2009-10-27 04:23:18 +07:00
|
|
|
#include <linux/types.h>
|
|
|
|
#include "event.h"
|
|
|
|
#include "debug.h"
|
2012-10-07 01:44:59 +07:00
|
|
|
#include "machine.h"
|
2009-12-16 05:04:41 +07:00
|
|
|
#include "sort.h"
|
2009-10-27 04:23:18 +07:00
|
|
|
#include "string.h"
|
2009-12-16 05:04:41 +07:00
|
|
|
#include "strlist.h"
|
2009-11-28 01:29:22 +07:00
|
|
|
#include "thread.h"
|
2011-02-11 20:45:54 +07:00
|
|
|
#include "thread_map.h"
|
2013-12-11 19:15:00 +07:00
|
|
|
#include "symbol/kallsyms.h"
|
2009-10-27 04:23:18 +07:00
|
|
|
|
2011-01-29 23:01:45 +07:00
|
|
|
static const char *perf_event__names[] = {
|
2011-05-23 18:06:27 +07:00
|
|
|
[0] = "TOTAL",
|
|
|
|
[PERF_RECORD_MMAP] = "MMAP",
|
2013-08-21 17:10:25 +07:00
|
|
|
[PERF_RECORD_MMAP2] = "MMAP2",
|
2011-05-23 18:06:27 +07:00
|
|
|
[PERF_RECORD_LOST] = "LOST",
|
|
|
|
[PERF_RECORD_COMM] = "COMM",
|
|
|
|
[PERF_RECORD_EXIT] = "EXIT",
|
|
|
|
[PERF_RECORD_THROTTLE] = "THROTTLE",
|
|
|
|
[PERF_RECORD_UNTHROTTLE] = "UNTHROTTLE",
|
|
|
|
[PERF_RECORD_FORK] = "FORK",
|
|
|
|
[PERF_RECORD_READ] = "READ",
|
|
|
|
[PERF_RECORD_SAMPLE] = "SAMPLE",
|
|
|
|
[PERF_RECORD_HEADER_ATTR] = "ATTR",
|
|
|
|
[PERF_RECORD_HEADER_EVENT_TYPE] = "EVENT_TYPE",
|
|
|
|
[PERF_RECORD_HEADER_TRACING_DATA] = "TRACING_DATA",
|
|
|
|
[PERF_RECORD_HEADER_BUILD_ID] = "BUILD_ID",
|
|
|
|
[PERF_RECORD_FINISHED_ROUND] = "FINISHED_ROUND",
|
2010-05-14 20:36:42 +07:00
|
|
|
};
|
|
|
|
|
2011-01-29 23:01:45 +07:00
|
|
|
const char *perf_event__name(unsigned int id)
|
2010-12-07 19:48:42 +07:00
|
|
|
{
|
2011-01-29 23:01:45 +07:00
|
|
|
if (id >= ARRAY_SIZE(perf_event__names))
|
2010-12-07 19:48:42 +07:00
|
|
|
return "INVALID";
|
2011-01-29 23:01:45 +07:00
|
|
|
if (!perf_event__names[id])
|
2010-12-07 19:48:42 +07:00
|
|
|
return "UNKNOWN";
|
2011-01-29 23:01:45 +07:00
|
|
|
return perf_event__names[id];
|
2010-12-07 19:48:42 +07:00
|
|
|
}
|
|
|
|
|
2011-01-29 22:02:00 +07:00
|
|
|
static struct perf_sample synth_sample = {
|
perf session: Parse sample earlier
At perf_session__process_event, so that we reduce the number of lines in eache
tool sample processing routine that now receives a sample_data pointer already
parsed.
This will also be useful in the next patch, where we'll allow sample the
identity fields in MMAP, FORK, EXIT, etc, when it will be possible to see (cpu,
timestamp) just after before every event.
Also validate callchains in perf_session__process_event, i.e. as early as
possible, and keep a counter of the number of events discarded due to invalid
callchains, warning the user about it if it happens.
There is an assumption that was kept that all events have the same sample_type,
that will be dealt with in the future, when this preexisting limitation will be
removed.
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Ian Munsie <imunsie@au1.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <1291318772-30880-4-git-send-email-acme@infradead.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-12-02 23:10:21 +07:00
|
|
|
.pid = -1,
|
|
|
|
.tid = -1,
|
|
|
|
.time = -1,
|
|
|
|
.stream_id = -1,
|
|
|
|
.cpu = -1,
|
|
|
|
.period = 1,
|
|
|
|
};
|
|
|
|
|
2011-12-23 01:30:02 +07:00
|
|
|
static pid_t perf_event__get_comm_tgid(pid_t pid, char *comm, size_t len)
|
2009-10-27 04:23:18 +07:00
|
|
|
{
|
|
|
|
char filename[PATH_MAX];
|
|
|
|
char bf[BUFSIZ];
|
|
|
|
FILE *fp;
|
|
|
|
size_t size = 0;
|
2011-12-23 01:30:02 +07:00
|
|
|
pid_t tgid = -1;
|
2009-10-27 04:23:18 +07:00
|
|
|
|
|
|
|
snprintf(filename, sizeof(filename), "/proc/%d/status", pid);
|
|
|
|
|
|
|
|
fp = fopen(filename, "r");
|
|
|
|
if (fp == NULL) {
|
|
|
|
pr_debug("couldn't open %s\n", filename);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-12-23 01:30:02 +07:00
|
|
|
while (!comm[0] || (tgid < 0)) {
|
2010-12-02 19:25:28 +07:00
|
|
|
if (fgets(bf, sizeof(bf), fp) == NULL) {
|
2011-12-23 01:30:02 +07:00
|
|
|
pr_warning("couldn't get COMM and pgid, malformed %s\n",
|
|
|
|
filename);
|
|
|
|
break;
|
2010-12-02 19:25:28 +07:00
|
|
|
}
|
2009-10-27 04:23:18 +07:00
|
|
|
|
|
|
|
if (memcmp(bf, "Name:", 5) == 0) {
|
|
|
|
char *name = bf + 5;
|
|
|
|
while (*name && isspace(*name))
|
|
|
|
++name;
|
|
|
|
size = strlen(name) - 1;
|
2011-12-23 01:30:02 +07:00
|
|
|
if (size >= len)
|
|
|
|
size = len - 1;
|
|
|
|
memcpy(comm, name, size);
|
2012-02-25 02:31:38 +07:00
|
|
|
comm[size] = '\0';
|
2011-12-23 01:30:02 +07:00
|
|
|
|
2009-10-27 04:23:18 +07:00
|
|
|
} else if (memcmp(bf, "Tgid:", 5) == 0) {
|
|
|
|
char *tgids = bf + 5;
|
|
|
|
while (*tgids && isspace(*tgids))
|
|
|
|
++tgids;
|
2011-12-23 01:30:02 +07:00
|
|
|
tgid = atoi(tgids);
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-12-23 01:30:02 +07:00
|
|
|
fclose(fp);
|
|
|
|
|
|
|
|
return tgid;
|
|
|
|
}
|
|
|
|
|
|
|
|
static pid_t perf_event__synthesize_comm(struct perf_tool *tool,
|
|
|
|
union perf_event *event, pid_t pid,
|
|
|
|
int full,
|
|
|
|
perf_event__handler_t process,
|
|
|
|
struct machine *machine)
