linux_dsm_epyc7002/drivers/nvme/host/multipath.c

778 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
/*
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
* Copyright (c) 2017-2018 Christoph Hellwig.
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
*/
#include <linux/backing-dev.h>
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
#include <linux/moduleparam.h>
#include <trace/events/block.h>
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
#include "nvme.h"
static bool multipath = true;
module_param(multipath, bool, 0444);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
MODULE_PARM_DESC(multipath,
"turn on native support for multiple controllers per subsystem");
nvme: fix a possible deadlock when passthru commands sent to a multipath device When the user issues a command with side effects, we will end up freezing the namespace request queue when updating disk info (and the same for the corresponding mpath disk node). However, we are not freezing the mpath node request queue, which means that mpath I/O can still come in and block on blk_queue_enter (called from nvme_ns_head_make_request -> direct_make_request). This is a deadlock, because blk_queue_enter will block until the inner namespace request queue is unfroze, but that process is blocked because the namespace revalidation is trying to update the mpath disk info and freeze its request queue (which will never complete because of the I/O that is blocked on blk_queue_enter). Fix this by freezing all the subsystem nsheads request queues before executing the passthru command. Given that these commands are infrequent we should not worry about this temporary I/O freeze to keep things sane. Here is the matching hang traces: -- [ 374.465002] INFO: task systemd-udevd:17994 blocked for more than 122 seconds. [ 374.472975] Not tainted 5.2.0-rc3-mpdebug+ #42 [ 374.478522] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 374.487274] systemd-udevd D 0 17994 1 0x00000000 [ 374.493407] Call Trace: [ 374.496145] __schedule+0x2ef/0x620 [ 374.500047] schedule+0x38/0xa0 [ 374.503569] blk_queue_enter+0x139/0x220 [ 374.507959] ? remove_wait_queue+0x60/0x60 [ 374.512540] direct_make_request+0x60/0x130 [ 374.517219] nvme_ns_head_make_request+0x11d/0x420 [nvme_core] [ 374.523740] ? generic_make_request_checks+0x307/0x6f0 [ 374.529484] generic_make_request+0x10d/0x2e0 [ 374.534356] submit_bio+0x75/0x140 [ 374.538163] ? guard_bio_eod+0x32/0xe0 [ 374.542361] submit_bh_wbc+0x171/0x1b0 [ 374.546553] block_read_full_page+0x1ed/0x330 [ 374.551426] ? check_disk_change+0x70/0x70 [ 374.556008] ? scan_shadow_nodes+0x30/0x30 [ 374.560588] blkdev_readpage+0x18/0x20 [ 374.564783] do_read_cache_page+0x301/0x860 [ 374.569463] ? blkdev_writepages+0x10/0x10 [ 374.574037] ? prep_new_page+0x88/0x130 [ 374.578329] ? get_page_from_freelist+0xa2f/0x1280 [ 374.583688] ? __alloc_pages_nodemask+0x179/0x320 [ 374.588947] read_cache_page+0x12/0x20 [ 374.593142] read_dev_sector+0x2d/0xd0 [ 374.597337] read_lba+0x104/0x1f0 [ 374.601046] find_valid_gpt+0xfa/0x720 [ 374.605243] ? string_nocheck+0x58/0x70 [ 374.609534] ? find_valid_gpt+0x720/0x720 [ 374.614016] efi_partition+0x89/0x430 [ 374.618113] ? string+0x48/0x60 [ 374.621632] ? snprintf+0x49/0x70 [ 374.625339] ? find_valid_gpt+0x720/0x720 [ 374.629828] check_partition+0x116/0x210 [ 374.634214] rescan_partitions+0xb6/0x360 [ 374.638699] __blkdev_reread_part+0x64/0x70 [ 374.643377] blkdev_reread_part+0x23/0x40 [ 374.647860] blkdev_ioctl+0x48c/0x990 [ 374.651956] block_ioctl+0x41/0x50 [ 374.655766] do_vfs_ioctl+0xa7/0x600 [ 374.659766] ? locks_lock_inode_wait+0xb1/0x150 [ 374.664832] ksys_ioctl+0x67/0x90 [ 374.668539] __x64_sys_ioctl+0x1a/0x20 [ 374.672732] do_syscall_64+0x5a/0x1c0 [ 374.676828] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 374.738474] INFO: task nvmeadm:49141 blocked for more than 123 seconds. [ 374.745871] Not tainted 5.2.0-rc3-mpdebug+ #42 [ 374.751419] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 374.760170] nvmeadm D 0 49141 36333 0x00004080 [ 374.766301] Call Trace: [ 374.769038] __schedule+0x2ef/0x620 [ 374.772939] schedule+0x38/0xa0 [ 374.776452] blk_mq_freeze_queue_wait+0x59/0x100 [ 374.781614] ? remove_wait_queue+0x60/0x60 [ 374.786192] blk_mq_freeze_queue+0x1a/0x20 [ 374.790773] nvme_update_disk_info.isra.57+0x5f/0x350 [nvme_core] [ 374.797582] ? nvme_identify_ns.isra.50+0x71/0xc0 [nvme_core] [ 374.804006] __nvme_revalidate_disk+0xe5/0x110 [nvme_core] [ 374.810139] nvme_revalidate_disk+0xa6/0x120 [nvme_core] [ 374.816078] ? nvme_submit_user_cmd+0x11e/0x320 [nvme_core] [ 374.822299] nvme_user_cmd+0x264/0x370 [nvme_core] [ 374.827661] nvme_dev_ioctl+0x112/0x1d0 [nvme_core] [ 374.833114] do_vfs_ioctl+0xa7/0x600 [ 374.837117] ? __audit_syscall_entry+0xdd/0x130 [ 374.842184] ksys_ioctl+0x67/0x90 [ 374.845891] __x64_sys_ioctl+0x1a/0x20 [ 374.850082] do_syscall_64+0x5a/0x1c0 [ 374.854178] entry_SYSCALL_64_after_hwframe+0x44/0xa9 -- Reported-by: James Puthukattukaran <james.puthukattukaran@oracle.com> Tested-by: James Puthukattukaran <james.puthukattukaran@oracle.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-08-01 01:00:26 +07:00
void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
{
struct nvme_ns_head *h;
lockdep_assert_held(&subsys->lock);
list_for_each_entry(h, &subsys->nsheads, entry)
if (h->disk)
blk_mq_unfreeze_queue(h->disk->queue);
}
void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
{
struct nvme_ns_head *h;
lockdep_assert_held(&subsys->lock);
list_for_each_entry(h, &subsys->nsheads, entry)
if (h->disk)
blk_mq_freeze_queue_wait(h->disk->queue);
}
void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
{
struct nvme_ns_head *h;
lockdep_assert_held(&subsys->lock);
list_for_each_entry(h, &subsys->nsheads, entry)
if (h->disk)
blk_freeze_queue_start(h->disk->queue);
}
/*
* If multipathing is enabled we need to always use the subsystem instance
* number for numbering our devices to avoid conflicts between subsystems that
* have multiple controllers and thus use the multipath-aware subsystem node
* and those that have a single controller and use the controller node
* directly.
*/
void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
struct nvme_ctrl *ctrl, int *flags)
{
if (!multipath) {
sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
} else if (ns->head->disk) {
sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
ctrl->instance, ns->head->instance);
*flags = GENHD_FL_HIDDEN;
} else {
sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
ns->head->instance);
}
}
bool nvme_failover_req(struct request *req)
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
{
struct nvme_ns *ns = req->q->queuedata;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
u16 status = nvme_req(req)->status;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
unsigned long flags;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
switch (status & 0x7ff) {
case NVME_SC_ANA_TRANSITION:
case NVME_SC_ANA_INACCESSIBLE:
case NVME_SC_ANA_PERSISTENT_LOSS:
/*
* If we got back an ANA error we know the controller is alive,
* but not ready to serve this namespaces. The spec suggests
* we should update our general state here, but due to the fact
* that the admin and I/O queues are not serialized that is
* fundamentally racy. So instead just clear the current path,
* mark the the path as pending and kick of a re-read of the ANA
* log page ASAP.
