00
|
|
|
static inline int security_inode_need_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return cap_inode_need_killpriv(dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_inode_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return cap_inode_killpriv(dentry);
|
|
|
|
}
|
|
|
|
|
2015-12-24 23:09:39 +07:00
|
|
|
static inline int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-12-24 23:09:39 +07:00
|
|
|
static inline void security_inode_getsecid(struct inode *inode, u32 *secid)
|
2008-03-02 02:51:09 +07:00
|
|
|
{
|
|
|
|
*secid = 0;
|
|
|
|
}
|
|
|
|
|
2016-07-13 22:13:56 +07:00
|
|
|
static inline int security_inode_copy_up(struct dentry *src, struct cred **new)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-07-13 21:44:49 +07:00
|
|
|
static inline int security_inode_copy_up_xattr(const char *name)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_permission(struct file *file, int mask)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_alloc(struct file *file)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline void security_file_free(struct file *file)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_ioctl(struct file *file, unsigned int cmd,
|
|
|
|
unsigned long arg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-05-31 04:11:23 +07:00
|
|
|
static inline int security_mmap_file(struct file *file, unsigned long prot,
|
2012-05-31 00:30:51 +07:00
|
|
|
unsigned long flags)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_mmap_addr(unsigned long addr)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2012-05-31 00:11:37 +07:00
|
|
|
return cap_mmap_addr(addr);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_mprotect(struct vm_area_struct *vma,
|
|
|
|
unsigned long reqprot,
|
|
|
|
unsigned long prot)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_lock(struct file *file, unsigned int cmd)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_fcntl(struct file *file, unsigned int cmd,
|
|
|
|
unsigned long arg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-08-22 22:27:32 +07:00
|
|
|
static inline void security_file_set_fowner(struct file *file)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2014-08-22 22:27:32 +07:00
|
|
|
return;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_send_sigiotask(struct task_struct *tsk,
|
|
|
|
struct fown_struct *fown,
|
|
|
|
int sig)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_file_receive(struct file *file)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-07-11 00:25:29 +07:00
|
|
|
static inline int security_file_open(struct file *file)
|
2007-09-14 07:27:07 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-03-24 18:46:33 +07:00
|
|
|
static inline int security_task_alloc(struct task_struct *task,
|
|
|
|
unsigned long clone_flags)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-12-22 03:17:03 +07:00
|
|
|
static inline void security_task_free(struct task_struct *task)
|
|
|
|
{ }
|
|
|
|
|
2009-09-04 15:19:48 +07:00
|
|
|
static inline int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 15:14:21 +07:00
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
static inline void security_cred_free(struct cred *cred)
|
|
|
|
{ }
|
|
|
|
|
|
|
|
static inline int security_prepare_creds(struct cred *new,
|
|
|
|
const struct cred *old,
|
|
|
|
gfp_t gfp)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 15:14:21 +07:00
|
|
|
static inline void security_transfer_creds(struct cred *new,
|
|
|
|
const struct cred *old)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2008-11-14 06:39:28 +07:00
|
|
|
static inline int security_kernel_act_as(struct cred *cred, u32 secid)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_kernel_create_files_as(struct cred *cred,
|
|
|
|
struct inode *inode)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-11-03 12:35:32 +07:00
|
|
|
static inline int security_kernel_module_request(char *kmod_name)
|
2009-08-13 20:44:57 +07:00
|
|
|
{
|
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2018-07-14 01:05:56 +07:00
|
|
|
static inline int security_kernel_load_data(enum kernel_load_data_id id)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-01-31 10:23:26 +07:00
|
|
|
static inline int security_kernel_read_file(struct file *file,
|
|
|
|
enum kernel_read_file_id id)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-12-29 04:02:29 +07:00
|
|
|
static inline int security_kernel_post_read_file(struct file *file,
|
2016-01-24 22:07:32 +07:00
|
|
|
char *buf, loff_t size,
|
|
|
|
enum kernel_read_file_id id)
|
2015-12-29 04:02:29 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
static inline int security_task_fix_setuid(struct cred *new,
|
|
|
|
const struct cred *old,
|
|
|
|
int flags)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
return cap_task_fix_setuid(new, old, flags);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_setpgid(struct task_struct *p, pid_t pgid)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_getpgid(struct task_struct *p)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_getsid(struct task_struct *p)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline void security_task_getsecid(struct task_struct *p, u32 *secid)
|
2008-03-02 02:51:09 +07:00
|
|
|
{
|
|
|
|
*secid = 0;
|
|
|
|
}
|
2006-06-30 15:55:46 +07:00
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_setnice(struct task_struct *p, int nice)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 13:31:36 +07:00
|
|
|
return cap_task_setnice(p, nice);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_setioprio(struct task_struct *p, int ioprio)
|
2006-06-23 16:03:58 +07:00
|
|
|
{
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 13:31:36 +07:00
|
|
|
return cap_task_setioprio(p, ioprio);
|
2006-06-23 16:03:58 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_getioprio(struct task_struct *p)
|
2006-06-30 15:55:49 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
prlimit,security,selinux: add a security hook for prlimit
When SELinux was first added to the kernel, a process could only get
and set its own resource limits via getrlimit(2) and setrlimit(2), so no
MAC checks were required for those operations, and thus no security hooks
were defined for them. Later, SELinux introduced a hook for setlimit(2)
with a check if the hard limit was being changed in order to be able to
rely on the hard limit value as a safe reset point upon context
transitions.
Later on, when prlimit(2) was added to the kernel with the ability to get
or set resource limits (hard or soft) of another process, LSM/SELinux was
not updated other than to pass the target process to the setrlimit hook.
This resulted in incomplete control over both getting and setting the
resource limits of another process.
Add a new security_task_prlimit() hook to the check_prlimit_permission()
function to provide complete mediation. The hook is only called when
acting on another task, and only if the existing DAC/capability checks
would allow access. Pass flags down to the hook to indicate whether the
prlimit(2) call will read, write, or both read and write the resource
limits of the target process.