|
|
|
|
{
|
|
|
|
char filename[PATH_MAX];
|
|
|
|
size_t size;
|
|
|
|
DIR *tasks;
|
|
|
|
struct dirent dirent, *next;
|
|
|
|
pid_t tgid;
|
|
|
|
|
|
|
|
memset(&event->comm, 0, sizeof(event->comm));
|
|
|
|
|
2013-12-21 03:52:59 +07:00
|
|
|
if (machine__is_host(machine))
|
|
|
|
tgid = perf_event__get_comm_tgid(pid, event->comm.comm,
|
|
|
|
sizeof(event->comm.comm));
|
|
|
|
else
|
|
|
|
tgid = machine->pid;
|
|
|
|
|
2011-12-23 01:30:02 +07:00
|
|
|
if (tgid < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
event->comm.pid = tgid;
|
2010-12-02 19:25:28 +07:00
|
|
|
event->comm.header.type = PERF_RECORD_COMM;
|
2011-12-23 01:30:02 +07:00
|
|
|
|
|
|
|
size = strlen(event->comm.comm) + 1;
|
2012-09-11 05:15:01 +07:00
|
|
|
size = PERF_ALIGN(size, sizeof(u64));
|
2011-11-28 16:56:39 +07:00
|
|
|
memset(event->comm.comm + size, 0, machine->id_hdr_size);
|
2010-12-02 19:25:28 +07:00
|
|
|
event->comm.header.size = (sizeof(event->comm) -
|
|
|
|
(sizeof(event->comm.comm) - size) +
|
2011-11-28 16:56:39 +07:00
|
|
|
machine->id_hdr_size);
|
2009-10-27 04:23:18 +07:00
|
|
|
if (!full) {
|
2010-12-02 19:25:28 +07:00
|
|
|
event->comm.tid = pid;
|
2009-10-27 04:23:18 +07:00
|
|
|
|
2012-08-27 01:24:42 +07:00
|
|
|
if (process(tool, event, &synth_sample, machine) != 0)
|
|
|
|
return -1;
|
|
|
|
|
2010-12-02 19:25:28 +07:00
|
|
|
goto out;
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
|
2013-12-21 03:53:00 +07:00
|
|
|
if (machine__is_default_guest(machine))
|
|
|
|
return 0;
|
|
|
|
|
2013-12-21 03:52:57 +07:00
|
|
|
snprintf(filename, sizeof(filename), "%s/proc/%d/task",
|
|
|
|
machine->root_dir, pid);
|
2009-10-27 04:23:18 +07:00
|
|
|
|
|
|
|
tasks = opendir(filename);
|
2011-12-23 01:30:02 +07:00
|
|
|
if (tasks == NULL) {
|
|
|
|
pr_debug("couldn't open %s\n", filename);
|
|
|
|
return 0;
|
|
|
|
}
|
2009-10-27 04:23:18 +07:00
|
|
|
|
|
|
|
while (!readdir_r(tasks, &dirent, &next) && next) {
|
|
|
|
char *end;
|
|
|
|
pid = strtol(dirent.d_name, &end, 10);
|
|
|
|
if (*end)
|
|
|
|
continue;
|
|
|
|
|
2011-12-23 01:30:02 +07:00
|
|
|
/* already have tgid; jut want to update the comm */
|
|
|
|
(void) perf_event__get_comm_tgid(pid, event->comm.comm,
|
|
|
|
sizeof(event->comm.comm));
|
|
|
|
|
|
|
|
size = strlen(event->comm.comm) + 1;
|
2012-09-11 05:15:01 +07:00
|
|
|
size = PERF_ALIGN(size, sizeof(u64));
|
2011-12-23 01:30:02 +07:00
|
|
|
memset(event->comm.comm + size, 0, machine->id_hdr_size);
|
|
|
|
event->comm.header.size = (sizeof(event->comm) -
|
|
|
|
(sizeof(event->comm.comm) - size) +
|
|
|
|
machine->id_hdr_size);
|
|
|
|
|
2010-12-02 19:25:28 +07:00
|
|
|
event->comm.tid = pid;
|
2009-10-27 04:23:18 +07:00
|
|
|
|
2012-08-27 01:24:42 +07:00
|
|
|
if (process(tool, event, &synth_sample, machine) != 0) {
|
|
|
|
tgid = -1;
|
|
|
|
break;
|
|
|
|
}
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
|
2010-12-02 19:25:28 +07:00
|
|
|
closedir(tasks);
|
|
|
|
out:
|
|
|
|
return tgid;
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
|
2014-01-07 19:47:20 +07:00
|
|
|
int perf_event__synthesize_mmap_events(struct perf_tool *tool,
|
|
|
|
union perf_event *event,
|
|
|
|
pid_t pid, pid_t tgid,
|
|
|
|
perf_event__handler_t process,
|
|
|
|
struct machine *machine,
|
|
|
|
bool mmap_data)
|
2009-10-27 04:23:18 +07:00
|
|
|
{
|
|
|
|
char filename[PATH_MAX];
|
|
|
|
FILE *fp;
|
2012-08-27 01:24:42 +07:00
|
|
|
int rc = 0;
|
2009-10-27 04:23:18 +07:00
|
|
|
|
2013-12-21 03:53:00 +07:00
|
|
|
if (machine__is_default_guest(machine))
|
|
|
|
return 0;
|
|
|
|
|
2013-12-21 03:52:57 +07:00
|
|
|
snprintf(filename, sizeof(filename), "%s/proc/%d/maps",
|
|
|
|
machine->root_dir, pid);
|
2009-10-27 04:23:18 +07:00
|
|
|
|
|
|
|
fp = fopen(filename, "r");
|
|
|
|
if (fp == NULL) {
|
|
|
|
/*
|
|
|
|
* We raced with a task exiting - just return:
|
|
|
|
*/
|
|
|
|
pr_debug("couldn't open %s\n", filename);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2013-10-18 00:32:15 +07:00
|
|
|
event->header.type = PERF_RECORD_MMAP;
|
2010-12-02 19:25:28 +07:00
|
|
|
|
2009-10-27 04:23:18 +07:00
|
|
|
while (1) {
|
2012-11-11 21:20:50 +07:00
|
|
|
char bf[BUFSIZ];
|
|
|
|
char prot[5];
|
|
|
|
char execname[PATH_MAX];
|
|
|
|
char anonstr[] = "//anon";
|
2009-10-27 04:23:18 +07:00
|
|
|
size_t size;
|
2013-08-21 17:10:25 +07:00
|
|
|
ssize_t n;
|
2012-11-11 21:20:50 +07:00
|
|
|
|
2009-10-27 04:23:18 +07:00
|
|
|
if (fgets(bf, sizeof(bf), fp) == NULL)
|
|
|
|
break;
|
|
|
|
|
2012-11-11 21:20:50 +07:00
|
|
|
/* ensure null termination since stack will be reused. */
|
|
|
|
strcpy(execname, "");
|
|
|
|
|
2009-10-27 04:23:18 +07:00
|
|
|
/* 00400000-0040c000 r-xp 00000000 fd:01 41038 /bin/cat */
|
2013-10-18 00:32:15 +07:00
|
|
|
n = sscanf(bf, "%"PRIx64"-%"PRIx64" %s %"PRIx64" %*x:%*x %*u %s\n",
|
|
|
|
&event->mmap.start, &event->mmap.len, prot,
|
|
|
|
&event->mmap.pgoff,
|
|
|
|
execname);
|
2013-11-14 01:32:06 +07:00
|
|
|
/*
|
|
|
|
* Anon maps don't have the execname.