*/
nvme_mpath_clear_current_path(ns);
if (ns->ctrl->ana_log_buf) {
set_bit(NVME_NS_ANA_PENDING, &ns->flags);
queue_work(nvme_wq, &ns->ctrl->ana_work);
}
break;
nvme: call nvme_complete_rq when nvmf_check_ready fails for mpath I/O When an io is rejected by nvmf_check_ready() due to validation of the controller state, the nvmf_fail_nonready_command() will normally return BLK_STS_RESOURCE to requeue and retry. However, if the controller is dying or the I/O is marked for NVMe multipath, the I/O is failed so that the controller can terminate or so that the io can be issued on a different path. Unfortunately, as this reject point is before the transport has accepted the command, blk-mq ends up completing the I/O and never calls nvme_complete_rq(), which is where multipath may preserve or re-route the I/O. The end result is, the device user ends up seeing an EIO error. Example: single path connectivity, controller is under load, and a reset is induced. An I/O is received: a) while the reset state has been set but the queues have yet to be stopped; or b) after queues are started (at end of reset) but before the reconnect has completed. The I/O finishes with an EIO status. This patch makes the following changes: - Adds the HOST_PATH_ERROR pathing status from TP4028 - Modifies the reject point such that it appears to queue successfully, but actually completes the io with the new pathing status and calls nvme_complete_rq(). - nvme_complete_rq() recognizes the new status, avoids resetting the controller (likely was already done in order to get this new status), and calls the multipather to clear the current path that errored. This allows the next command (retry or new command) to select a new path if there is one. Signed-off-by: James Smart <jsmart2021@gmail.com> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-09-28 06:58:54 +07:00
case NVME_SC_HOST_PATH_ERROR:
case NVME_SC_HOST_ABORTED_CMD:
nvme: call nvme_complete_rq when nvmf_check_ready fails for mpath I/O When an io is rejected by nvmf_check_ready() due to validation of the controller state, the nvmf_fail_nonready_command() will normally return BLK_STS_RESOURCE to requeue and retry. However, if the controller is dying or the I/O is marked for NVMe multipath, the I/O is failed so that the controller can terminate or so that the io can be issued on a different path. Unfortunately, as this reject point is before the transport has accepted the command, blk-mq ends up completing the I/O and never calls nvme_complete_rq(), which is where multipath may preserve or re-route the I/O. The end result is, the device user ends up seeing an EIO error. Example: single path connectivity, controller is under load, and a reset is induced. An I/O is received: a) while the reset state has been set but the queues have yet to be stopped; or b) after queues are started (at end of reset) but before the reconnect has completed. The I/O finishes with an EIO status. This patch makes the following changes: - Adds the HOST_PATH_ERROR pathing status from TP4028 - Modifies the reject point such that it appears to queue successfully, but actually completes the io with the new pathing status and calls nvme_complete_rq(). - nvme_complete_rq() recognizes the new status, avoids resetting the controller (likely was already done in order to get this new status), and calls the multipather to clear the current path that errored. This allows the next command (retry or new command) to select a new path if there is one. Signed-off-by: James Smart <jsmart2021@gmail.com> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-09-28 06:58:54 +07:00
/*
* Temporary transport disruption in talking to the controller.
* Try to send on a new path.
*/
nvme_mpath_clear_current_path(ns);
break;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
default:
/* This was a non-ANA error so follow the normal error path. */
return false;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
}
spin_lock_irqsave(&ns->head->requeue_lock, flags);
blk_steal_bios(&ns->head->requeue_list, req);
spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
blk_mq_end_request(req, 0);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
kblockd_schedule_work(&ns->head->requeue_work);
return true;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
}
void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
list_for_each_entry(ns, &ctrl->namespaces, list) {
if (ns->head->disk)
kblockd_schedule_work(&ns->head->requeue_work);
}
up_read(&ctrl->namespaces_rwsem);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
}
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
static const char *nvme_ana_state_names[] = {
[0] = "invalid state",
[NVME_ANA_OPTIMIZED] = "optimized",
[NVME_ANA_NONOPTIMIZED] = "non-optimized",
[NVME_ANA_INACCESSIBLE] = "inaccessible",
[NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
[NVME_ANA_CHANGE] = "change",
};
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
{
struct nvme_ns_head *head = ns->head;
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
bool changed = false;
int node;
if (!head)
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
goto out;
for_each_node(node) {
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
if (ns == rcu_access_pointer(head->current_path[node])) {
rcu_assign_pointer(head->current_path[node], NULL);
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
changed = true;
}
}
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
out:
return changed;
}
void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
mutex_lock(&ctrl->scan_lock);
nvme-multipath: fix crash in nvme_mpath_clear_ctrl_paths nvme_mpath_clear_ctrl_paths() iterates through the ctrl->namespaces list while holding ctrl->scan_lock. This does not seem to be the correct way of protecting from concurrent list modification. Specifically, nvme_scan_work() sorts ctrl->namespaces AFTER unlocking scan_lock. This may result in the following (rare) crash in ctrl disconnect during scan_work: BUG: kernel NULL pointer dereference, address: 0000000000000050 Oops: 0000 [#1] SMP PTI CPU: 0 PID: 3995 Comm: nvme 5.3.5-050305-generic RIP: 0010:nvme_mpath_clear_current_path+0xe/0x90 [nvme_core] ... Call Trace: nvme_mpath_clear_ctrl_paths+0x3c/0x70 [nvme_core] nvme_remove_namespaces+0x35/0xe0 [nvme_core] nvme_do_delete_ctrl+0x47/0x90 [nvme_core] nvme_sysfs_delete+0x49/0x60 [nvme_core] dev_attr_store+0x17/0x30 sysfs_kf_write+0x3e/0x50 kernfs_fop_write+0x11e/0x1a0 __vfs_write+0x1b/0x40 vfs_write+0xb9/0x1a0 ksys_write+0x67/0xe0 __x64_sys_write+0x1a/0x20 do_syscall_64+0x5a/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f8d02bfb154 Fix: After taking scan_lock in nvme_mpath_clear_ctrl_paths() down_read(&ctrl->namespaces_rwsem) as well to make list traversal safe. This will not cause deadlocks because taking scan_lock never happens while holding the namespaces_rwsem. Moreover, scan work downs namespaces_rwsem in the same order. Alternative: sort ctrl->namespaces in nvme_scan_work() while still holding the scan_lock. This would leave nvme_mpath_clear_ctrl_paths() without correct protection against ctrl->namespaces modification by anyone other than scan_work. Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Keith Busch <kbusch@kernel.org>
2019-11-02 07:27:55 +07:00
down_read(&ctrl->namespaces_rwsem);
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
list_for_each_entry(ns, &ctrl->namespaces, list)
if (nvme_mpath_clear_current_path(ns))
kblockd_schedule_work(&ns->head->requeue_work);
nvme-multipath: fix crash in nvme_mpath_clear_ctrl_paths nvme_mpath_clear_ctrl_paths() iterates through the ctrl->namespaces list while holding ctrl->scan_lock. This does not seem to be the correct way of protecting from concurrent list modification. Specifically, nvme_scan_work() sorts ctrl->namespaces AFTER unlocking scan_lock. This may result in the following (rare) crash in ctrl disconnect during scan_work: BUG: kernel NULL pointer dereference, address: 0000000000000050 Oops: 0000 [#1] SMP PTI CPU: 0 PID: 3995 Comm: nvme 5.3.5-050305-generic RIP: 0010:nvme_mpath_clear_current_path+0xe/0x90 [nvme_core] ... Call Trace: nvme_mpath_clear_ctrl_paths+0x3c/0x70 [nvme_core] nvme_remove_namespaces+0x35/0xe0 [nvme_core] nvme_do_delete_ctrl+0x47/0x90 [nvme_core] nvme_sysfs_delete+0x49/0x60 [nvme_core] dev_attr_store+0x17/0x30 sysfs_kf_write+0x3e/0x50 kernfs_fop_write+0x11e/0x1a0 __vfs_write+0x1b/0x40 vfs_write+0xb9/0x1a0 ksys_write+0x67/0xe0 __x64_sys_write+0x1a/0x20 do_syscall_64+0x5a/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f8d02bfb154 Fix: After taking scan_lock in nvme_mpath_clear_ctrl_paths() down_read(&ctrl->namespaces_rwsem) as well to make list traversal safe. This will not cause deadlocks because taking scan_lock never happens while holding the namespaces_rwsem. Moreover, scan work downs namespaces_rwsem in the same order. Alternative: sort ctrl->namespaces in nvme_scan_work() while still holding the scan_lock. This would leave nvme_mpath_clear_ctrl_paths() without correct protection against ctrl->namespaces modification by anyone other than scan_work. Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Keith Busch <kbusch@kernel.org>