The existing security_task_setrlimit() hook is left alone; it continues
to serve a purpose in supporting the ability to make decisions based on
the old and/or new resource limit values when setting limits. This
is consistent with the DAC/capability logic, where
check_prlimit_permission() performs generic DAC/capability checks for
acting on another task, while do_prlimit() performs a capability check
based on a comparison of the old and new resource limits. Fix the
inline documentation for the hook to match the code.
Implement the new hook for SELinux. For setting resource limits, we
reuse the existing setrlimit permission. Note that this does overload
the setrlimit permission to mean the ability to set the resource limit
(soft or hard) of another process or the ability to change one's own
hard limit. For getting resource limits, a new getrlimit permission
is defined. This was not originally defined since getrlimit(2) could
only be used to obtain a process' own limits.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-02-17 19:57:00 +07:00
|
|
|
static inline int security_task_prlimit(const struct cred *cred,
|
|
|
|
const struct cred *tcred,
|
|
|
|
unsigned int flags)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-08-26 23:41:16 +07:00
|
|
|
static inline int security_task_setrlimit(struct task_struct *p,
|
|
|
|
unsigned int resource,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct rlimit *new_rlim)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-10-15 02:21:18 +07:00
|
|
|
static inline int security_task_setscheduler(struct task_struct *p)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2010-10-15 02:21:18 +07:00
|
|
|
return cap_task_setscheduler(p);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_getscheduler(struct task_struct *p)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_movememory(struct task_struct *p)
|
2006-06-23 16:04:01 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_kill(struct task_struct *p,
|
2018-09-25 16:27:20 +07:00
|
|
|
struct kernel_siginfo *info, int sig,
|
usb, signal, security: only pass the cred, not the secid, to kill_pid_info_as_cred and security_task_kill
commit d178bc3a708f39cbfefc3fab37032d3f2511b4ec ("user namespace: usb:
make usb urbs user namespace aware (v2)") changed kill_pid_info_as_uid
to kill_pid_info_as_cred, saving and passing a cred structure instead of
uids. Since the secid can be obtained from the cred, drop the secid fields
from the usb_dev_state and async structures, and drop the secid argument to
kill_pid_info_as_cred. Replace the secid argument to security_task_kill
with the cred. Update SELinux, Smack, and AppArmor to use the cred, which
avoids the need for Smack and AppArmor to use a secid at all in this hook.
Further changes to Smack might still be required to take full advantage of
this change, since it should now be possible to perform capability
checking based on the supplied cred. The changes to Smack and AppArmor
have only been compile-tested.
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2017-09-08 23:40:01 +07:00
|
|
|
const struct cred *cred)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2008-02-29 22:14:57 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_task_prctl(int option, unsigned long arg2,
|
|
|
|
unsigned long arg3,
|
|
|
|
unsigned long arg4,
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
unsigned long arg5)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2015-09-19 04:41:23 +07:00
|
|
|
return cap_task_prctl(option, arg2, arg3, arg4, arg5);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
|
|
|
|
{ }
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_ipc_permission(struct kern_ipc_perm *ipcp,
|
|
|
|
short flag)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-03-02 02:51:09 +07:00
|
|
|
static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
|
|
|
|
{
|
|
|
|
*secid = 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_msg_msg_alloc(struct msg_msg *msg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline void security_msg_msg_free(struct msg_msg *msg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2018-03-23 09:22:26 +07:00
|
|
|
static inline int security_msg_queue_alloc(struct kern_ipc_perm *msq)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:22:26 +07:00
|
|
|
static inline void security_msg_queue_free(struct kern_ipc_perm *msq)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2018-03-23 09:22:26 +07:00
|
|
|
static inline int security_msg_queue_associate(struct kern_ipc_perm *msq,
|
2008-04-24 01:10:25 +07:00
|
|
|
int msqflg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:22:26 +07:00
|
|
|
static inline int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:22:26 +07:00
|
|
|
static inline int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct msg_msg *msg, int msqflg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:22:26 +07:00
|
|
|
static inline int security_msg_queue_msgrcv(struct kern_ipc_perm *msq,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct msg_msg *msg,
|
|
|
|
struct task_struct *target,
|
|
|
|
long type, int mode)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:08:27 +07:00
|
|
|
static inline int security_shm_alloc(struct kern_ipc_perm *shp)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:08:27 +07:00
|
|
|
static inline void security_shm_free(struct kern_ipc_perm *shp)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2018-03-23 09:08:27 +07:00
|
|
|
static inline int security_shm_associate(struct kern_ipc_perm *shp,
|
2008-04-24 01:10:25 +07:00
|
|
|
int shmflg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:08:27 +07:00
|
|
|
static inline int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 09:08:27 +07:00
|
|
|
static inline int security_shm_shmat(struct kern_ipc_perm *shp,
|
2008-04-24 01:10:25 +07:00
|
|
|
char __user *shmaddr, int shmflg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 08:52:43 +07:00
|
|
|
static inline int security_sem_alloc(struct kern_ipc_perm *sma)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 08:52:43 +07:00
|
|
|
static inline void security_sem_free(struct kern_ipc_perm *sma)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2018-03-23 08:52:43 +07:00
|
|
|
static inline int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 08:52:43 +07:00
|
|
|
static inline int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-23 08:52:43 +07:00
|
|
|
static inline int security_sem_semop(struct kern_ipc_perm *sma,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct sembuf *sops, unsigned nsops,
|
|
|
|
int alter)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-22 07:16:59 +07:00
|
|
|
static inline void security_d_instantiate(struct dentry *dentry,
|
|
|
|
struct inode *inode)
|
2005-04-17 05:20:36 +07:00
|
|
|
{ }
|
|
|
|
|
2018-09-22 07:16:59 +07:00
|
|
|
static inline int security_getprocattr(struct task_struct *p, const char *lsm,
|
|
|
|
char *name, char **value)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2018-09-22 07:16:59 +07:00
|
|
|
static inline int security_setprocattr(const char *lsm, char *name,
|
|
|
|