|
|
|
|
*/
|
|
|
|
if (n < 4)
|
2013-08-21 17:10:25 +07:00
|
|
|
continue;
|
2013-11-11 19:44:09 +07:00
|
|
|
/*
|
|
|
|
* Just like the kernel, see __perf_event_mmap in kernel/perf_event.c
|
|
|
|
*/
|
2013-12-21 03:52:58 +07:00
|
|
|
if (machine__is_host(machine))
|
|
|
|
event->header.misc = PERF_RECORD_MISC_USER;
|
|
|
|
else
|
|
|
|
event->header.misc = PERF_RECORD_MISC_GUEST_USER;
|
2012-11-11 21:20:50 +07:00
|
|
|
|
2013-11-11 19:44:09 +07:00
|
|
|
if (prot[2] != 'x') {
|
|
|
|
if (!mmap_data || prot[0] != 'r')
|
|
|
|
continue;
|
|
|
|
|
|
|
|
event->header.misc |= PERF_RECORD_MISC_MMAP_DATA;
|
|
|
|
}
|
2012-11-11 21:20:50 +07:00
|
|
|
|
|
|
|
if (!strcmp(execname, ""))
|
|
|
|
strcpy(execname, anonstr);
|
|
|
|
|
|
|
|
size = strlen(execname) + 1;
|
2013-10-18 00:32:15 +07:00
|
|
|
memcpy(event->mmap.filename, execname, size);
|
2012-11-11 21:20:50 +07:00
|
|
|
size = PERF_ALIGN(size, sizeof(u64));
|
2013-10-18 00:32:15 +07:00
|
|
|
event->mmap.len -= event->mmap.start;
|
|
|
|
event->mmap.header.size = (sizeof(event->mmap) -
|
|
|
|
(sizeof(event->mmap.filename) - size));
|
|
|
|
memset(event->mmap.filename + size, 0, machine->id_hdr_size);
|
|
|
|
event->mmap.header.size += machine->id_hdr_size;
|
|
|
|
event->mmap.pid = tgid;
|
|
|
|
event->mmap.tid = pid;
|
2012-11-11 21:20:50 +07:00
|
|
|
|
|
|
|
if (process(tool, event, &synth_sample, machine) != 0) {
|
|
|
|
rc = -1;
|
|
|
|
break;
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fclose(fp);
|
2012-08-27 01:24:42 +07:00
|
|
|
return rc;
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
|
2011-11-28 17:30:20 +07:00
|
|
|
int perf_event__synthesize_modules(struct perf_tool *tool,
|
2011-11-25 17:19:45 +07:00
|
|
|
perf_event__handler_t process,
|
2011-01-29 23:01:45 +07:00
|
|
|
struct machine *machine)
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
{
|
2012-08-27 01:24:42 +07:00
|
|
|
int rc = 0;
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
struct rb_node *nd;
|
2010-04-28 07:17:50 +07:00
|
|
|
struct map_groups *kmaps = &machine->kmaps;
|
2011-01-29 23:01:45 +07:00
|
|
|
union perf_event *event = zalloc((sizeof(event->mmap) +
|
2011-11-28 16:56:39 +07:00
|
|
|
machine->id_hdr_size));
|
2010-12-02 19:25:28 +07:00
|
|
|
if (event == NULL) {
|
|
|
|
pr_debug("Not enough memory synthesizing mmap event "
|
|
|
|
"for kernel modules\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
event->header.type = PERF_RECORD_MMAP;
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
|
2010-04-19 12:32:50 +07:00
|
|
|
/*
|
|
|
|
* kernel uses 0 for user space maps, see kernel/perf_event.c
|
|
|
|
* __perf_event_mmap
|
|
|
|
*/
|
2010-04-28 07:17:50 +07:00
|
|
|
if (machine__is_host(machine))
|
2010-12-02 19:25:28 +07:00
|
|
|
event->header.misc = PERF_RECORD_MISC_KERNEL;
|
2010-04-19 12:32:50 +07:00
|
|
|
else
|
2010-12-02 19:25:28 +07:00
|
|
|
event->header.misc = PERF_RECORD_MISC_GUEST_KERNEL;
|
2010-04-19 12:32:50 +07:00
|
|
|
|
|
|
|
for (nd = rb_first(&kmaps->maps[MAP__FUNCTION]);
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
nd; nd = rb_next(nd)) {
|
|
|
|
size_t size;
|
|
|
|
struct map *pos = rb_entry(nd, struct map, rb_node);
|
|
|
|
|
|
|
|
if (pos->dso->kernel)
|
|
|
|
continue;
|
|
|
|
|
2012-09-11 05:15:01 +07:00
|
|
|
size = PERF_ALIGN(pos->dso->long_name_len + 1, sizeof(u64));
|
2010-12-02 19:25:28 +07:00
|
|
|
event->mmap.header.type = PERF_RECORD_MMAP;
|
|
|
|
event->mmap.header.size = (sizeof(event->mmap) -
|
|
|
|
(sizeof(event->mmap.filename) - size));
|
2011-11-28 16:56:39 +07:00
|
|
|
memset(event->mmap.filename + size, 0, machine->id_hdr_size);
|
|
|
|
event->mmap.header.size += machine->id_hdr_size;
|
2010-12-02 19:25:28 +07:00
|
|
|
event->mmap.start = pos->start;
|
|
|
|
event->mmap.len = pos->end - pos->start;
|
|
|
|
event->mmap.pid = machine->pid;
|
|
|
|
|
|
|
|
memcpy(event->mmap.filename, pos->dso->long_name,
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
pos->dso->long_name_len + 1);
|
2012-08-27 01:24:42 +07:00
|
|
|
if (process(tool, event, &synth_sample, machine) != 0) {
|
|
|
|
rc = -1;
|
|
|
|
break;
|
|
|
|
}
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
}
|
|
|
|
|
2010-12-02 19:25:28 +07:00
|
|
|
free(event);
|
2012-08-27 01:24:42 +07:00
|
|
|
return rc;
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
}
|
|
|
|
|
2011-01-29 23:01:45 +07:00
|
|
|
static int __event__synthesize_thread(union perf_event *comm_event,
|
|
|
|
union perf_event *mmap_event,
|
2011-12-23 01:30:01 +07:00
|
|
|
pid_t pid, int full,
|
|
|
|
perf_event__handler_t process,
|
2011-11-28 17:30:20 +07:00
|
|
|