2019-11-02 07:27:55 +07:00
up_read(&ctrl->namespaces_rwsem);
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
mutex_unlock(&ctrl->scan_lock);
}
static bool nvme_path_is_disabled(struct nvme_ns *ns)
{
nvme: fix deadlock in disconnect during scan_work and/or ana_work A deadlock happens in the following scenario with multipath: 1) scan_work(nvme0) detects a new nsid while nvme0 is an optimized path to it, path nvme1 happens to be inaccessible. 2) Before scan_work is complete nvme0 disconnect is initiated nvme_delete_ctrl_sync() sets nvme0 state to NVME_CTRL_DELETING 3) scan_work(1) attempts to submit IO, but nvme_path_is_optimized() observes nvme0 is not LIVE. Since nvme1 is a possible path IO is requeued and scan_work hangs. -- Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 -- 4) Delete also hangs in flush_work(ctrl->scan_work) from nvme_remove_namespaces(). Similiarly a deadlock with ana_work may happen: if ana_work has started and calls nvme_mpath_set_live and device_add_disk, it will trigger I/O. When we trigger disconnect I/O will block because our accessible (optimized) path is disconnecting, but the alternate path is inaccessible, so I/O blocks. Then disconnect tries to flush the ana_work and hangs. [ 605.550896] Workqueue: nvme-wq nvme_ana_work [nvme_core] [ 605.552087] Call Trace: [ 605.552683] __schedule+0x2b9/0x6c0 [ 605.553507] schedule+0x42/0xb0 [ 605.554201] io_schedule+0x16/0x40 [ 605.555012] do_read_cache_page+0x438/0x830 [ 605.556925] read_cache_page+0x12/0x20 [ 605.557757] read_dev_sector+0x27/0xc0 [ 605.558587] amiga_partition+0x4d/0x4c5 [ 605.561278] check_partition+0x154/0x244 [ 605.562138] rescan_partitions+0xae/0x280 [ 605.563076] __blkdev_get+0x40f/0x560 [ 605.563830] blkdev_get+0x3d/0x140 [ 605.564500] __device_add_disk+0x388/0x480 [ 605.565316] device_add_disk+0x13/0x20 [ 605.566070] nvme_mpath_set_live+0x5e/0x130 [nvme_core] [ 605.567114] nvme_update_ns_ana_state+0x2c/0x30 [nvme_core] [ 605.568197] nvme_update_ana_state+0xca/0xe0 [nvme_core] [ 605.569360] nvme_parse_ana_log+0xa1/0x180 [nvme_core] [ 605.571385] nvme_read_ana_log+0x76/0x100 [nvme_core] [ 605.572376] nvme_ana_work+0x15/0x20 [nvme_core] [ 605.573330] process_one_work+0x1db/0x380 [ 605.574144] worker_thread+0x4d/0x400 [ 605.574896] kthread+0x104/0x140 [ 605.577205] ret_from_fork+0x35/0x40 [ 605.577955] INFO: task nvme:14044 blocked for more than 120 seconds. [ 605.579239] Tainted: G OE 5.3.5-050305-generic #201910071830 [ 605.580712] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 605.582320] nvme D 0 14044 14043 0x00000000 [ 605.583424] Call Trace: [ 605.583935] __schedule+0x2b9/0x6c0 [ 605.584625] schedule+0x42/0xb0 [ 605.585290] schedule_timeout+0x203/0x2f0 [ 605.588493] wait_for_completion+0xb1/0x120 [ 605.590066] __flush_work+0x123/0x1d0 [ 605.591758] __cancel_work_timer+0x10e/0x190 [ 605.593542] cancel_work_sync+0x10/0x20 [ 605.594347] nvme_mpath_stop+0x2f/0x40 [nvme_core] [ 605.595328] nvme_stop_ctrl+0x12/0x50 [nvme_core] [ 605.596262] nvme_do_delete_ctrl+0x3f/0x90 [nvme_core] [ 605.597333] nvme_sysfs_delete+0x5c/0x70 [nvme_core] [ 605.598320] dev_attr_store+0x17/0x30 Fix this by introducing a new state: NVME_CTRL_DELETE_NOIO, which will indicate the phase of controller deletion where I/O cannot be allowed to access the namespace. NVME_CTRL_DELETING still allows mpath I/O to be issued to the bottom device, and only after we flush the ana_work and scan_work (after nvme_stop_ctrl and nvme_prep_remove_namespaces) we change the state to NVME_CTRL_DELETING_NOIO. Also we prevent ana_work from re-firing by aborting early if we are not LIVE, so we should be safe here. In addition, change the transport drivers to follow the updated state machine. Fixes: 0d0b660f214d ("nvme: add ANA support") Reported-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-07-23 06:32:19 +07:00
/*
* We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
* still be able to complete assuming that the controller is connected.
* Otherwise it will fail immediately and return to the requeue list.
*/
if (ns->ctrl->state != NVME_CTRL_LIVE &&
ns->ctrl->state != NVME_CTRL_DELETING)
return true;
if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
test_bit(NVME_NS_REMOVING, &ns->flags))
return true;
return false;
}
static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
{
int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
struct nvme_ns *found = NULL, *fallback = NULL, *ns;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
list_for_each_entry_rcu(ns, &head->list, siblings) {
if (nvme_path_is_disabled(ns))
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
continue;
if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
distance = node_distance(node, ns->ctrl->numa_node);
else
distance = LOCAL_DISTANCE;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
switch (ns->ana_state) {
case NVME_ANA_OPTIMIZED:
if (distance < found_distance) {
found_distance = distance;
found = ns;
}
break;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
case NVME_ANA_NONOPTIMIZED:
if (distance < fallback_distance) {
fallback_distance = distance;
fallback = ns;
}
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
break;
default:
break;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
}
}
if (!found)
found = fallback;
if (found)
rcu_assign_pointer(head->current_path[node], found);
return found;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
}
static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
struct nvme_ns *ns)
{
ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
siblings);
if (ns)
return ns;
return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
}
static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
int node, struct nvme_ns *old)
{
struct nvme_ns *ns, *found, *fallback = NULL;
if (list_is_singular(&head->list)) {
if (nvme_path_is_disabled(old))
return NULL;
return old;
}
for (ns = nvme_next_ns(head, old);
ns != old;
ns = nvme_next_ns(head, ns)) {
if (nvme_path_is_disabled(ns))
continue;
if (ns->ana_state == NVME_ANA_OPTIMIZED) {
found = ns;
goto out;
}
if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
fallback = ns;
}
/* No optimized path found, re-check the current path */
if (!nvme_path_is_disabled(old) &&
old->ana_state == NVME_ANA_OPTIMIZED) {
found = old;
goto out;
}
if (!fallback)
return NULL;
found = fallback;
out:
rcu_assign_pointer(head->current_path[node], found);
return found;
}
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
{
return ns->ctrl->state == NVME_CTRL_LIVE &&
ns->ana_state == NVME_ANA_OPTIMIZED;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
}
inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
{
int node = numa_node_id();
struct nvme_ns *ns;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
ns = srcu_dereference(head->current_path[node], &head->srcu);
if (unlikely(!ns))
return __nvme_find_path(head, node);
if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
return nvme_round_robin_path(head, node, ns);
if (unlikely(!nvme_path_is_optimized(ns)))
return __nvme_find_path(head, node);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
return ns;
}
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
static bool nvme_available_path(struct nvme_ns_head *head)
{
struct nvme_ns *ns;
list_for_each_entry_rcu(ns, &head->list, siblings) {
switch (ns->ctrl->state) {
case NVME_CTRL_LIVE:
case NVME_CTRL_RESETTING:
case NVME_CTRL_CONNECTING:
/* fallthru */
return true;
default:
break;
}
}
return false;
}
blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
{
struct nvme_ns_head *head = bio->bi_disk->private_data;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
struct device *dev = disk_to_dev(head->disk);
struct nvme_ns *ns;
blk_qc_t ret = BLK_QC_T_NONE;
int srcu_idx;
/*
* The namespace might be going away and the bio might be moved to a
* different queue via blk_steal_bios(), so we need to use the bio_split
* pool from the original queue to allocate the bvecs from.