void *value, size_t size)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2015-05-03 05:11:42 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2013-05-22 23:50:35 +07:00
|
|
|
static inline int security_ismaclabel(const char *name)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-08-03 04:12:06 +07:00
|
|
|
static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
2008-04-30 02:52:51 +07:00
|
|
|
static inline int security_secctx_to_secid(const char *secdata,
|
2008-01-16 06:47:35 +07:00
|
|
|
u32 seclen,
|
|
|
|
u32 *secid)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
2006-08-03 04:12:06 +07:00
|
|
|
static inline void security_release_secctx(char *secdata, u32 seclen)
|
|
|
|
{
|
|
|
|
}
|
2009-09-04 01:25:57 +07:00
|
|
|
|
2015-12-24 23:09:40 +07:00
|
|
|
static inline void security_inode_invalidate_secctx(struct inode *inode)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2009-09-04 01:25:57 +07:00
|
|
|
static inline int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
static inline int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
static inline int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
#endif /* CONFIG_SECURITY */
|
|
|
|
|
|
|
|
#ifdef CONFIG_SECURITY_NETWORK
|
2006-07-25 13:32:50 +07:00
|
|
|
|
2011-01-06 06:38:53 +07:00
|
|
|
int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_unix_may_send(struct socket *sock, struct socket *other);
|
|
|
|
int security_socket_create(int family, int type, int protocol, int kern);
|
|
|
|
int security_socket_post_create(struct socket *sock, int family,
|
|
|
|
int type, int protocol, int kern);
|
2018-05-04 21:28:19 +07:00
|
|
|
int security_socket_socketpair(struct socket *socka, struct socket *sockb);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen);
|
|
|
|
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen);
|
|
|
|
int security_socket_listen(struct socket *sock, int backlog);
|
|
|
|
int security_socket_accept(struct socket *sock, struct socket *newsock);
|
|
|
|
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size);
|
|
|
|
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
|
|
|
|
int size, int flags);
|
|
|
|
int security_socket_getsockname(struct socket *sock);
|
|
|
|
int security_socket_getpeername(struct socket *sock);
|
|
|
|
int security_socket_getsockopt(struct socket *sock, int level, int optname);
|
|
|
|
int security_socket_setsockopt(struct socket *sock, int level, int optname);
|
|
|
|
int security_socket_shutdown(struct socket *sock, int how);
|
|
|
|
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb);
|
|
|
|
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
|
|
|
|
int __user *optlen, unsigned len);
|
|
|
|
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid);
|
|
|
|
int security_sk_alloc(struct sock *sk, int family, gfp_t priority);
|
|
|
|
void security_sk_free(struct sock *sk);
|
|
|
|
void security_sk_clone(const struct sock *sk, struct sock *newsk);
|
|
|
|
void security_sk_classify_flow(struct sock *sk, struct flowi *fl);
|
|
|
|
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl);
|
|
|
|
void security_sock_graft(struct sock*sk, struct socket *parent);
|
|
|
|
int security_inet_conn_request(struct sock *sk,
|
|
|
|
struct sk_buff *skb, struct request_sock *req);
|
|
|
|
void security_inet_csk_clone(struct sock *newsk,
|
|
|
|
const struct request_sock *req);
|
|
|
|
void security_inet_conn_established(struct sock *sk,
|
|
|
|
struct sk_buff *skb);
|
2010-10-14 03:24:41 +07:00
|
|
|
int security_secmark_relabel_packet(u32 secid);
|
|
|
|
void security_secmark_refcount_inc(void);
|
|
|
|
void security_secmark_refcount_dec(void);
|
2013-01-14 14:12:19 +07:00
|
|
|
int security_tun_dev_alloc_security(void **security);
|
|
|
|
void security_tun_dev_free_security(void *security);
|
2009-08-29 05:12:43 +07:00
|
|
|
int security_tun_dev_create(void);
|
2013-01-14 14:12:19 +07:00
|
|
|
int security_tun_dev_attach_queue(void *security);
|
|
|
|
int security_tun_dev_attach(struct sock *sk, void *security);
|
|
|
|
int security_tun_dev_open(void *security);
|
2018-02-14 03:53:21 +07:00
|
|
|
int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb);
|
|
|
|
int security_sctp_bind_connect(struct sock *sk, int optname,
|
|
|
|
struct sockaddr *address, int addrlen);
|
|
|
|
void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
|
|
|
|
struct sock *newsk);
|
2006-11-09 06:04:09 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
#else /* CONFIG_SECURITY_NETWORK */
|
2011-01-06 06:38:53 +07:00
|
|
|
static inline int security_unix_stream_connect(struct sock *sock,
|
|
|
|
struct sock *other,
|
2008-04-24 01:10:25 +07:00
|
|
|
struct sock *newsk)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_unix_may_send(struct socket *sock,
|
|
|
|
struct socket *other)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_create(int family, int type,
|
|
|
|
int protocol, int kern)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_post_create(struct socket *sock,
|
2006-08-05 13:17:57 +07:00
|
|
|
int family,
|
|
|
|
int type,
|
|
|
|
int protocol, int kern)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2006-08-05 13:17:57 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2018-05-04 21:28:19 +07:00
|
|
|
static inline int security_socket_socketpair(struct socket *socka,
|
|
|
|
struct socket *sockb)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_bind(struct socket *sock,
|
|
|
|
struct sockaddr *address,
|
2005-04-17 05:20:36 +07:00
|
|
|
int addrlen)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_connect(struct socket *sock,
|
|
|
|
struct sockaddr *address,
|
2005-04-17 05:20:36 +07:00
|
|
|
int addrlen)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_listen(struct socket *sock, int backlog)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_accept(struct socket *sock,
|
|
|
|
struct socket *newsock)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_sendmsg(struct socket *sock,
|
|
|
|
struct msghdr *msg, int size)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_recvmsg(struct socket *sock,
|
|
|
|
struct msghdr *msg, int size,
|
2005-04-17 05:20:36 +07:00
|
|
|
int flags)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_getsockname(struct socket *sock)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_getpeername(struct socket *sock)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_getsockopt(struct socket *sock,
|
2005-04-17 05:20:36 +07:00
|
|
|
int level, int optname)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_setsockopt(struct socket *sock,
|
2005-04-17 05:20:36 +07:00
|
|
|
int level, int optname)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_socket_shutdown(struct socket *sock, int how)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline int security_sock_rcv_skb(struct sock *sk,
|
|
|
|
struct sk_buff *skb)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
[SECURITY]: TCP/UDP getpeersec
This patch implements an application of the LSM-IPSec networking
controls whereby an application can determine the label of the
security association its TCP or UDP sockets are currently connected to
via getsockopt and the auxiliary data mechanism of recvmsg.