struct perf_tool *tool,
|
2013-11-11 19:44:09 +07:00
|
|
|
struct machine *machine, bool mmap_data)
|
2009-10-27 04:23:18 +07:00
|
|
|
{
|
2011-12-23 01:30:01 +07:00
|
|
|
pid_t tgid = perf_event__synthesize_comm(tool, comm_event, pid, full,
|
2011-11-28 16:56:39 +07:00
|
|
|
process, machine);
|
2009-10-27 04:23:18 +07:00
|
|
|
if (tgid == -1)
|
|
|
|
return -1;
|
2011-11-28 17:30:20 +07:00
|
|
|
return perf_event__synthesize_mmap_events(tool, mmap_event, pid, tgid,
|
2013-11-11 19:44:09 +07:00
|
|
|
process, machine, mmap_data);
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
|
2011-11-28 17:30:20 +07:00
|
|
|
int perf_event__synthesize_thread_map(struct perf_tool *tool,
|
2011-11-25 17:19:45 +07:00
|
|
|
struct thread_map *threads,
|
2011-02-11 20:45:54 +07:00
|
|
|
perf_event__handler_t process,
|
2013-11-11 19:44:09 +07:00
|
|
|
struct machine *machine,
|
|
|
|
bool mmap_data)
|
2010-12-02 19:25:28 +07:00
|
|
|
{
|
2011-01-29 23:01:45 +07:00
|
|
|
union perf_event *comm_event, *mmap_event;
|
2011-12-23 01:30:01 +07:00
|
|
|
int err = -1, thread, j;
|
2010-12-02 19:25:28 +07:00
|
|
|
|
2011-11-28 16:56:39 +07:00
|
|
|
comm_event = malloc(sizeof(comm_event->comm) + machine->id_hdr_size);
|
2010-12-02 19:25:28 +07:00
|
|
|
if (comm_event == NULL)
|
|
|
|
goto out;
|
|
|
|
|
2011-11-28 16:56:39 +07:00
|
|
|
mmap_event = malloc(sizeof(mmap_event->mmap) + machine->id_hdr_size);
|
2010-12-02 19:25:28 +07:00
|
|
|
if (mmap_event == NULL)
|
|
|
|
goto out_free_comm;
|
|
|
|
|
2011-02-10 21:52:47 +07:00
|
|
|
err = 0;
|
|
|
|
for (thread = 0; thread < threads->nr; ++thread) {
|
|
|
|
if (__event__synthesize_thread(comm_event, mmap_event,
|
2011-12-23 01:30:01 +07:00
|
|
|
threads->map[thread], 0,
|
2013-11-11 19:44:09 +07:00
|
|
|
process, tool, machine,
|
|
|
|
mmap_data)) {
|
2011-02-10 21:52:47 +07:00
|
|
|
err = -1;
|
|
|
|
break;
|
|
|
|
}
|
2011-12-23 01:30:01 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* comm.pid is set to thread group id by
|
|
|
|
* perf_event__synthesize_comm
|
|
|
|
*/
|
|
|
|
if ((int) comm_event->comm.pid != threads->map[thread]) {
|
|
|
|
bool need_leader = true;
|
|
|
|
|
|
|
|
/* is thread group leader in thread_map? */
|
|
|
|
for (j = 0; j < threads->nr; ++j) {
|
|
|
|
if ((int) comm_event->comm.pid == threads->map[j]) {
|
|
|
|
need_leader = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if not, generate events for it */
|
|
|
|
if (need_leader &&
|
2013-11-11 19:44:09 +07:00
|
|
|
__event__synthesize_thread(comm_event, mmap_event,
|
|
|
|
comm_event->comm.pid, 0,
|
|
|
|
process, tool, machine,
|
|
|
|
mmap_data)) {
|
2011-12-23 01:30:01 +07:00
|
|
|
err = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2011-02-10 21:52:47 +07:00
|
|
|
}
|
2010-12-02 19:25:28 +07:00
|
|
|
free(mmap_event);
|
|
|
|
out_free_comm:
|
|
|
|
free(comm_event);
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2011-11-28 17:30:20 +07:00
|
|
|
int perf_event__synthesize_threads(struct perf_tool *tool,
|
2011-11-25 17:19:45 +07:00
|
|
|
perf_event__handler_t process,
|
2013-11-11 19:44:09 +07:00
|
|
|
struct machine *machine, bool mmap_data)
|
2009-10-27 04:23:18 +07:00
|
|
|
{
|
|
|
|
DIR *proc;
|
2013-12-21 03:52:57 +07:00
|
|
|
char proc_path[PATH_MAX];
|
2009-10-27 04:23:18 +07:00
|
|
|
struct dirent dirent, *next;
|
2011-01-29 23:01:45 +07:00
|
|
|
union perf_event *comm_event, *mmap_event;
|
2010-12-02 19:25:28 +07:00
|
|
|
int err = -1;
|
|
|
|
|
2011-11-28 16:56:39 +07:00
|
|
|
comm_event = malloc(sizeof(comm_event->comm) + machine->id_hdr_size);
|
2010-12-02 19:25:28 +07:00
|
|
|
if (comm_event == NULL)
|
|
|
|
goto out;
|
|
|
|
|
2011-11-28 16:56:39 +07:00
|
|
|
mmap_event = malloc(sizeof(mmap_event->mmap) + machine->id_hdr_size);
|
2010-12-02 19:25:28 +07:00
|
|
|
if (mmap_event == NULL)
|
|
|
|
goto out_free_comm;
|
2009-10-27 04:23:18 +07:00
|
|
|
|
2013-12-21 03:53:00 +07:00
|
|
|
if (machine__is_default_guest(machine))
|
|
|
|
return 0;
|
|
|
|
|
2013-12-21 03:52:57 +07:00
|
|
|
snprintf(proc_path, sizeof(proc_path), "%s/proc", machine->root_dir);
|
|
|
|
proc = opendir(proc_path);
|
|
|
|
|
2010-12-02 19:25:28 +07:00
|
|
|
if (proc == NULL)
|
|
|
|
goto out_free_mmap;
|
2009-10-27 04:23:18 +07:00
|
|
|
|
|
|
|
while (!readdir_r(proc, &dirent, &next) && next) {
|
|
|
|
char *end;
|
|
|
|
pid_t pid = strtol(dirent.d_name, &end, 10);
|
|
|
|
|
|
|
|
if (*end) /* only interested in proper numerical dirents */
|
|
|
|
continue;
|
2012-10-18 04:50:13 +07:00
|
|
|
/*
|
|
|
|
* We may race with exiting thread, so don't stop just because
|
|
|
|
* one thread couldn't be synthesized.