*/
blk_queue_split(&bio);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
srcu_idx = srcu_read_lock(&head->srcu);
ns = nvme_find_path(head);
if (likely(ns)) {
bio->bi_disk = ns->disk;
bio->bi_opf |= REQ_NVME_MPATH;
trace_block_bio_remap(bio->bi_disk->queue, bio,
disk_devt(ns->head->disk),
bio->bi_iter.bi_sector);
ret = submit_bio_noacct(bio);
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
} else if (nvme_available_path(head)) {
dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
spin_lock_irq(&head->requeue_lock);
bio_list_add(&head->requeue_list, bio);
spin_unlock_irq(&head->requeue_lock);
} else {
nvme: fix controller removal race with scan work With multipath enabled, nvme_scan_work() can read from the device (through nvme_mpath_add_disk()) and hang [1]. However, with fabrics, once ctrl->state is set to NVME_CTRL_DELETING, the reads will hang (see nvmf_check_ready()) and the mpath stack device make_request will block if head->list is not empty. However, when the head->list consistst of only DELETING/DEAD controllers, we should actually not block, but rather fail immediately. In addition, before we go ahead and remove the namespaces, make sure to clear the current path and kick the requeue list so that the request will fast fail upon requeuing. [1]: -- INFO: task kworker/u4:3:166 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:3 D 0 166 2 0x80004000 Workqueue: nvme-wq nvme_scan_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 io_schedule+0x21/0x70 do_read_cache_page+0xa57/0x1330 read_cache_page+0x4a/0x70 read_dev_sector+0xbf/0x380 amiga_partition+0xc4/0x1230 check_partition+0x30f/0x630 rescan_partitions+0x19a/0x980 __blkdev_get+0x85a/0x12f0 blkdev_get+0x2a5/0x790 __device_add_disk+0xe25/0x1250 device_add_disk+0x13/0x20 nvme_mpath_set_live+0x172/0x2b0 nvme_update_ns_ana_state+0x130/0x180 nvme_set_ns_ana_state+0x9a/0xb0 nvme_parse_ana_log+0x1c3/0x4a0 nvme_mpath_add_disk+0x157/0x290 nvme_validate_ns+0x1017/0x1bd0 nvme_scan_work+0x44d/0x6a0 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 INFO: task kworker/u4:1:1034 blocked for more than 120 seconds. Not tainted 5.2.0-rc6-vmlocalyes-00005-g808c8c2dc0cf #316 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:1 D 0 1034 2 0x80004000 Workqueue: nvme-delete-wq nvme_delete_ctrl_work Call Trace: __schedule+0x851/0x1400 schedule+0x99/0x210 schedule_timeout+0x390/0x830 wait_for_completion+0x1a7/0x310 __flush_work+0x241/0x5d0 flush_work+0x10/0x20 nvme_remove_namespaces+0x85/0x3d0 nvme_do_delete_ctrl+0xb4/0x1e0 nvme_delete_ctrl_work+0x15/0x20 process_one_work+0x7d7/0x1240 worker_thread+0x8e/0xff0 kthread+0x2c3/0x3b0 ret_from_fork+0x35/0x40 -- Reported-by: Logan Gunthorpe <logang@deltatee.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-07-26 01:56:57 +07:00
dev_warn_ratelimited(dev, "no available path - failing I/O\n");
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
bio->bi_status = BLK_STS_IOERR;
bio_endio(bio);
}
srcu_read_unlock(&head->srcu, srcu_idx);
return ret;
}
static void nvme_requeue_work(struct work_struct *work)
{
struct nvme_ns_head *head =
container_of(work, struct nvme_ns_head, requeue_work);
struct bio *bio, *next;
spin_lock_irq(&head->requeue_lock);
next = bio_list_get(&head->requeue_list);
spin_unlock_irq(&head->requeue_lock);
while ((bio = next) != NULL) {
next = bio->bi_next;
bio->bi_next = NULL;
/*
* Reset disk to the mpath node and resubmit to select a new
* path.
*/
bio->bi_disk = head->disk;
submit_bio_noacct(bio);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
}
}
int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
{
struct request_queue *q;
bool vwc = false;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
mutex_init(&head->lock);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
bio_list_init(&head->requeue_list);
spin_lock_init(&head->requeue_lock);
INIT_WORK(&head->requeue_work, nvme_requeue_work);
/*
* Add a multipath node if the subsystems supports multiple controllers.
* We also do this for private namespaces as the namespace sharing data could
* change after a rescan.
*/
if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
return 0;
q = blk_alloc_queue(ctrl->numa_node);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
if (!q)
goto out;
blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
/* set to a default value for 512 until disk is validated */
blk_queue_logical_block_size(q, 512);
blk_set_stacking_limits(&q->limits);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
/* we need to propagate up the VMC settings */
if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
vwc = true;
blk_queue_write_cache(q, vwc, vwc);
head->disk = alloc_disk(0);
if (!head->disk)
goto out_cleanup_queue;
head->disk->fops = &nvme_ns_head_ops;
head->disk->private_data = head;
head->disk->queue = q;
head->disk->flags = GENHD_FL_EXT_DEVT;
sprintf(head->disk->disk_name, "nvme%dn%d",
ctrl->subsys->instance, head->instance);
return 0;
out_cleanup_queue:
blk_cleanup_queue(q);
out:
return -ENOMEM;
}
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
static void nvme_mpath_set_live(struct nvme_ns *ns)
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
{
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
struct nvme_ns_head *head = ns->head;
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
if (!head->disk)
return;
nvme-multipath: fix deadlock due to head->lock In the following scenario scan_work and ana_work will deadlock: When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. Since nvme_mpath_set_live() holds ns->head->lock, an ana_work on ANY ctrl will not be able to complete nvme_mpath_set_live() on the same ns->head, which is required in order to update the new accessible path and remove NVME_NS_ANA_PENDING.. Therefore IO never completes: deadlock [1]. Fix: Move device_add_disk out of the head->lock and protect it with an atomic test_and_set for a new NVME_NS_HEAD_HAS_DISK bit. [1]: kernel: INFO: task kworker/u8:2:160 blocked for more than 120 seconds. kernel: Tainted: G OE 5.3.5-050305-generic #201910071830 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kernel: kworker/u8:2 D 0 160 2 0x80004000 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_update_ns_ana_state+0x22/0x60 [nvme_core] kernel: nvme_update_ana_state+0xca/0xe0 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_read_ana_log+0x76/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ret_from_fork+0x35/0x40 kernel: INFO: task kworker/u8:4:439 blocked for more than 120 seconds. kernel: Tainted: G OE 5.3.5-050305-generic #201910071830 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kernel: kworker/u8:4 D 0 439 2 0x80004000 kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_mpath_add_disk+0xbe/0x100 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x256/0x390 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:11 +07:00
if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
device_add_disk(&head->subsys->dev, head->disk,
nvme_ns_id_attr_groups);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
nvme-multipath: fix deadlock due to head->lock In the following scenario scan_work and ana_work will deadlock: When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. Since nvme_mpath_set_live() holds ns->head->lock, an ana_work on ANY ctrl will not be able to complete nvme_mpath_set_live() on the same ns->head, which is required in order to update the new accessible path and remove NVME_NS_ANA_PENDING.. Therefore IO never completes: deadlock [1]. Fix: Move device_add_disk out of the head->lock and protect it with an atomic test_and_set for a new NVME_NS_HEAD_HAS_DISK bit. [1]: kernel: INFO: task kworker/u8:2:160 blocked for more than 120 seconds. kernel: Tainted: G OE 5.3.5-050305-generic #201910071830 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kernel: kworker/u8:2 D 0 160 2 0x80004000 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_update_ns_ana_state+0x22/0x60 [nvme_core] kernel: nvme_update_ana_state+0xca/0xe0 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_read_ana_log+0x76/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ret_from_fork+0x35/0x40 kernel: INFO: task kworker/u8:4:439 blocked for more than 120 seconds. kernel: Tainted: G OE 5.3.5-050305-generic #201910071830 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kernel: kworker/u8:4 D 0 439 2 0x80004000 kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_mpath_add_disk+0xbe/0x100 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x256/0x390 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:11 +07:00
mutex_lock(&head->lock);
if (nvme_path_is_optimized(ns)) {
int node, srcu_idx;
srcu_idx = srcu_read_lock(&head->srcu);
for_each_node(node)
__nvme_find_path(head, node);
srcu_read_unlock(&head->srcu, srcu_idx);
}
mutex_unlock(&head->lock);
synchronize_srcu(&head->srcu);