Patch purpose:
This patch enables a security-aware application to retrieve the
security context of an IPSec security association a particular TCP or
UDP socket is using. The application can then use this security
context to determine the security context for processing on behalf of
the peer at the other end of this connection. In the case of UDP, the
security context is for each individual packet. An example
application is the inetd daemon, which could be modified to start
daemons running at security contexts dependent on the remote client.
Patch design approach:
- Design for TCP
The patch enables the SELinux LSM to set the peer security context for
a socket based on the security context of the IPSec security
association. The application may retrieve this context using
getsockopt. When called, the kernel determines if the socket is a
connected (TCP_ESTABLISHED) TCP socket and, if so, uses the dst_entry
cache on the socket to retrieve the security associations. If a
security association has a security context, the context string is
returned, as for UNIX domain sockets.
- Design for UDP
Unlike TCP, UDP is connectionless. This requires a somewhat different
API to retrieve the peer security context. With TCP, the peer
security context stays the same throughout the connection, thus it can
be retrieved at any time between when the connection is established
and when it is torn down. With UDP, each read/write can have
different peer and thus the security context might change every time.
As a result the security context retrieval must be done TOGETHER with
the packet retrieval.
The solution is to build upon the existing Unix domain socket API for
retrieving user credentials. Linux offers the API for obtaining user
credentials via ancillary messages (i.e., out of band/control messages
that are bundled together with a normal message).
Patch implementation details:
- Implementation for TCP
The security context can be retrieved by applications using getsockopt
with the existing SO_PEERSEC flag. As an example (ignoring error
checking):
getsockopt(sockfd, SOL_SOCKET, SO_PEERSEC, optbuf, &optlen);
printf("Socket peer context is: %s\n", optbuf);
The SELinux function, selinux_socket_getpeersec, is extended to check
for labeled security associations for connected (TCP_ESTABLISHED ==
sk->sk_state) TCP sockets only. If so, the socket has a dst_cache of
struct dst_entry values that may refer to security associations. If
these have security associations with security contexts, the security
context is returned.
getsockopt returns a buffer that contains a security context string or
the buffer is unmodified.
- Implementation for UDP
To retrieve the security context, the application first indicates to
the kernel such desire by setting the IP_PASSSEC option via
getsockopt. Then the application retrieves the security context using
the auxiliary data mechanism.
An example server application for UDP should look like this:
toggle = 1;
toggle_len = sizeof(toggle);
setsockopt(sockfd, SOL_IP, IP_PASSSEC, &toggle, &toggle_len);
recvmsg(sockfd, &msg_hdr, 0);
if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) {
cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr);
if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) &&
cmsg_hdr->cmsg_level == SOL_IP &&
cmsg_hdr->cmsg_type == SCM_SECURITY) {
memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext));
}
}
ip_setsockopt is enhanced with a new socket option IP_PASSSEC to allow
a server socket to receive security context of the peer. A new
ancillary message type SCM_SECURITY.
When the packet is received we get the security context from the
sec_path pointer which is contained in the sk_buff, and copy it to the
ancillary message space. An additional LSM hook,
selinux_socket_getpeersec_udp, is defined to retrieve the security
context from the SELinux space. The existing function,
selinux_socket_getpeersec does not suit our purpose, because the
security context is copied directly to user space, rather than to
kernel space.
Testing:
We have tested the patch by setting up TCP and UDP connections between
applications on two machines using the IPSec policies that result in
labeled security associations being built. For TCP, we can then
extract the peer security context using getsockopt on either end. For
UDP, the receiving end can retrieve the security context using the
auxiliary data mechanism of recvmsg.
Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-21 13:41:23 +07:00
|
|
|
static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
|
|
|
|
int __user *optlen, unsigned len)
|
|
|
|
{
|
|
|
|
return -ENOPROTOOPT;
|
|
|
|
}
|
|
|
|
|
2006-08-03 04:12:06 +07:00
|
|
|
static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return -ENOPROTOOPT;
|
|
|
|
}
|
|
|
|
|
2005-10-07 13:46:04 +07:00
|
|
|
static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_sk_free(struct sock *sk)
|
2006-08-05 13:08:56 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
}
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
|
2006-08-05 13:12:42 +07:00
|
|
|
static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
{
|
|
|
|
}
|
2006-07-25 13:32:50 +07:00
|
|
|
|
|
|
|
static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2008-04-24 01:10:25 +07:00
|
|
|
static inline void security_sock_graft(struct sock *sk, struct socket *parent)
|
2006-07-25 13:32:50 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_inet_conn_request(struct sock *sk,
|
|
|
|
struct sk_buff *skb, struct request_sock *req)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_inet_csk_clone(struct sock *newsk,
|
|
|
|
const struct request_sock *req)
|
|
|
|
{
|
|
|
|
}
|
2006-11-09 06:04:09 +07:00
|
|
|
|
|
|
|
static inline void security_inet_conn_established(struct sock *sk,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
}
|
2009-08-29 05:12:43 +07:00
|
|
|
|
2010-10-14 03:24:41 +07:00
|
|
|
static inline int security_secmark_relabel_packet(u32 secid)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_secmark_refcount_inc(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_secmark_refcount_dec(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2013-01-14 14:12:19 +07:00
|
|
|
static inline int security_tun_dev_alloc_security(void **security)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_tun_dev_free_security(void *security)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2009-08-29 05:12:43 +07:00
|
|
|
static inline int security_tun_dev_create(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-01-14 14:12:19 +07:00
|
|
|
static inline int security_tun_dev_attach_queue(void *security)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_tun_dev_attach(struct sock *sk, void *security)
|
2009-08-29 05:12:43 +07:00
|
|
|
{
|
2013-01-14 14:12:19 +07:00
|
|
|
return 0;
|
2009-08-29 05:12:43 +07:00
|
|
|
}
|
|
|
|
|
2013-01-14 14:12:19 +07:00
|
|
|
static inline int security_tun_dev_open(void *security)
|
2009-08-29 05:12:43 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2018-02-14 03:53:21 +07:00
|
|
|
|
|
|
|
static inline int security_sctp_assoc_request(struct sctp_endpoint *ep,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_sctp_bind_connect(struct sock *sk, int optname,
|
|
|
|
struct sockaddr *address,
|
|
|
|
int addrlen)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_sctp_sk_clone(struct sctp_endpoint *ep,
|
|
|
|
struct sock *sk,
|
|
|
|
struct sock *newsk)
|
|
|
|
{
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
#endif /* CONFIG_SECURITY_NETWORK */
|
|
|
|
|
IB/core: Enforce PKey security on QPs
Add new LSM hooks to allocate and free security contexts and check for
permission to access a PKey.
Allocate and free a security context when creating and destroying a QP.
This context is used for controlling access to PKeys.
When a request is made to modify a QP that changes the port, PKey index,
or alternate path, check that the QP has permission for the PKey in the
PKey table index on the subnet prefix of the port. If the QP is shared
make sure all handles to the QP also have access.
Store which port and PKey index a QP is using. After the reset to init
transition the user can modify the port, PKey index and alternate path
independently. So port and PKey settings changes can be a merge of the
previous settings and the new ones.
In order to maintain access control if there are PKey table or subnet
prefix change keep a list of all QPs are using each PKey index on
each port. If a change occurs all QPs using that device and port must
have access enforced for the new cache settings.
These changes add a transaction to the QP modify process. Association
with the old port and PKey index must be maintained if the modify fails,
and must be removed if it succeeds. Association with the new port and
PKey index must be established prior to the modify and removed if the
modify fails.
1. When a QP is modified to a particular Port, PKey index or alternate
path insert that QP into the appropriate lists.
2. Check permission to access the new settings.
3. If step 2 grants access attempt to modify the QP.
4a. If steps 2 and 3 succeed remove any prior associations.
4b. If ether fails remove the new setting associations.
If a PKey table or subnet prefix changes walk the list of QPs and
check that they have permission. If not send the QP to the error state
and raise a fatal error event. If it's a shared QP make sure all the
QPs that share the real_qp have permission as well. If the QP that
owns a security structure is denied access the security structure is
marked as such and the QP is added to an error_list. Once the moving
the QP to error is complete the security structure mark is cleared.
Maintaining the lists correctly turns QP destroy into a transaction.
The hardware driver for the device frees the ib_qp structure, so while
the destroy is in progress the ib_qp pointer in the ib_qp_security
struct is undefined. When the destroy process begins the ib_qp_security
structure is marked as destroying. This prevents any action from being
taken on the QP pointer. After the QP is destroyed successfully it
could still listed on an error_list wait for it to be processed by that
flow before cleaning up the structure.
If the destroy fails the QPs port and PKey settings are reinserted into
the appropriate lists, the destroying flag is cleared, and access control
is enforced, in case there were any cache changes during the destroy
flow.
To keep the security changes isolated a new file is used to hold security
related functionality.
Signed-off-by: Daniel Jurgens <danielj@mellanox.com>
Acked-by: Doug Ledford <dledford@redhat.com>
[PM: merge fixup in ib_verbs.h and uverbs_cmd.c]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2017-05-19 19:48:52 +07:00
|
|
|
#ifdef CONFIG_SECURITY_INFINIBAND
|
|
|
|
int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey);
|
2017-05-19 19:48:54 +07:00
|
|
|
int security_ib_endport_manage_subnet(void *sec, const char *name, u8 port_num);
|
IB/core: Enforce PKey security on QPs
Add new LSM hooks to allocate and free security contexts and check for
permission to access a PKey.
Allocate and free a security context when creating and destroying a QP.
This context is used for controlling access to PKeys.
When a request is made to modify a QP that changes the port, PKey index,
or alternate path, check that the QP has permission for the PKey in the
PKey table index on the subnet prefix of the port. If the QP is shared
make sure all handles to the QP also have access.
Store which port and PKey index a QP is using. After the reset to init
transition the user can modify the port, PKey index and alternate path
independently. So port and PKey settings changes can be a merge of the
previous settings and the new ones.
In order to maintain access control if there are PKey table or subnet
prefix change keep a list of all QPs are using each PKey index on
each port. If a change occurs all QPs using that device and port must
have access enforced for the new cache settings.
These changes add a transaction to the QP modify process. Association
with the old port and PKey index must be maintained if the modify fails,
and must be removed if it succeeds. Association with the new port and
PKey index must be established prior to the modify and removed if the
modify fails.
1. When a QP is modified to a particular Port, PKey index or alternate
path insert that QP into the appropriate lists.
2. Check permission to access the new settings.
3. If step 2 grants access attempt to modify the QP.
4a. If steps 2 and 3 succeed remove any prior associations.
4b. If ether fails remove the new setting associations.