|
|
|
|
*/
|
|
|
|
__event__synthesize_thread(comm_event, mmap_event, pid, 1,
|
2013-11-11 19:44:09 +07:00
|
|
|
process, tool, machine, mmap_data);
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
|
|
|
|
2010-12-02 19:25:28 +07:00
|
|
|
err = 0;
|
2012-08-27 01:24:42 +07:00
|
|
|
closedir(proc);
|
2010-12-02 19:25:28 +07:00
|
|
|
out_free_mmap:
|
|
|
|
free(mmap_event);
|
|
|
|
out_free_comm:
|
|
|
|
free(comm_event);
|
|
|
|
out:
|
|
|
|
return err;
|
2009-10-27 04:23:18 +07:00
|
|
|
}
|
2009-11-28 01:29:22 +07:00
|
|
|
|
2010-01-06 01:50:31 +07:00
|
|
|
struct process_symbol_args {
|
|
|
|
const char *name;
|
|
|
|
u64 start;
|
|
|
|
};
|
|
|
|
|
2010-12-22 10:08:36 +07:00
|
|
|
static int find_symbol_cb(void *arg, const char *name, char type,
|
2012-08-11 05:22:48 +07:00
|
|
|
u64 start)
|
2010-01-06 01:50:31 +07:00
|
|
|
{
|
|
|
|
struct process_symbol_args *args = arg;
|
|
|
|
|
2010-01-16 03:08:27 +07:00
|
|
|
/*
|
|
|
|
* Must be a function or at least an alias, as in PARISC64, where "_text" is
|
|
|
|
* an 'A' to the same address as "_stext".
|
|
|
|
*/
|
|
|
|
if (!(symbol_type__is_a(type, MAP__FUNCTION) ||
|
|
|
|
type == 'A') || strcmp(name, args->name))
|
2010-01-06 01:50:31 +07:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
args->start = start;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2014-01-29 21:14:37 +07:00
|
|
|
u64 kallsyms__get_function_start(const char *kallsyms_filename,
|
|
|
|
const char *symbol_name)
|
|
|
|
{
|
|
|
|
struct process_symbol_args args = { .name = symbol_name, };
|
|
|
|
|
|
|
|
if (kallsyms__parse(kallsyms_filename, &args, find_symbol_cb) <= 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return args.start;
|
|
|
|
}
|
|
|
|
|
2011-11-28 17:30:20 +07:00
|
|
|
int perf_event__synthesize_kernel_mmap(struct perf_tool *tool,
|
2011-11-25 17:19:45 +07:00
|
|
|
perf_event__handler_t process,
|
2014-01-29 21:14:40 +07:00
|
|
|
struct machine *machine)
|
2010-01-06 01:50:31 +07:00
|
|
|
{
|
|
|
|
size_t size;
|
2014-01-29 21:14:40 +07:00
|
|
|
const char *mmap_name;
|
2010-04-19 12:32:50 +07:00
|
|
|
char name_buff[PATH_MAX];
|
|
|
|
struct map *map;
|
2014-01-29 21:14:40 +07:00
|
|
|
struct kmap *kmap;
|
2010-12-02 19:25:28 +07:00
|
|
|
int err;
|
2010-01-06 01:50:31 +07:00
|
|
|
/*
|
|
|
|
* We should get this from /sys/kernel/sections/.text, but till that is
|
|
|
|
* available use this, and after it is use this as a fallback for older
|
|
|
|
* kernels.
|
|
|
|
*/
|
2011-01-29 23:01:45 +07:00
|
|
|
union perf_event *event = zalloc((sizeof(event->mmap) +
|
2011-11-28 16:56:39 +07:00
|
|
|
machine->id_hdr_size));
|
2010-12-02 19:25:28 +07:00
|
|
|
if (event == NULL) {
|
|
|
|
pr_debug("Not enough memory synthesizing mmap event "
|
|
|
|
"for kernel modules\n");
|
|
|
|
return -1;
|
|
|
|
}
|
2010-01-06 01:50:31 +07:00
|
|
|
|
2010-04-28 07:19:05 +07:00
|
|
|
mmap_name = machine__mmap_name(machine, name_buff, sizeof(name_buff));
|
2010-04-28 07:17:50 +07:00
|
|
|
if (machine__is_host(machine)) {
|
2010-04-19 12:32:50 +07:00
|
|
|
/*
|
|
|
|
* kernel uses PERF_RECORD_MISC_USER for user space maps,
|
|
|
|
* see kernel/perf_event.c __perf_event_mmap
|
|
|
|
*/
|
2010-12-02 19:25:28 +07:00
|
|
|
event->header.misc = PERF_RECORD_MISC_KERNEL;
|
2010-04-19 12:32:50 +07:00
|
|
|
} else {
|
2010-12-02 19:25:28 +07:00
|
|
|
event->header.misc = PERF_RECORD_MISC_GUEST_KERNEL;
|
2013-01-25 17:20:47 +07:00
|
|
|
}
|
2010-01-06 01:50:31 +07:00
|
|
|
|
2010-04-28 07:17:50 +07:00
|
|
|
map = machine->vmlinux_maps[MAP__FUNCTION];
|
2014-01-29 21:14:40 +07:00
|
|
|
kmap = map__kmap(map);
|
2010-12-02 19:25:28 +07:00
|
|
|
size = snprintf(event->mmap.filename, sizeof(event->mmap.filename),
|
2014-01-29 21:14:40 +07:00
|
|
|
"%s%s", mmap_name, kmap->ref_reloc_sym->name) + 1;
|
2012-09-11 05:15:01 +07:00
|
|
|
size = PERF_ALIGN(size, sizeof(u64));
|
2010-12-02 19:25:28 +07:00
|
|
|
event->mmap.header.type = PERF_RECORD_MMAP;
|
|
|
|
event->mmap.header.size = (sizeof(event->mmap) -
|
2011-11-28 16:56:39 +07:00
|
|
|
(sizeof(event->mmap.filename) - size) + machine->id_hdr_size);
|
2014-01-29 21:14:40 +07:00
|
|
|
event->mmap.pgoff = kmap->ref_reloc_sym->addr;
|
2010-12-02 19:25:28 +07:00
|
|
|
event->mmap.start = map->start;
|
|
|
|
event->mmap.len = map->end - event->mmap.start;
|
|
|
|
event->mmap.pid = machine->pid;
|
|
|
|
|
2011-11-28 17:30:20 +07:00
|
|
|
err = process(tool, event, &synth_sample, machine);
|
2010-12-02 19:25:28 +07:00
|
|
|
free(event);
|
|
|
|
|
|
|
|
return err;
|
2010-01-06 01:50:31 +07:00
|
|
|
}
|
|
|
|
|
2011-12-02 20:06:37 +07:00
|
|
|
size_t perf_event__fprintf_comm(union perf_event *event, FILE *fp)
|
|
|
|
{
|
|
|
|
return fprintf(fp, ": %s:%d\n", event->comm.comm, event->comm.tid);
|
|
|
|
}
|
|
|
|
|
2012-09-11 05:15:03 +07:00
|
|
|
int perf_event__process_comm(struct perf_tool *tool __maybe_unused,
|
2011-11-25 17:19:45 +07:00