kblockd_schedule_work(&head->requeue_work);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
}
static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
void *))
{
void *base = ctrl->ana_log_buf;
size_t offset = sizeof(struct nvme_ana_rsp_hdr);
int error, i;
lockdep_assert_held(&ctrl->ana_lock);
for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
struct nvme_ana_group_desc *desc = base + offset;
u32 nr_nsids;
size_t nsid_buf_size;
if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
return -EINVAL;
nr_nsids = le32_to_cpu(desc->nnsids);
nsid_buf_size = nr_nsids * sizeof(__le32);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
if (WARN_ON_ONCE(desc->grpid == 0))
return -EINVAL;
if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
return -EINVAL;
if (WARN_ON_ONCE(desc->state == 0))
return -EINVAL;
if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
return -EINVAL;
offset += sizeof(*desc);
if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
return -EINVAL;
error = cb(ctrl, desc, data);
if (error)
return error;
offset += nsid_buf_size;
}
return 0;
}
static inline bool nvme_state_is_live(enum nvme_ana_state state)
{
return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
}
static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
struct nvme_ns *ns)
{
ns->ana_grpid = le32_to_cpu(desc->grpid);
ns->ana_state = desc->state;
clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
if (nvme_state_is_live(ns->ana_state))
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
nvme_mpath_set_live(ns);
}
static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
struct nvme_ana_group_desc *desc, void *data)
{
u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
unsigned *nr_change_groups = data;
struct nvme_ns *ns;
dev_dbg(ctrl->device, "ANA group %d: %s.\n",
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
le32_to_cpu(desc->grpid),
nvme_ana_state_names[desc->state]);
if (desc->state == NVME_ANA_CHANGE)
(*nr_change_groups)++;
if (!nr_nsids)
return 0;
down_read(&ctrl->namespaces_rwsem);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
list_for_each_entry(ns, &ctrl->namespaces, list) {
nvme-multipath: fix ana log nsid lookup when nsid is not found ANA log parsing invokes nvme_update_ana_state() per ANA group desc. This updates the state of namespaces with nsids in desc->nsids[]. Both ctrl->namespaces list and desc->nsids[] array are sorted by nsid. Hence nvme_update_ana_state() performs a single walk over ctrl->namespaces: - if current namespace matches the current desc->nsids[n], this namespace is updated, and n is incremented. - the process stops when it encounters the end of either ctrl->namespaces end or desc->nsids[] In case desc->nsids[n] does not match any of ctrl->namespaces, the remaining nsids following desc->nsids[n] will not be updated. Such situation was considered abnormal and generated WARN_ON_ONCE. However ANA log MAY contain nsids not (yet) found in ctrl->namespaces. For example, lets consider the following scenario: - nvme0 exposes namespaces with nsids = [2, 3] to the host - a new namespace nsid = 1 is added dynamically - also, a ANA topology change is triggered - NS_CHANGED aen is generated and triggers scan_work - before scan_work discovers nsid=1 and creates a namespace, a NOTICE_ANA aen was issues and ana_work receives ANA log with nsids=[1, 2, 3] Result: ana_work fails to update ANA state on existing namespaces [2, 3] Solution: Change the way nvme_update_ana_state() namespace list walk checks the current namespace against desc->nsids[n] as follows: a) ns->head->ns_id < desc->nsids[n]: keep walking ctrl->namespaces. b) ns->head->ns_id == desc->nsids[n]: match, update the namespace c) ns->head->ns_id >= desc->nsids[n]: skip to desc->nsids[n+1] This enables correct operation in the scenario described above. This also allows ANA log to contain nsids currently invisible to the host, i.e. inactive nsids. Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Reviewed-by: James Smart <james.smart@broadcom.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-08-17 03:00:10 +07:00
unsigned nsid = le32_to_cpu(desc->nsids[n]);
if (ns->head->ns_id < nsid)
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
continue;
nvme-multipath: fix ana log nsid lookup when nsid is not found ANA log parsing invokes nvme_update_ana_state() per ANA group desc. This updates the state of namespaces with nsids in desc->nsids[]. Both ctrl->namespaces list and desc->nsids[] array are sorted by nsid. Hence nvme_update_ana_state() performs a single walk over ctrl->namespaces: - if current namespace matches the current desc->nsids[n], this namespace is updated, and n is incremented. - the process stops when it encounters the end of either ctrl->namespaces end or desc->nsids[] In case desc->nsids[n] does not match any of ctrl->namespaces, the remaining nsids following desc->nsids[n] will not be updated. Such situation was considered abnormal and generated WARN_ON_ONCE. However ANA log MAY contain nsids not (yet) found in ctrl->namespaces. For example, lets consider the following scenario: - nvme0 exposes namespaces with nsids = [2, 3] to the host - a new namespace nsid = 1 is added dynamically - also, a ANA topology change is triggered - NS_CHANGED aen is generated and triggers scan_work - before scan_work discovers nsid=1 and creates a namespace, a NOTICE_ANA aen was issues and ana_work receives ANA log with nsids=[1, 2, 3] Result: ana_work fails to update ANA state on existing namespaces [2, 3] Solution: Change the way nvme_update_ana_state() namespace list walk checks the current namespace against desc->nsids[n] as follows: a) ns->head->ns_id < desc->nsids[n]: keep walking ctrl->namespaces. b) ns->head->ns_id == desc->nsids[n]: match, update the namespace c) ns->head->ns_id >= desc->nsids[n]: skip to desc->nsids[n+1] This enables correct operation in the scenario described above. This also allows ANA log to contain nsids currently invisible to the host, i.e. inactive nsids. Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Reviewed-by: James Smart <james.smart@broadcom.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
2019-08-17 03:00:10 +07:00
if (ns->head->ns_id == nsid)
nvme_update_ns_ana_state(desc, ns);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
if (++n == nr_nsids)
break;
}
up_read(&ctrl->namespaces_rwsem);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
return 0;
}
static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
{
u32 nr_change_groups = 0;
int error;
mutex_lock(&ctrl->ana_lock);
error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
ctrl->ana_log_buf, ctrl->ana_log_size, 0);
if (error) {
dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
goto out_unlock;
}
error = nvme_parse_ana_log(ctrl, &nr_change_groups,
nvme_update_ana_state);
if (error)
goto out_unlock;
/*
* In theory we should have an ANATT timer per group as they might enter
* the change state at different times. But that is a lot of overhead
* just to protect against a target that keeps entering new changes
* states while never finishing previous ones. But we'll still
* eventually time out once all groups are in change state, so this
* isn't a big deal.
*
* We also double the ANATT value to provide some slack for transports
* or AEN processing overhead.
*/
if (nr_change_groups)
mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
else
del_timer_sync(&ctrl->anatt_timer);
out_unlock:
mutex_unlock(&ctrl->ana_lock);
return error;
}
static void nvme_ana_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