If a PKey table or subnet prefix changes walk the list of QPs and
check that they have permission. If not send the QP to the error state
and raise a fatal error event. If it's a shared QP make sure all the
QPs that share the real_qp have permission as well. If the QP that
owns a security structure is denied access the security structure is
marked as such and the QP is added to an error_list. Once the moving
the QP to error is complete the security structure mark is cleared.
Maintaining the lists correctly turns QP destroy into a transaction.
The hardware driver for the device frees the ib_qp structure, so while
the destroy is in progress the ib_qp pointer in the ib_qp_security
struct is undefined. When the destroy process begins the ib_qp_security
structure is marked as destroying. This prevents any action from being
taken on the QP pointer. After the QP is destroyed successfully it
could still listed on an error_list wait for it to be processed by that
flow before cleaning up the structure.
If the destroy fails the QPs port and PKey settings are reinserted into
the appropriate lists, the destroying flag is cleared, and access control
is enforced, in case there were any cache changes during the destroy
flow.
To keep the security changes isolated a new file is used to hold security
related functionality.
Signed-off-by: Daniel Jurgens <danielj@mellanox.com>
Acked-by: Doug Ledford <dledford@redhat.com>
[PM: merge fixup in ib_verbs.h and uverbs_cmd.c]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2017-05-19 19:48:52 +07:00
|
|
|
int security_ib_alloc_security(void **sec);
|
|
|
|
void security_ib_free_security(void *sec);
|
|
|
|
#else /* CONFIG_SECURITY_INFINIBAND */
|
|
|
|
static inline int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-05-19 19:48:54 +07:00
|
|
|
static inline int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
IB/core: Enforce PKey security on QPs
Add new LSM hooks to allocate and free security contexts and check for
permission to access a PKey.
Allocate and free a security context when creating and destroying a QP.
This context is used for controlling access to PKeys.
When a request is made to modify a QP that changes the port, PKey index,
or alternate path, check that the QP has permission for the PKey in the
PKey table index on the subnet prefix of the port. If the QP is shared
make sure all handles to the QP also have access.
Store which port and PKey index a QP is using. After the reset to init
transition the user can modify the port, PKey index and alternate path
independently. So port and PKey settings changes can be a merge of the
previous settings and the new ones.
In order to maintain access control if there are PKey table or subnet
prefix change keep a list of all QPs are using each PKey index on
each port. If a change occurs all QPs using that device and port must
have access enforced for the new cache settings.
These changes add a transaction to the QP modify process. Association
with the old port and PKey index must be maintained if the modify fails,
and must be removed if it succeeds. Association with the new port and
PKey index must be established prior to the modify and removed if the
modify fails.
1. When a QP is modified to a particular Port, PKey index or alternate
path insert that QP into the appropriate lists.
2. Check permission to access the new settings.
3. If step 2 grants access attempt to modify the QP.
4a. If steps 2 and 3 succeed remove any prior associations.
4b. If ether fails remove the new setting associations.
If a PKey table or subnet prefix changes walk the list of QPs and
check that they have permission. If not send the QP to the error state
and raise a fatal error event. If it's a shared QP make sure all the
QPs that share the real_qp have permission as well. If the QP that
owns a security structure is denied access the security structure is
marked as such and the QP is added to an error_list. Once the moving
the QP to error is complete the security structure mark is cleared.
Maintaining the lists correctly turns QP destroy into a transaction.
The hardware driver for the device frees the ib_qp structure, so while
the destroy is in progress the ib_qp pointer in the ib_qp_security
struct is undefined. When the destroy process begins the ib_qp_security
structure is marked as destroying. This prevents any action from being
taken on the QP pointer. After the QP is destroyed successfully it
could still listed on an error_list wait for it to be processed by that
flow before cleaning up the structure.
If the destroy fails the QPs port and PKey settings are reinserted into
the appropriate lists, the destroying flag is cleared, and access control
is enforced, in case there were any cache changes during the destroy
flow.
To keep the security changes isolated a new file is used to hold security
related functionality.
Signed-off-by: Daniel Jurgens <danielj@mellanox.com>
Acked-by: Doug Ledford <dledford@redhat.com>
[PM: merge fixup in ib_verbs.h and uverbs_cmd.c]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2017-05-19 19:48:52 +07:00
|
|
|
static inline int security_ib_alloc_security(void **sec)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_ib_free_security(void *sec)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_SECURITY_INFINIBAND */
|
|
|
|
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
#ifdef CONFIG_SECURITY_NETWORK_XFRM
|
2006-08-05 13:12:42 +07:00
|
|
|
|
2014-03-07 18:44:19 +07:00
|
|
|
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
|
|
|
|
struct xfrm_user_sec_ctx *sec_ctx, gfp_t gfp);
|
2008-04-13 09:07:52 +07:00
|
|
|
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp);
|
|
|
|
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
|
|
|
|
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
|
|
|
|
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
|
|
|
|
struct xfrm_sec_ctx *polsec, u32 secid);
|
|
|
|