|
|
|
union perf_event *event,
|
2013-09-11 21:18:24 +07:00
|
|
|
struct perf_sample *sample,
|
2011-11-28 16:56:39 +07:00
|
|
|
struct machine *machine)
|
2009-11-28 01:29:22 +07:00
|
|
|
{
|
2013-09-11 21:18:24 +07:00
|
|
|
return machine__process_comm_event(machine, event, sample);
|
2009-11-28 01:29:22 +07:00
|
|
|
}
|
|
|
|
|
2012-09-11 05:15:03 +07:00
|
|
|
int perf_event__process_lost(struct perf_tool *tool __maybe_unused,
|
2011-11-25 17:19:45 +07:00
|
|
|
union perf_event *event,
|
2013-09-11 21:18:24 +07:00
|
|
|
struct perf_sample *sample,
|
2012-10-07 02:26:02 +07:00
|
|
|
struct machine *machine)
|
2009-11-28 01:29:22 +07:00
|
|
|
{
|
2013-09-11 21:18:24 +07:00
|
|
|
return machine__process_lost_event(machine, event, sample);
|
2010-04-19 12:32:50 +07:00
|
|
|
}
|
perf tools: Encode kernel module mappings in perf.data
We were always looking at the running machine /proc/modules,
even when processing a perf.data file, which only makes sense
when we're doing 'perf record' and 'perf report' on the same
machine, and in close sucession, or if we don't use modules at
all, right Peter? ;-)
Now, at 'perf record' time we read /proc/modules, find the long
path for modules, and put them as PERF_MMAP events, just like we
did to encode the reloc reference symbol for vmlinux. Talking
about that now it is encoded in .pgoff, so that we can use
.{start,len} to store the address boundaries for the kernel so
that when we reconstruct the kmaps tree we can do lookups right
away, without having to fixup the end of the kernel maps like we
did in the past (and now only in perf record).
One more step in the 'perf archive' direction when we'll finally
be able to collect data in one machine and analyse in another.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1263396139-4798-1-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 22:22:17 +07:00
|
|
|
|
2011-12-02 20:06:37 +07:00
|
|
|
size_t perf_event__fprintf_mmap(union perf_event *event, FILE *fp)
|
|
|
|
{
|
2013-11-11 19:44:09 +07:00
|
|
|
return fprintf(fp, " %d/%d: [%#" PRIx64 "(%#" PRIx64 ") @ %#" PRIx64 "]: %c %s\n",
|
2011-12-02 20:06:37 +07:00
|
|
|
event->mmap.pid, event->mmap.tid, event->mmap.start,
|
2013-11-11 19:44:09 +07:00
|
|
|
event->mmap.len, event->mmap.pgoff,
|
|
|
|
(event->header.misc & PERF_RECORD_MISC_MMAP_DATA) ? 'r' : 'x',
|
|
|
|
event->mmap.filename);
|
2011-12-02 20:06:37 +07:00
|
|
|
}
|
|
|
|
|
2013-08-21 17:10:25 +07:00
|
|
|
size_t perf_event__fprintf_mmap2(union perf_event *event, FILE *fp)
|
|
|
|
{
|
|
|
|
return fprintf(fp, " %d/%d: [%#" PRIx64 "(%#" PRIx64 ") @ %#" PRIx64
|
2013-11-11 19:44:09 +07:00
|
|
|
" %02x:%02x %"PRIu64" %"PRIu64"]: %c %s\n",
|
2013-08-21 17:10:25 +07:00
|
|
|
event->mmap2.pid, event->mmap2.tid, event->mmap2.start,
|
|
|
|
event->mmap2.len, event->mmap2.pgoff, event->mmap2.maj,
|
|
|
|
event->mmap2.min, event->mmap2.ino,
|
|
|
|
event->mmap2.ino_generation,
|
2013-11-11 19:44:09 +07:00
|
|
|
(event->header.misc & PERF_RECORD_MISC_MMAP_DATA) ? 'r' : 'x',
|
2013-08-21 17:10:25 +07:00
|
|
|
event->mmap2.filename);
|
|
|
|
}
|
|
|
|
|
2012-10-07 02:26:02 +07:00
|
|
|
int perf_event__process_mmap(struct perf_tool *tool __maybe_unused,
|
2011-11-25 17:19:45 +07:00
|
|
|
union perf_event *event,
|
2013-09-11 21:18:24 +07:00
|
|
|
struct perf_sample *sample,
|
2011-11-28 16:56:39 +07:00
|
|
|
struct machine *machine)
|
2010-04-19 12:32:50 +07:00
|
|
|
{
|
2013-09-11 21:18:24 +07:00
|
|
|
return machine__process_mmap_event(machine, event, sample);
|
2009-11-28 01:29:22 +07:00
|
|
|
}
|
|
|
|
|
2013-08-21 17:10:25 +07:00
|
|
|
int perf_event__process_mmap2(struct perf_tool *tool __maybe_unused,
|
|
|
|
union perf_event *event,
|
2013-09-11 21:18:24 +07:00
|
|
|
struct perf_sample *sample,
|
2013-08-21 17:10:25 +07:00
|
|
|
struct machine *machine)
|
|
|
|
{
|
2013-09-11 21:18:24 +07:00
|
|
|
return machine__process_mmap2_event(machine, event, sample);
|
2013-08-21 17:10:25 +07:00
|
|
|
}
|
|
|
|
|
2011-12-02 20:06:37 +07:00
|
|
|
size_t perf_event__fprintf_task(union perf_event *event, FILE *fp)
|
|
|
|
{
|
|
|
|
return fprintf(fp, "(%d:%d):(%d:%d)\n",
|
|
|
|
event->fork.pid, event->fork.tid,
|
|
|
|
event->fork.ppid, event->fork.ptid);
|
|
|
|
}
|
|
|
|
|
2012-10-07 01:44:59 +07:00
|
|
|
int perf_event__process_fork(struct perf_tool *tool __maybe_unused,
|
2011-11-25 17:19:45 +07:00
|
|
|
union perf_event *event,
|
2013-09-11 21:18:24 +07:00
|
|
|
struct perf_sample *sample,
|
2012-10-07 01:44:59 +07:00
|
|
|
struct machine *machine)
|
2009-11-28 01:29:22 +07:00
|
|
|
{
|
2013-09-11 21:18:24 +07:00
|
|
|
return machine__process_fork_event(machine, event, sample);
|
2009-11-28 01:29:22 +07:00
|
|
|
}
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
|
2012-10-07 01:44:59 +07:00
|
|
|
int perf_event__process_exit(struct perf_tool *tool __maybe_unused,
|
|
|
|
union perf_event *event,
|
2013-09-11 21:18:24 +07:00