nvme: fix deadlock in disconnect during scan_work and/or ana_work A deadlock happens in the following scenario with multipath: 1) scan_work(nvme0) detects a new nsid while nvme0 is an optimized path to it, path nvme1 happens to be inaccessible. 2) Before scan_work is complete nvme0 disconnect is initiated nvme_delete_ctrl_sync() sets nvme0 state to NVME_CTRL_DELETING 3) scan_work(1) attempts to submit IO, but nvme_path_is_optimized() observes nvme0 is not LIVE. Since nvme1 is a possible path IO is requeued and scan_work hangs. -- Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 -- 4) Delete also hangs in flush_work(ctrl->scan_work) from nvme_remove_namespaces(). Similiarly a deadlock with ana_work may happen: if ana_work has started and calls nvme_mpath_set_live and device_add_disk, it will trigger I/O. When we trigger disconnect I/O will block because our accessible (optimized) path is disconnecting, but the alternate path is inaccessible, so I/O blocks. Then disconnect tries to flush the ana_work and hangs. [ 605.550896] Workqueue: nvme-wq nvme_ana_work [nvme_core] [ 605.552087] Call Trace: [ 605.552683] __schedule+0x2b9/0x6c0 [ 605.553507] schedule+0x42/0xb0 [ 605.554201] io_schedule+0x16/0x40 [ 605.555012] do_read_cache_page+0x438/0x830 [ 605.556925] read_cache_page+0x12/0x20 [ 605.557757] read_dev_sector+0x27/0xc0 [ 605.558587] amiga_partition+0x4d/0x4c5 [ 605.561278] check_partition+0x154/0x244 [ 605.562138] rescan_partitions+0xae/0x280 [ 605.563076] __blkdev_get+0x40f/0x560 [ 605.563830] blkdev_get+0x3d/0x140 [ 605.564500] __device_add_disk+0x388/0x480 [ 605.565316] device_add_disk+0x13/0x20 [ 605.566070] nvme_mpath_set_live+0x5e/0x130 [nvme_core] [ 605.567114] nvme_update_ns_ana_state+0x2c/0x30 [nvme_core] [ 605.568197] nvme_update_ana_state+0xca/0xe0 [nvme_core] [ 605.569360] nvme_parse_ana_log+0xa1/0x180 [nvme_core] [ 605.571385] nvme_read_ana_log+0x76/0x100 [nvme_core] [ 605.572376] nvme_ana_work+0x15/0x20 [nvme_core] [ 605.573330] process_one_work+0x1db/0x380 [ 605.574144] worker_thread+0x4d/0x400 [ 605.574896] kthread+0x104/0x140 [ 605.577205] ret_from_fork+0x35/0x40 [ 605.577955] INFO: task nvme:14044 blocked for more than 120 seconds. [ 605.579239] Tainted: G OE 5.3.5-050305-generic #201910071830 [ 605.580712] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 605.582320] nvme D 0 14044 14043 0x00000000 [ 605.583424] Call Trace: [ 605.583935] __schedule+0x2b9/0x6c0 [ 605.584625] schedule+0x42/0xb0 [ 605.585290] schedule_timeout+0x203/0x2f0 [ 605.588493] wait_for_completion+0xb1/0x120 [ 605.590066] __flush_work+0x123/0x1d0 [ 605.591758] __cancel_work_timer+0x10e/0x190 [ 605.593542] cancel_work_sync+0x10/0x20 [ 605.594347] nvme_mpath_stop+0x2f/0x40 [nvme_core] [ 605.595328] nvme_stop_ctrl+0x12/0x50 [nvme_core] [ 605.596262] nvme_do_delete_ctrl+0x3f/0x90 [nvme_core] [ 605.597333] nvme_sysfs_delete+0x5c/0x70 [nvme_core] [ 605.598320] dev_attr_store+0x17/0x30 Fix this by introducing a new state: NVME_CTRL_DELETE_NOIO, which will indicate the phase of controller deletion where I/O cannot be allowed to access the namespace. NVME_CTRL_DELETING still allows mpath I/O to be issued to the bottom device, and only after we flush the ana_work and scan_work (after nvme_stop_ctrl and nvme_prep_remove_namespaces) we change the state to NVME_CTRL_DELETING_NOIO. Also we prevent ana_work from re-firing by aborting early if we are not LIVE, so we should be safe here. In addition, change the transport drivers to follow the updated state machine. Fixes: 0d0b660f214d ("nvme: add ANA support") Reported-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-07-23 06:32:19 +07:00
if (ctrl->state != NVME_CTRL_LIVE)
return;
nvme_read_ana_log(ctrl);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
}
static void nvme_anatt_timeout(struct timer_list *t)
{
struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
nvme_reset_ctrl(ctrl);
}
void nvme_mpath_stop(struct nvme_ctrl *ctrl)
{
if (!nvme_ctrl_use_ana(ctrl))
return;
del_timer_sync(&ctrl->anatt_timer);
cancel_work_sync(&ctrl->ana_work);
}
#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
struct device_attribute subsys_attr_##_name = \
__ATTR(_name, _mode, _show, _store)
static const char *nvme_iopolicy_names[] = {
[NVME_IOPOLICY_NUMA] = "numa",
[NVME_IOPOLICY_RR] = "round-robin",
};
static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvme_subsystem *subsys =
container_of(dev, struct nvme_subsystem, dev);
return sprintf(buf, "%s\n",
nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
}
static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct nvme_subsystem *subsys =
container_of(dev, struct nvme_subsystem, dev);
int i;
for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
WRITE_ONCE(subsys->iopolicy, i);
return count;
}
}
return -EINVAL;
}
SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
}
DEVICE_ATTR_RO(ana_grpid);
static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
}
DEVICE_ATTR_RO(ana_state);
nvme-multipath: fix deadlock between ana_work and scan_work When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. In order to recover and complete the IO ana_work on the same ctrl should be able to update the path state and remove NVME_NS_ANA_PENDING. The deadlock occurs because scan_work keeps holding ana_lock, so ana_work hangs [1]. Fix: Now nvme_mpath_add_disk() uses nvme_parse_ana_log() to obtain a copy of the ANA group desc, and then calls nvme_update_ns_ana_state() without holding ana_lock. [1]: kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: ? __switch_to_asm+0x34/0x70 kernel: ? select_task_rq_fair+0x1aa/0x5c0 kernel: ? kvm_sched_clock_read+0x11/0x20 kernel: ? sched_clock+0x9/0x10 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_read_ana_log+0x3a/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ? process_one_work+0x380/0x380 kernel: ? kthread_park+0x80/0x80 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:09 +07:00
static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
struct nvme_ana_group_desc *desc, void *data)
{
nvme-multipath: fix deadlock between ana_work and scan_work When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. In order to recover and complete the IO ana_work on the same ctrl should be able to update the path state and remove NVME_NS_ANA_PENDING. The deadlock occurs because scan_work keeps holding ana_lock, so ana_work hangs [1]. Fix: Now nvme_mpath_add_disk() uses nvme_parse_ana_log() to obtain a copy of the ANA group desc, and then calls nvme_update_ns_ana_state() without holding ana_lock. [1]: kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: ? __switch_to_asm+0x34/0x70 kernel: ? select_task_rq_fair+0x1aa/0x5c0 kernel: ? kvm_sched_clock_read+0x11/0x20 kernel: ? sched_clock+0x9/0x10 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_read_ana_log+0x3a/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ? process_one_work+0x380/0x380 kernel: ? kthread_park+0x80/0x80 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:09 +07:00
struct nvme_ana_group_desc *dst = data;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
nvme-multipath: fix deadlock between ana_work and scan_work When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. In order to recover and complete the IO ana_work on the same ctrl should be able to update the path state and remove NVME_NS_ANA_PENDING. The deadlock occurs because scan_work keeps holding ana_lock, so ana_work hangs [1]. Fix: Now nvme_mpath_add_disk() uses nvme_parse_ana_log() to obtain a copy of the ANA group desc, and then calls nvme_update_ns_ana_state() without holding ana_lock. [1]: kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: ? __switch_to_asm+0x34/0x70 kernel: ? select_task_rq_fair+0x1aa/0x5c0 kernel: ? kvm_sched_clock_read+0x11/0x20 kernel: ? sched_clock+0x9/0x10 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_read_ana_log+0x3a/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ? process_one_work+0x380/0x380 kernel: ? kthread_park+0x80/0x80 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:09 +07:00
if (desc->grpid != dst->grpid)
return 0;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
nvme-multipath: fix deadlock between ana_work and scan_work When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. In order to recover and complete the IO ana_work on the same ctrl should be able to update the path state and remove NVME_NS_ANA_PENDING. The deadlock occurs because scan_work keeps holding ana_lock, so ana_work hangs [1]. Fix: Now nvme_mpath_add_disk() uses nvme_parse_ana_log() to obtain a copy of the ANA group desc, and then calls nvme_update_ns_ana_state() without holding ana_lock. [1]: kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: ? __switch_to_asm+0x34/0x70 kernel: ? select_task_rq_fair+0x1aa/0x5c0 kernel: ? kvm_sched_clock_read+0x11/0x20 kernel: ? sched_clock+0x9/0x10 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_read_ana_log+0x3a/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ? process_one_work+0x380/0x380 kernel: ? kthread_park+0x80/0x80 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:09 +07:00
*dst = *desc;
return -ENXIO; /* just break out of the loop */
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
}
void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
{
if (nvme_ctrl_use_ana(ns->ctrl)) {
nvme-multipath: fix deadlock between ana_work and scan_work When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. In order to recover and complete the IO ana_work on the same ctrl should be able to update the path state and remove NVME_NS_ANA_PENDING. The deadlock occurs because scan_work keeps holding ana_lock, so ana_work hangs [1]. Fix: Now nvme_mpath_add_disk() uses nvme_parse_ana_log() to obtain a copy of the ANA group desc, and then calls nvme_update_ns_ana_state() without holding ana_lock. [1]: kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: ? __switch_to_asm+0x34/0x70 kernel: ? select_task_rq_fair+0x1aa/0x5c0 kernel: ? kvm_sched_clock_read+0x11/0x20 kernel: ? sched_clock+0x9/0x10 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_read_ana_log+0x3a/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ? process_one_work+0x380/0x380 kernel: ? kthread_park+0x80/0x80 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:09 +07:00