int security_xfrm_state_delete(struct xfrm_state *x);
|
|
|
|
void security_xfrm_state_free(struct xfrm_state *x);
|
2008-04-13 09:07:52 +07:00
|
|
|
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
|
2011-02-23 09:13:15 +07:00
|
|
|
struct xfrm_policy *xp,
|
|
|
|
const struct flowi *fl);
|
2007-10-17 13:31:32 +07:00
|
|
|
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid);
|
|
|
|
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl);
|
2006-08-05 13:12:42 +07:00
|
|
|
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
#else /* CONFIG_SECURITY_NETWORK_XFRM */
|
2007-10-17 13:31:32 +07:00
|
|
|
|
2014-03-07 18:44:19 +07:00
|
|
|
static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
|
|
|
|
struct xfrm_user_sec_ctx *sec_ctx,
|
|
|
|
gfp_t gfp)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-13 09:07:52 +07:00
|
|
|
static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-13 09:07:52 +07:00
|
|
|
static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2008-04-13 09:07:52 +07:00
|
|
|
static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
|
2006-06-09 13:39:49 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-07-25 13:29:07 +07:00
|
|
|
static inline int security_xfrm_state_alloc(struct xfrm_state *x,
|
|
|
|
struct xfrm_user_sec_ctx *sec_ctx)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
|
|
|
|
struct xfrm_sec_ctx *polsec, u32 secid)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_xfrm_state_free(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2006-06-09 13:58:52 +07:00
|
|
|
static inline int security_xfrm_state_delete(struct xfrm_state *x)
|
2006-06-09 13:39:49 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-13 09:07:52 +07:00
|
|
|
static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2006-07-25 13:29:07 +07:00
|
|
|
|
|
|
|
static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
|
2011-02-23 09:13:15 +07:00
|
|
|
struct xfrm_policy *xp, const struct flowi *fl)
|
2006-07-25 13:29:07 +07:00
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2006-08-05 13:12:42 +07:00
|
|
|
static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
|
2006-07-25 13:29:07 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-08-05 13:12:42 +07:00
|
|
|
static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 14:12:27 +07:00
|
|
|
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
|
|
|
|
|
2008-12-17 11:24:15 +07:00
|
|
|
#ifdef CONFIG_SECURITY_PATH
|
2016-03-26 02:13:39 +07:00
|
|
|
int security_path_unlink(const struct path *dir, struct dentry *dentry);
|
2016-03-26 02:21:09 +07:00
|
|
|
int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode);
|
2016-03-26 02:13:39 +07:00
|
|
|
int security_path_rmdir(const struct path *dir, struct dentry *dentry);
|
2016-03-26 02:21:09 +07:00
|
|
|
int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
|
2008-12-17 11:24:15 +07:00
|
|
|
unsigned int dev);
|
2016-03-26 01:22:01 +07:00
|
|
|
int security_path_truncate(const struct path *path);
|
2016-03-26 02:21:09 +07:00
|
|
|
int security_path_symlink(const struct path *dir, struct dentry *dentry,
|
2008-12-17 11:24:15 +07:00
|
|
|
const char *old_name);
|
2016-03-26 02:27:45 +07:00
|
|
|
int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
|
2008-12-17 11:24:15 +07:00
|
|
|
struct dentry *new_dentry);
|
2016-03-26 02:27:45 +07:00
|
|
|
int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
|
|
|
|
const struct path *new_dir, struct dentry *new_dentry,
|
2014-04-01 22:08:43 +07:00
|
|
|
unsigned int flags);
|
2016-03-26 01:56:23 +07:00
|
|
|
int security_path_chmod(const struct path *path, umode_t mode);
|
2016-03-26 01:44:41 +07:00
|
|
|
int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid);
|
2016-03-26 02:28:43 +07:00
|
|
|
int security_path_chroot(const struct path *path);
|
2008-12-17 11:24:15 +07:00
|
|
|
#else /* CONFIG_SECURITY_PATH */
|
2016-03-26 02:13:39 +07:00
|
|
|
static inline int security_path_unlink(const struct path *dir, struct dentry *dentry)
|
2008-12-17 11:24:15 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 02:21:09 +07:00
|
|
|
static inline int security_path_mkdir(const struct path *dir, struct dentry *dentry,
|
2011-11-22 02:56:21 +07:00
|
|
|
umode_t mode)
|
2008-12-17 11:24:15 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 02:13:39 +07:00
|
|
|
static inline int security_path_rmdir(const struct path *dir, struct dentry *dentry)
|
2008-12-17 11:24:15 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 02:21:09 +07:00
|
|
|
static inline int security_path_mknod(const struct path *dir, struct dentry *dentry,
|
2011-11-22 02:58:38 +07:00
|
|
|
umode_t mode, unsigned int dev)
|
2008-12-17 11:24:15 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 01:22:01 +07:00
|
|
|
static inline int security_path_truncate(const struct path *path)
|
2008-12-17 11:24:15 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 02:21:09 +07:00
|
|
|
static inline int security_path_symlink(const struct path *dir, struct dentry *dentry,
|
2008-12-17 11:24:15 +07:00
|
|
|
const char *old_name)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_path_link(struct dentry *old_dentry,
|
2016-03-26 02:27:45 +07:00
|
|
|
const struct path *new_dir,
|
2008-12-17 11:24:15 +07:00
|
|
|
struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 02:27:45 +07:00
|
|
|
static inline int security_path_rename(const struct path *old_dir,
|
2008-12-17 11:24:15 +07:00
|
|
|
struct dentry *old_dentry,
|
2016-03-26 02:27:45 +07:00
|
|
|
const struct path *new_dir,
|
2014-04-01 22:08:43 +07:00
|
|
|
struct dentry *new_dentry,
|
|
|
|
unsigned int flags)
|
2008-12-17 11:24:15 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2009-10-04 19:49:47 +07:00
|
|
|
|
2016-03-26 01:56:23 +07:00
|
|
|
static inline int security_path_chmod(const struct path *path, umode_t mode)
|
2009-10-04 19:49:47 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-26 01:44:41 +07:00
|
|
|