|
|
|
struct perf_sample *sample,
|
2012-10-07 01:44:59 +07:00
|
|
|
struct machine *machine)
|
|
|
|
{
|
2013-09-11 21:18:24 +07:00
|
|
|
return machine__process_exit_event(machine, event, sample);
|
2012-10-07 01:44:59 +07:00
|
|
|
}
|
|
|
|
|
2011-12-02 20:06:37 +07:00
|
|
|
size_t perf_event__fprintf(union perf_event *event, FILE *fp)
|
|
|
|
{
|
|
|
|
size_t ret = fprintf(fp, "PERF_RECORD_%s",
|
|
|
|
perf_event__name(event->header.type));
|
|
|
|
|
|
|
|
switch (event->header.type) {
|
|
|
|
case PERF_RECORD_COMM:
|
|
|
|
ret += perf_event__fprintf_comm(event, fp);
|
|
|
|
break;
|
|
|
|
case PERF_RECORD_FORK:
|
|
|
|
case PERF_RECORD_EXIT:
|
|
|
|
ret += perf_event__fprintf_task(event, fp);
|
|
|
|
break;
|
|
|
|
case PERF_RECORD_MMAP:
|
|
|
|
ret += perf_event__fprintf_mmap(event, fp);
|
|
|
|
break;
|
2013-08-21 17:10:25 +07:00
|
|
|
case PERF_RECORD_MMAP2:
|
|
|
|
ret += perf_event__fprintf_mmap2(event, fp);
|
|
|
|
break;
|
2011-12-02 20:06:37 +07:00
|
|
|
default:
|
|
|
|
ret += fprintf(fp, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-10-07 02:26:02 +07:00
|
|
|
int perf_event__process(struct perf_tool *tool __maybe_unused,
|
|
|
|
union perf_event *event,
|
2013-09-11 21:18:24 +07:00
|
|
|
struct perf_sample *sample,
|
2012-10-07 02:26:02 +07:00
|
|
|
struct machine *machine)
|
2010-08-02 19:38:51 +07:00
|
|
|
{
|
2013-09-11 21:18:24 +07:00
|
|
|
return machine__process_event(machine, event, sample);
|
2010-08-02 19:38:51 +07:00
|
|
|
}
|
|
|
|
|
2013-11-06 01:32:36 +07:00
|
|
|
void thread__find_addr_map(struct thread *thread,
|
2011-11-28 16:56:39 +07:00
|
|
|
struct machine *machine, u8 cpumode,
|
|
|
|
enum map_type type, u64 addr,
|
2013-08-08 18:32:27 +07:00
|
|
|
struct addr_location *al)
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
{
|
2013-11-06 01:32:36 +07:00
|
|
|
struct map_groups *mg = &thread->mg;
|
2013-08-07 18:38:46 +07:00
|
|
|
bool load_map = false;
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
|
2013-12-20 03:20:06 +07:00
|
|
|
al->machine = machine;
|
2013-11-06 01:32:36 +07:00
|
|
|
al->thread = thread;
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
al->addr = addr;
|
2010-04-19 12:32:50 +07:00
|
|
|
al->cpumode = cpumode;
|
|
|
|
al->filtered = false;
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
|
2011-11-28 16:56:39 +07:00
|
|
|
if (machine == NULL) {
|
|
|
|
al->map = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-04-19 12:32:50 +07:00
|
|
|
if (cpumode == PERF_RECORD_MISC_KERNEL && perf_host) {
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
al->level = 'k';
|
2010-04-28 07:17:50 +07:00
|
|
|
mg = &machine->kmaps;
|
2013-08-07 18:38:46 +07:00
|
|
|
load_map = true;
|
2010-04-19 12:32:50 +07:00
|
|
|
} else if (cpumode == PERF_RECORD_MISC_USER && perf_host) {
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
al->level = '.';
|
2010-04-19 12:32:50 +07:00
|
|
|
} else if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
|
|
|
|
al->level = 'g';
|
2010-04-28 07:17:50 +07:00
|
|
|
mg = &machine->kmaps;
|
2013-08-07 18:38:46 +07:00
|
|
|
load_map = true;
|
2013-12-21 03:52:56 +07:00
|
|
|
} else if (cpumode == PERF_RECORD_MISC_GUEST_USER && perf_guest) {
|
|
|
|
al->level = 'u';
|
2010-04-19 12:32:50 +07:00
|
|
|
} else {
|
2013-12-21 03:52:56 +07:00
|
|
|
al->level = 'H';
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
al->map = NULL;
|
2010-04-19 12:32:50 +07:00
|
|
|
|
|
|
|
if ((cpumode == PERF_RECORD_MISC_GUEST_USER ||
|
|
|
|
cpumode == PERF_RECORD_MISC_GUEST_KERNEL) &&
|
|
|
|
!perf_guest)
|
|
|
|
al->filtered = true;
|
|
|
|
if ((cpumode == PERF_RECORD_MISC_USER ||
|
|
|
|
cpumode == PERF_RECORD_MISC_KERNEL) &&
|
|
|
|
!perf_host)
|
|
|
|
al->filtered = true;
|
|
|
|
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
try_again:
|
2009-12-11 23:50:36 +07:00
|
|
|
al->map = map_groups__find(mg, type, al->addr);
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
if (al->map == NULL) {
|
|
|
|
/*
|
|
|
|
* If this is outside of all known maps, and is a negative
|
|
|
|
* address, try to look it up in the kernel dso, as it might be
|
|
|
|
* a vsyscall or vdso (which executes in user-mode).
|
|
|
|
*
|
|
|
|
* XXX This is nasty, we should have a symbol list in the
|
|
|
|
* "[vdso]" dso, but for now lets use the old trick of looking
|
|
|
|
* in the whole kernel symbol list.
|
|
|
|
*/
|
2010-04-19 12:32:50 +07:00
|
|
|
if ((long long)al->addr < 0 &&
|
2011-03-24 11:36:56 +07:00
|
|
|
cpumode == PERF_RECORD_MISC_USER &&
|
2010-04-28 07:17:50 +07:00
|
|
|
machine && mg != &machine->kmaps) {
|
|
|
|
mg = &machine->kmaps;
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
goto try_again;
|
|
|
|
}
|
2013-08-07 18:38:46 +07:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Kernel maps might be changed when loading symbols so loading
|
|
|
|
* must be done prior to using kernel maps.