struct nvme_ana_group_desc desc = {
.grpid = id->anagrpid,
.state = 0,
};
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
mutex_lock(&ns->ctrl->ana_lock);
ns->ana_grpid = le32_to_cpu(id->anagrpid);
nvme-multipath: fix deadlock between ana_work and scan_work When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. In order to recover and complete the IO ana_work on the same ctrl should be able to update the path state and remove NVME_NS_ANA_PENDING. The deadlock occurs because scan_work keeps holding ana_lock, so ana_work hangs [1]. Fix: Now nvme_mpath_add_disk() uses nvme_parse_ana_log() to obtain a copy of the ANA group desc, and then calls nvme_update_ns_ana_state() without holding ana_lock. [1]: kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: ? __switch_to_asm+0x34/0x70 kernel: ? select_task_rq_fair+0x1aa/0x5c0 kernel: ? kvm_sched_clock_read+0x11/0x20 kernel: ? sched_clock+0x9/0x10 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_read_ana_log+0x3a/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ? process_one_work+0x380/0x380 kernel: ? kthread_park+0x80/0x80 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:09 +07:00
nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
mutex_unlock(&ns->ctrl->ana_lock);
nvme-multipath: fix deadlock between ana_work and scan_work When scan_work calls nvme_mpath_add_disk() this holds ana_lock and invokes nvme_parse_ana_log(), which may issue IO in device_add_disk() and hang waiting for an accessible path. While nvme_mpath_set_live() only called when nvme_state_is_live(), a transition may cause NVME_SC_ANA_TRANSITION and requeue the IO. In order to recover and complete the IO ana_work on the same ctrl should be able to update the path state and remove NVME_NS_ANA_PENDING. The deadlock occurs because scan_work keeps holding ana_lock, so ana_work hangs [1]. Fix: Now nvme_mpath_add_disk() uses nvme_parse_ana_log() to obtain a copy of the ANA group desc, and then calls nvme_update_ns_ana_state() without holding ana_lock. [1]: kernel: Workqueue: nvme-wq nvme_scan_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: io_schedule+0x16/0x40 kernel: do_read_cache_page+0x438/0x830 kernel: read_cache_page+0x12/0x20 kernel: read_dev_sector+0x27/0xc0 kernel: read_lba+0xc1/0x220 kernel: efi_partition+0x1e6/0x708 kernel: check_partition+0x154/0x244 kernel: rescan_partitions+0xae/0x280 kernel: __blkdev_get+0x40f/0x560 kernel: blkdev_get+0x3d/0x140 kernel: __device_add_disk+0x388/0x480 kernel: device_add_disk+0x13/0x20 kernel: nvme_mpath_set_live+0x119/0x140 [nvme_core] kernel: nvme_update_ns_ana_state+0x5c/0x60 [nvme_core] kernel: nvme_set_ns_ana_state+0x1e/0x30 [nvme_core] kernel: nvme_parse_ana_log+0xa1/0x180 [nvme_core] kernel: nvme_mpath_add_disk+0x47/0x90 [nvme_core] kernel: nvme_validate_ns+0x396/0x940 [nvme_core] kernel: nvme_scan_work+0x24f/0x380 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x249/0x400 kernel: kthread+0x104/0x140 kernel: Workqueue: nvme-wq nvme_ana_work [nvme_core] kernel: Call Trace: kernel: __schedule+0x2b9/0x6c0 kernel: schedule+0x42/0xb0 kernel: schedule_preempt_disabled+0xe/0x10 kernel: __mutex_lock.isra.0+0x182/0x4f0 kernel: ? __switch_to_asm+0x34/0x70 kernel: ? select_task_rq_fair+0x1aa/0x5c0 kernel: ? kvm_sched_clock_read+0x11/0x20 kernel: ? sched_clock+0x9/0x10 kernel: __mutex_lock_slowpath+0x13/0x20 kernel: mutex_lock+0x2e/0x40 kernel: nvme_read_ana_log+0x3a/0x100 [nvme_core] kernel: nvme_ana_work+0x15/0x20 [nvme_core] kernel: process_one_work+0x1db/0x380 kernel: worker_thread+0x4d/0x400 kernel: kthread+0x104/0x140 kernel: ? process_one_work+0x380/0x380 kernel: ? kthread_park+0x80/0x80 kernel: ret_from_fork+0x35/0x40 Fixes: 0d0b660f214d ("nvme: add ANA support") Signed-off-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:09 +07:00
if (desc.state) {
/* found the group desc: update */
nvme_update_ns_ana_state(&desc, ns);
}
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
} else {
ns->ana_state = NVME_ANA_OPTIMIZED;
nvme_mpath_set_live(ns);
}
if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) {
struct gendisk *disk = ns->head->disk;
if (disk)
disk->queue->backing_dev_info->capabilities |=
BDI_CAP_STABLE_WRITES;
}
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
}
void nvme_mpath_remove_disk(struct nvme_ns_head *head)
{
if (!head->disk)
return;
if (head->disk->flags & GENHD_FL_UP)
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
del_gendisk(head->disk);
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
blk_set_queue_dying(head->disk->queue);
/* make sure all pending bios are cleaned up */
kblockd_schedule_work(&head->requeue_work);
flush_work(&head->requeue_work);
blk_cleanup_queue(head->disk->queue);
nvme-multipath: fix bogus request queue reference put The mpath disk node takes a reference on the request mpath request queue when adding live path to the mpath gendisk. However if we connected to an inaccessible path device_add_disk is not called, so if we disconnect and remove the mpath gendisk we endup putting an reference on the request queue that was never taken [1]. Fix that to check if we ever added a live path (using NVME_NS_HEAD_HAS_DISK flag) and if not, clear the disk->queue reference. [1]: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 1 PID: 1372 at lib/refcount.c:28 refcount_warn_saturate+0xa6/0xf0 CPU: 1 PID: 1372 Comm: nvme Tainted: G O 5.7.0-rc2+ #3 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1 04/01/2014 RIP: 0010:refcount_warn_saturate+0xa6/0xf0 RSP: 0018:ffffb29e8053bdc0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff8b7a2f4fc060 RCX: 0000000000000007 RDX: 0000000000000007 RSI: 0000000000000092 RDI: ffff8b7a3ec99980 RBP: ffff8b7a2f4fc000 R08: 00000000000002e1 R09: 0000000000000004 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000 R13: fffffffffffffff2 R14: ffffb29e8053bf08 R15: ffff8b7a320e2da0 FS: 00007f135d4ca800(0000) GS:ffff8b7a3ec80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005651178c0c30 CR3: 000000003b650005 CR4: 0000000000360ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: disk_release+0xa2/0xc0 device_release+0x28/0x80 kobject_put+0xa5/0x1b0 nvme_put_ns_head+0x26/0x70 [nvme_core] nvme_put_ns+0x30/0x60 [nvme_core] nvme_remove_namespaces+0x9b/0xe0 [nvme_core] nvme_do_delete_ctrl+0x43/0x5c [nvme_core] nvme_sysfs_delete.cold+0x8/0xd [nvme_core] kernfs_fop_write+0xc1/0x1a0 vfs_write+0xb6/0x1a0 ksys_write+0x5f/0xe0 do_syscall_64+0x52/0x1a0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported-by: Anton Eidelman <anton@lightbitslabs.com> Tested-by: Anton Eidelman <anton@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-24 15:53:12 +07:00
if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
/*
* if device_add_disk wasn't called, prevent
* disk release to put a bogus reference on the
* request queue
*/
head->disk->queue = NULL;
}
nvme: implement multipath access to nvme subsystems This patch adds native multipath support to the nvme driver. For each namespace we create only single block device node, which can be used to access that namespace through any of the controllers that refer to it. The gendisk for each controllers path to the name space still exists inside the kernel, but is hidden from userspace. The character device nodes are still available on a per-controller basis. A new link from the sysfs directory for the subsystem allows to find all controllers for a given subsystem. Currently we will always send I/O to the first available path, this will be changed once the NVMe Asynchronous Namespace Access (ANA) TP is ratified and implemented, at which point we will look at the ANA state for each namespace. Another possibility that was prototyped is to use the path that is closes to the submitting NUMA code, which will be mostly interesting for PCI, but might also be useful for RDMA or FC transports in the future. There is not plan to implement round robin or I/O service time path selectors, as those are not scalable with the performance rates provided by NVMe. The multipath device will go away once all paths to it disappear, any delay to keep it alive needs to be implemented at the controller level. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-02 18:59:30 +07:00
put_disk(head->disk);
}
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
{
int error;