static inline int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
|
2009-10-04 19:49:47 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2009-10-04 19:49:48 +07:00
|
|
|
|
2016-03-26 02:28:43 +07:00
|
|
|
static inline int security_path_chroot(const struct path *path)
|
2009-10-04 19:49:48 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2008-12-17 11:24:15 +07:00
|
|
|
#endif /* CONFIG_SECURITY_PATH */
|
|
|
|
|
2005-10-31 06:02:44 +07:00
|
|
|
#ifdef CONFIG_KEYS
|
|
|
|
#ifdef CONFIG_SECURITY
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags);
|
2007-10-17 13:31:32 +07:00
|
|
|
void security_key_free(struct key *key);
|
|
|
|
int security_key_permission(key_ref_t key_ref,
|
2014-03-15 00:44:49 +07:00
|
|
|
const struct cred *cred, unsigned perm);
|
2008-04-29 15:01:26 +07:00
|
|
|
int security_key_getsecurity(struct key *key, char **_buffer);
|
2005-10-31 06:02:44 +07:00
|
|
|
|
|
|
|
#else
|
|
|
|
|
2006-06-23 04:47:17 +07:00
|
|
|
static inline int security_key_alloc(struct key *key,
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
const struct cred *cred,
|
2006-06-26 14:24:50 +07:00
|
|
|
unsigned long flags)
|
2005-10-31 06:02:44 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_key_free(struct key *key)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_key_permission(key_ref_t key_ref,
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 06:39:23 +07:00
|
|
|
const struct cred *cred,
|
2014-03-15 00:44:49 +07:00
|
|
|
unsigned perm)
|
2005-10-31 06:02:44 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-29 15:01:26 +07:00
|
|
|
static inline int security_key_getsecurity(struct key *key, char **_buffer)
|
|
|
|
{
|
|
|
|
*_buffer = NULL;
|
|
|
|
return 0;
|
2009-09-07 19:24:17 +07:00
|
|
|
}
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 15:14:21 +07:00
|
|
|
|
2005-10-31 06:02:44 +07:00
|
|
|
#endif
|
|
|
|
#endif /* CONFIG_KEYS */
|
|
|
|
|
2008-03-02 03:00:05 +07:00
|
|
|
#ifdef CONFIG_AUDIT
|
|
|
|
#ifdef CONFIG_SECURITY
|
|
|
|
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule);
|
|
|
|
int security_audit_rule_known(struct audit_krule *krule);
|
2019-01-31 23:52:11 +07:00
|
|
|
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule);
|
2008-03-02 03:00:05 +07:00
|
|
|
void security_audit_rule_free(void *lsmrule);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr,
|
|
|
|
void **lsmrule)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_audit_rule_known(struct audit_krule *krule)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_audit_rule_match(u32 secid, u32 field, u32 op,
|
2019-01-31 23:52:11 +07:00
|
|
|
void *lsmrule)
|
2008-03-02 03:00:05 +07:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_audit_rule_free(void *lsmrule)
|
|
|
|
{ }
|
|
|
|
|
|
|
|
#endif /* CONFIG_SECURITY */
|
|
|
|
#endif /* CONFIG_AUDIT */
|
|
|
|
|
2008-08-22 22:35:57 +07:00
|
|
|
#ifdef CONFIG_SECURITYFS
|
|
|
|
|
2011-07-26 15:30:04 +07:00
|
|
|
extern struct dentry *securityfs_create_file(const char *name, umode_t mode,
|
2008-08-22 22:35:57 +07:00
|
|
|
struct dentry *parent, void *data,
|
|
|
|
const struct file_operations *fops);
|
|
|
|
extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
|
2017-05-07 19:53:37 +07:00
|
|
|
struct dentry *securityfs_create_symlink(const char *name,
|
|
|
|
struct dentry *parent,
|
|
|
|
const char *target,
|
|
|
|
const struct inode_operations *iops);
|
2008-08-22 22:35:57 +07:00
|
|
|
extern void securityfs_remove(struct dentry *dentry);
|
|
|
|
|
|
|
|
#else /* CONFIG_SECURITYFS */
|
|
|
|
|
|
|
|
static inline struct dentry *securityfs_create_dir(const char *name,
|
|
|
|
struct dentry *parent)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct dentry *securityfs_create_file(const char *name,
|
2011-07-26 15:30:04 +07:00
|
|
|
umode_t mode,
|
2008-08-22 22:35:57 +07:00
|
|
|
struct dentry *parent,
|
|
|
|
void *data,
|
|
|
|
const struct file_operations *fops)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
}
|
|
|
|
|
2017-05-07 19:53:37 +07:00
|
|
|
static inline struct dentry *securityfs_create_symlink(const char *name,
|
|
|
|
struct dentry *parent,
|
|
|
|
const char *target,
|
|
|
|
const struct inode_operations *iops)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
}
|
|
|
|
|
2008-08-22 22:35:57 +07:00
|
|
|
static inline void securityfs_remove(struct dentry *dentry)
|
|
|
|
{}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2017-10-19 03:00:24 +07:00
|
|
|
#ifdef CONFIG_BPF_SYSCALL
|
2017-11-02 01:48:00 +07:00
|
|
|
union bpf_attr;
|
|
|
|
struct bpf_map;
|
|
|
|
struct bpf_prog;
|
|
|
|
struct bpf_prog_aux;
|
2017-10-19 03:00:24 +07:00
|
|
|
#ifdef CONFIG_SECURITY
|
|
|
|
extern int security_bpf(int cmd, union bpf_attr *attr, unsigned int size);
|
|
|
|
extern int security_bpf_map(struct bpf_map *map, fmode_t fmode);
|
|
|
|
extern int security_bpf_prog(struct bpf_prog *prog);
|
|
|
|
extern int security_bpf_map_alloc(struct bpf_map *map);
|
|
|
|
extern void security_bpf_map_free(struct bpf_map *map);
|
|
|
|
extern int security_bpf_prog_alloc(struct bpf_prog_aux *aux);
|
|
|
|
extern void security_bpf_prog_free(struct bpf_prog_aux *aux);
|
|
|
|
#else
|
|
|
|
static inline int security_bpf(int cmd, union bpf_attr *attr,
|
|
|
|
unsigned int size)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_bpf_map(struct bpf_map *map, fmode_t fmode)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_bpf_prog(struct bpf_prog *prog)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int security_bpf_map_alloc(struct bpf_map *map)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_bpf_map_free(struct bpf_map *map)
|
|
|
|
{ }
|
|
|
|
|
|
|
|
static inline int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void security_bpf_prog_free(struct bpf_prog_aux *aux)
|
|
|
|
{ }
|
|
|
|
#endif /* CONFIG_SECURITY */
|
|
|
|
#endif /* CONFIG_BPF_SYSCALL */
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
#endif /* ! __LINUX_SECURITY_H */
|
|
|
|
|