|
|
|
|
*/
|
|
|
|
if (load_map)
|
2013-08-08 18:32:27 +07:00
|
|
|
map__load(al->map, machine->symbol_filter);
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
al->addr = al->map->map_ip(al->map, al->addr);
|
2013-08-07 18:38:46 +07:00
|
|
|
}
|
2010-01-15 08:45:29 +07:00
|
|
|
}
|
|
|
|
|
2011-11-28 16:56:39 +07:00
|
|
|
void thread__find_addr_location(struct thread *thread, struct machine *machine,
|
|
|
|
u8 cpumode, enum map_type type, u64 addr,
|
2013-08-08 18:32:26 +07:00
|
|
|
struct addr_location *al)
|
2010-01-15 08:45:29 +07:00
|
|
|
{
|
2013-08-08 18:32:27 +07:00
|
|
|
thread__find_addr_map(thread, machine, cpumode, type, addr, al);
|
2010-01-15 08:45:29 +07:00
|
|
|
if (al->map != NULL)
|
2013-08-08 18:32:26 +07:00
|
|
|
al->sym = map__find_symbol(al->map, al->addr,
|
|
|
|
machine->symbol_filter);
|
2010-01-15 08:45:29 +07:00
|
|
|
else
|
|
|
|
al->sym = NULL;
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
}
|
|
|
|
|
2011-01-29 23:01:45 +07:00
|
|
|
int perf_event__preprocess_sample(const union perf_event *event,
|
2011-11-28 16:56:39 +07:00
|
|
|
struct machine *machine,
|
2011-01-29 23:01:45 +07:00
|
|
|
struct addr_location *al,
|
2013-08-08 18:32:25 +07:00
|
|
|
struct perf_sample *sample)
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
{
|
2011-01-29 23:01:45 +07:00
|
|
|
u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
|
2013-08-27 15:23:06 +07:00
|
|
|
struct thread *thread = machine__findnew_thread(machine, sample->pid,
|
|
|
|
sample->pid);
|
2010-06-04 18:02:07 +07:00
|
|
|
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
if (thread == NULL)
|
|
|
|
return -1;
|
|
|
|
|
2013-11-19 03:32:47 +07:00
|
|
|
if (thread__is_filtered(thread))
|
2009-12-16 05:04:41 +07:00
|
|
|
goto out_filtered;
|
|
|
|
|
2013-09-11 19:46:56 +07:00
|
|
|
dump_printf(" ... thread: %s:%d\n", thread__comm_str(thread), thread->tid);
|
2010-05-10 05:57:08 +07:00
|
|
|
/*
|
2011-11-28 16:56:39 +07:00
|
|
|
* Have we already created the kernel maps for this machine?
|
2010-05-10 05:57:08 +07:00
|
|
|
*
|
|
|
|
* This should have happened earlier, when we processed the kernel MMAP
|
|
|
|
* events, but for older perf.data files there was no such thing, so do
|
|
|
|
* it now.
|
|
|
|
*/
|
|
|
|
if (cpumode == PERF_RECORD_MISC_KERNEL &&
|
2011-11-28 16:56:39 +07:00
|
|
|
machine->vmlinux_maps[MAP__FUNCTION] == NULL)
|
|
|
|
machine__create_kernel_maps(machine);
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
|
2011-11-28 16:56:39 +07:00
|
|
|
thread__find_addr_map(thread, machine, cpumode, MAP__FUNCTION,
|
2013-08-27 15:23:06 +07:00
|
|
|
sample->ip, al);
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
dump_printf(" ...... dso: %s\n",
|
|
|
|
al->map ? al->map->dso->long_name :
|
|
|
|
al->level == 'H' ? "[hypervisor]" : "<not found>");
|
2010-03-25 02:40:15 +07:00
|
|
|
al->sym = NULL;
|
2011-01-29 22:02:00 +07:00
|
|
|
al->cpu = sample->cpu;
|
2010-03-25 02:40:15 +07:00
|
|
|
|
|
|
|
if (al->map) {
|
2011-12-12 22:16:55 +07:00
|
|
|
struct dso *dso = al->map->dso;
|
|
|
|
|
2010-03-25 02:40:15 +07:00
|
|
|
if (symbol_conf.dso_list &&
|
2011-12-12 22:16:55 +07:00
|
|
|
(!dso || !(strlist__has_entry(symbol_conf.dso_list,
|
|
|
|
dso->short_name) ||
|
|
|
|
(dso->short_name != dso->long_name &&
|
|
|
|
strlist__has_entry(symbol_conf.dso_list,
|
|
|
|
dso->long_name)))))
|
2010-03-25 02:40:15 +07:00
|
|
|
goto out_filtered;
|
|
|
|
|
2013-08-08 18:32:25 +07:00
|
|
|
al->sym = map__find_symbol(al->map, al->addr,
|
|
|
|
machine->symbol_filter);
|
2010-03-25 02:40:15 +07:00
|
|
|
}
|
2009-12-16 05:04:41 +07:00
|
|
|
|
2012-09-07 15:42:23 +07:00
|
|
|
if (symbol_conf.sym_list &&
|
|
|
|
(!al->sym || !strlist__has_entry(symbol_conf.sym_list,
|
|
|
|
al->sym->name)))
|
2009-12-16 05:04:41 +07:00
|
|
|
goto out_filtered;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_filtered:
|
|
|
|
al->filtered = true;
|
perf tools: Consolidate symbol resolving across all tools
Now we have a very high level routine for simple tools to
process IP sample events:
int event__preprocess_sample(const event_t *self,
struct addr_location *al,
symbol_filter_t filter)
It receives the event itself and will insert new threads in the
global threads list and resolve the map and symbol, filling all
this info into the new addr_location struct, so that tools like
annotate and report can further process the event by creating
hist_entries in their specific way (with or without callgraphs,
etc).
It in turn uses the new next layer function:
void thread__find_addr_location(struct thread *self, u8 cpumode,
enum map_type type, u64 addr,
struct addr_location *al,
symbol_filter_t filter)
This one will, given a thread (userspace or the kernel kthread
one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE
too in the near future) at the given cpumode, taking vdsos into
account (userspace hit, but kernel symbol) and will fill all
these details in the addr_location given.
Tools that need a more compact API for plain function
resolution, like 'kmem', can use this other one:
struct symbol *thread__find_function(struct thread *self, u64 addr,
symbol_filter_t filter)
So, to resolve a kernel symbol, that is all the 'kmem' tool
needs, its just a matter of calling:
sym = thread__find_function(kthread, addr, NULL);
The 'filter' parameter is needed because we do lazy
parsing/loading of ELF symtabs or /proc/kallsyms.
With this we remove more code duplication all around, which is
always good, huh? :-)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-28 01:29:23 +07:00
|
|
|
return 0;
|
|
|
|
}
|