nvme: fix multipath crash when ANA is deactivated Fix a crash with multipath activated. It happends when ANA log page is larger than MDTS and because of that ANA is disabled. The driver then tries to access unallocated buffer when connecting to a nvme target. The signature is as follows: [ 300.433586] nvme nvme0: ANA log page size (8208) larger than MDTS (8192). [ 300.435387] nvme nvme0: disabling ANA support. [ 300.437835] nvme nvme0: creating 4 I/O queues. [ 300.459132] nvme nvme0: new ctrl: NQN "nqn.0.0.0", addr 10.91.0.1:8009 [ 300.464609] BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 [ 300.466342] #PF error: [normal kernel read fault] [ 300.467385] PGD 0 P4D 0 [ 300.467987] Oops: 0000 [#1] SMP PTI [ 300.468787] CPU: 3 PID: 50 Comm: kworker/u8:1 Not tainted 5.0.20kalray+ #4 [ 300.470264] Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 [ 300.471532] Workqueue: nvme-wq nvme_scan_work [nvme_core] [ 300.472724] RIP: 0010:nvme_parse_ana_log+0x21/0x140 [nvme_core] [ 300.474038] Code: 45 01 d2 d8 48 98 c3 66 90 0f 1f 44 00 00 41 57 41 56 41 55 41 54 55 53 48 89 fb 48 83 ec 08 48 8b af 20 0a 00 00 48 89 34 24 <66> 83 7d 08 00 0f 84 c6 00 00 00 44 8b 7d 14 49 89 d5 8b 55 10 48 [ 300.477374] RSP: 0018:ffffa50e80fd7cb8 EFLAGS: 00010296 [ 300.478334] RAX: 0000000000000001 RBX: ffff9130f1872258 RCX: 0000000000000000 [ 300.479784] RDX: ffffffffc06c4c30 RSI: ffff9130edad4280 RDI: ffff9130f1872258 [ 300.481488] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000044 [ 300.483203] R10: 0000000000000220 R11: 0000000000000040 R12: ffff9130f18722c0 [ 300.484928] R13: ffff9130f18722d0 R14: ffff9130edad4280 R15: ffff9130f18722c0 [ 300.486626] FS: 0000000000000000(0000) GS:ffff9130f7b80000(0000) knlGS:0000000000000000 [ 300.488538] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 300.489907] CR2: 0000000000000008 CR3: 00000002365e6000 CR4: 00000000000006e0 [ 300.491612] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 300.493303] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 300.494991] Call Trace: [ 300.495645] nvme_mpath_add_disk+0x5c/0xb0 [nvme_core] [ 300.496880] nvme_validate_ns+0x2ef/0x550 [nvme_core] [ 300.498105] ? nvme_identify_ctrl.isra.45+0x6a/0xb0 [nvme_core] [ 300.499539] nvme_scan_work+0x2b4/0x370 [nvme_core] [ 300.500717] ? __switch_to_asm+0x35/0x70 [ 300.501663] process_one_work+0x171/0x380 [ 300.502340] worker_thread+0x49/0x3f0 [ 300.503079] kthread+0xf8/0x130 [ 300.503795] ? max_active_store+0x80/0x80 [ 300.504690] ? kthread_bind+0x10/0x10 [ 300.505502] ret_from_fork+0x35/0x40 [ 300.506280] Modules linked in: nvme_tcp nvme_rdma rdma_cm iw_cm ib_cm ib_core nvme_fabrics nvme_core xt_physdev ip6table_raw ip6table_mangle ip6table_filter ip6_tables xt_comment iptable_nat nf_nat_ipv4 nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xt_CHECKSUM iptable_mangle iptable_filter veth ebtable_filter ebtable_nat ebtables iptable_raw vxlan ip6_udp_tunnel udp_tunnel sunrpc joydev pcspkr virtio_balloon br_netfilter bridge stp llc ip_tables xfs libcrc32c ata_generic pata_acpi virtio_net virtio_console net_failover virtio_blk failover ata_piix serio_raw libata virtio_pci virtio_ring virtio [ 300.514984] CR2: 0000000000000008 [ 300.515569] ---[ end trace faa2eefad7e7f218 ]--- [ 300.516354] RIP: 0010:nvme_parse_ana_log+0x21/0x140 [nvme_core] [ 300.517330] Code: 45 01 d2 d8 48 98 c3 66 90 0f 1f 44 00 00 41 57 41 56 41 55 41 54 55 53 48 89 fb 48 83 ec 08 48 8b af 20 0a 00 00 48 89 34 24 <66> 83 7d 08 00 0f 84 c6 00 00 00 44 8b 7d 14 49 89 d5 8b 55 10 48 [ 300.520353] RSP: 0018:ffffa50e80fd7cb8 EFLAGS: 00010296 [ 300.521229] RAX: 0000000000000001 RBX: ffff9130f1872258 RCX: 0000000000000000 [ 300.522399] RDX: ffffffffc06c4c30 RSI: ffff9130edad4280 RDI: ffff9130f1872258 [ 300.523560] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000044 [ 300.524734] R10: 0000000000000220 R11: 0000000000000040 R12: ffff9130f18722c0 [ 300.525915] R13: ffff9130f18722d0 R14: ffff9130edad4280 R15: ffff9130f18722c0 [ 300.527084] FS: 0000000000000000(0000) GS:ffff9130f7b80000(0000) knlGS:0000000000000000 [ 300.528396] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 300.529440] CR2: 0000000000000008 CR3: 00000002365e6000 CR4: 00000000000006e0 [ 300.530739] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 300.531989] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 300.533264] Kernel panic - not syncing: Fatal exception [ 300.534338] Kernel Offset: 0x17c00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) [ 300.536227] ---[ end Kernel panic - not syncing: Fatal exception ]--- Condition check refactoring from Christoph Hellwig. Signed-off-by: Marta Rybczynska <marta.rybczynska@kalray.eu> Tested-by: Jean-Baptiste Riaux <jbriaux@kalray.eu> Signed-off-by: Christoph Hellwig <hch@lst.de>
2019-07-23 12:41:20 +07:00
/* check if multipath is enabled and we have the capability */
if (!multipath || !ctrl->subsys ||
!(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
return 0;
ctrl->anacap = id->anacap;
ctrl->anatt = id->anatt;
ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
mutex_init(&ctrl->ana_lock);
timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
dev_err(ctrl->device,
"ANA log page size (%zd) larger than MDTS (%d).\n",
ctrl->ana_log_size,
ctrl->max_hw_sectors << SECTOR_SHIFT);
dev_err(ctrl->device, "disabling ANA support.\n");
return 0;
}
INIT_WORK(&ctrl->ana_work, nvme_ana_work);
nvme-multipath: Fix memory leak with ana_log_buf kmemleak reports a memory leak with the ana_log_buf allocated by nvme_mpath_init(): unreferenced object 0xffff888120e94000 (size 8208): comm "nvme", pid 6884, jiffies 4295020435 (age 78786.312s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 ................ 01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000e2360188>] kmalloc_order+0x97/0xc0 [<0000000079b18dd4>] kmalloc_order_trace+0x24/0x100 [<00000000f50c0406>] __kmalloc+0x24c/0x2d0 [<00000000f31a10b9>] nvme_mpath_init+0x23c/0x2b0 [<000000005802589e>] nvme_init_identify+0x75f/0x1600 [<0000000058ef911b>] nvme_loop_configure_admin_queue+0x26d/0x280 [<00000000673774b9>] nvme_loop_create_ctrl+0x2a7/0x710 [<00000000f1c7a233>] nvmf_dev_write+0xc66/0x10b9 [<000000004199f8d0>] __vfs_write+0x50/0xa0 [<0000000065466fef>] vfs_write+0xf3/0x280 [<00000000b0db9a8b>] ksys_write+0xc6/0x160 [<0000000082156b91>] __x64_sys_write+0x43/0x50 [<00000000c34fbb6d>] do_syscall_64+0x77/0x2f0 [<00000000bbc574c9>] entry_SYSCALL_64_after_hwframe+0x49/0xbe nvme_mpath_init() is called by nvme_init_identify() which is called in multiple places (nvme_reset_work(), nvme_passthru_end(), etc). This means nvme_mpath_init() may be called multiple times before nvme_mpath_uninit() (which is only called on nvme_free_ctrl()). When nvme_mpath_init() is called multiple times, it overwrites the ana_log_buf pointer with a new allocation, thus leaking the previous allocation. To fix this, free ana_log_buf before allocating a new one. Fixes: 0d0b660f214dc490 ("nvme: add ANA support") Cc: <stable@vger.kernel.org> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Logan Gunthorpe <logang@deltatee.com> Signed-off-by: Keith Busch <kbusch@kernel.org>
2020-02-21 03:29:53 +07:00
kfree(ctrl->ana_log_buf);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
if (!ctrl->ana_log_buf) {
error = -ENOMEM;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
goto out;
}
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
error = nvme_read_ana_log(ctrl);
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
if (error)
goto out_free_ana_log_buf;
return 0;
out_free_ana_log_buf:
kfree(ctrl->ana_log_buf);
ctrl->ana_log_buf = NULL;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
out:
return error;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
}
void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
{
kfree(ctrl->ana_log_buf);
ctrl->ana_log_buf = NULL;
nvme: add ANA support Add support for Asynchronous Namespace Access as specified in NVMe 1.3 TP 4004. With ANA each namespace attached to a controller belongs to an ANA group that describes the characteristics of accessing the namespaces through this controller. In the optimized and non-optimized states namespaces can be accessed regularly, although in a multi-pathing environment we should always prefer to access a namespace through a controller where an optimized relationship exists. Namespaces in Inaccessible, Permanent-Loss or Change state for a given controller should not be accessed. The states are updated through reading the ANA log page, which is read once during controller initialization, whenever the ANA change notice AEN is received, or when one of the ANA specific status codes that signal a state change is received on a command. The ANA state is kept in the nvme_ns structure, which makes the checks in the fast path very simple. Updating the ANA state when reading the log page is also very simple, the only downside is that finding the initial ANA state when scanning for namespaces is a bit cumbersome. The gendisk for a ns_head is only registered once a live path for it exists. Without that the kernel would hang during partition scanning. Includes fixes and improvements from Hannes Reinecke. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
2018-05-14 13:48:54 +07:00
}