2019-05-27 13:55:01 +07:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
/*
|
2018-12-05 13:20:03 +07:00
|
|
|
* ChaCha 256-bit cipher algorithm, x64 SSSE3 functions
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
*
|
|
|
|
* Copyright (C) 2015 Martin Willi
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/linkage.h>
|
2018-12-05 13:20:02 +07:00
|
|
|
#include <asm/frame.h>
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 04:33:04 +07:00
|
|
|
.section .rodata.cst16.ROT8, "aM", @progbits, 16
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
.align 16
|
|
|
|
ROT8: .octa 0x0e0d0c0f0a09080b0605040702010003
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 04:33:04 +07:00
|
|
|
.section .rodata.cst16.ROT16, "aM", @progbits, 16
|
|
|
|
.align 16
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
ROT16: .octa 0x0d0c0f0e09080b0a0504070601000302
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 04:33:04 +07:00
|
|
|
.section .rodata.cst16.CTRINC, "aM", @progbits, 16
|
|
|
|
.align 16
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
CTRINC: .octa 0x00000003000000020000000100000000
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
|
|
|
|
.text
|
|
|
|
|
2018-12-05 13:20:02 +07:00
|
|
|
/*
|
2018-12-05 13:20:03 +07:00
|
|
|
* chacha_permute - permute one block
|
2018-12-05 13:20:02 +07:00
|
|
|
*
|
|
|
|
* Permute one 64-byte block where the state matrix is in %xmm0-%xmm3. This
|
|
|
|
* function performs matrix operations on four words in parallel, but requires
|
|
|
|
* shuffling to rearrange the words after each round. 8/16-bit word rotation is
|
|
|
|
* done with the slightly better performing SSSE3 byte shuffling, 7/12-bit word
|
|
|
|
* rotation uses traditional shift+OR.
|
|
|
|
*
|
2018-12-05 13:20:03 +07:00
|
|
|
* The round count is given in %r8d.
|
|
|
|
*
|
|
|
|
* Clobbers: %r8d, %xmm4-%xmm7
|
2018-12-05 13:20:02 +07:00
|
|
|
*/
|
2019-10-11 18:50:46 +07:00
|
|
|
SYM_FUNC_START_LOCAL(chacha_permute)
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
|
|
|
|
movdqa ROT8(%rip),%xmm4
|
|
|
|
movdqa ROT16(%rip),%xmm5
|
|
|
|
|
|
|
|
.Ldoubleround:
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
|
|
paddd %xmm1,%xmm0
|
|
|
|
pxor %xmm0,%xmm3
|
|
|
|
pshufb %xmm5,%xmm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
|
|
paddd %xmm3,%xmm2
|
|
|
|
pxor %xmm2,%xmm1
|
|
|
|
movdqa %xmm1,%xmm6
|
|
|
|
pslld $12,%xmm6
|
|
|
|
psrld $20,%xmm1
|
|
|
|
por %xmm6,%xmm1
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
|
|
paddd %xmm1,%xmm0
|
|
|
|
pxor %xmm0,%xmm3
|
|
|
|
pshufb %xmm4,%xmm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
|
|
paddd %xmm3,%xmm2
|
|
|
|
pxor %xmm2,%xmm1
|
|
|
|
movdqa %xmm1,%xmm7
|
|
|
|
pslld $7,%xmm7
|
|
|
|
psrld $25,%xmm1
|
|
|
|
por %xmm7,%xmm1
|
|
|
|
|
|
|
|
# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
|
|
|
|
pshufd $0x39,%xmm1,%xmm1
|
|
|
|
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
|
|
pshufd $0x4e,%xmm2,%xmm2
|
|
|
|
# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
|
|
|
|
pshufd $0x93,%xmm3,%xmm3
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
|
|
paddd %xmm1,%xmm0
|
|
|
|
pxor %xmm0,%xmm3
|
|
|
|
pshufb %xmm5,%xmm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
|
|
paddd %xmm3,%xmm2
|
|
|
|
pxor %xmm2,%xmm1
|
|
|
|
movdqa %xmm1,%xmm6
|
|
|
|
pslld $12,%xmm6
|
|
|
|
psrld $20,%xmm1
|
|
|
|
por %xmm6,%xmm1
|
|
|
|
|
|
|
|
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
|
|
paddd %xmm1,%xmm0
|
|
|
|
pxor %xmm0,%xmm3
|
|
|
|
pshufb %xmm4,%xmm3
|
|
|
|
|
|
|
|
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
|
|
paddd %xmm3,%xmm2
|
|
|
|
pxor %xmm2,%xmm1
|
|
|
|
movdqa %xmm1,%xmm7
|
|
|
|
pslld $7,%xmm7
|
|
|
|
psrld $25,%xmm1
|
|
|
|
por %xmm7,%xmm1
|
|
|
|
|
|
|
|
# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
|
|
|
|
pshufd $0x93,%xmm1,%xmm1
|
|
|
|
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
|
|
pshufd $0x4e,%xmm2,%xmm2
|
|
|
|
# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
|
|
|
|
pshufd $0x39,%xmm3,%xmm3
|
|
|
|
|
2018-12-05 13:20:03 +07:00
|
|
|
sub $2,%r8d
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
jnz .Ldoubleround
|
|
|
|
|
2018-12-05 13:20:02 +07:00
|
|
|
ret
|
2019-10-11 18:50:46 +07:00
|
|
|
SYM_FUNC_END(chacha_permute)
|
2018-12-05 13:20:02 +07:00
|
|
|
|
2019-10-11 18:51:04 +07:00
|
|
|
SYM_FUNC_START(chacha_block_xor_ssse3)
|
2018-12-05 13:20:02 +07:00
|
|
|
# %rdi: Input state matrix, s
|
|
|
|
# %rsi: up to 1 data block output, o
|
|
|
|
# %rdx: up to 1 data block input, i
|
|
|
|
# %rcx: input/output length in bytes
|
2018-12-05 13:20:03 +07:00
|
|
|
# %r8d: nrounds
|
2018-12-05 13:20:02 +07:00
|
|
|
FRAME_BEGIN
|
|
|
|
|
|
|
|
# x0..3 = s0..3
|
|
|
|
movdqa 0x00(%rdi),%xmm0
|
|
|
|
movdqa 0x10(%rdi),%xmm1
|
|
|
|
movdqa 0x20(%rdi),%xmm2
|
|
|
|
movdqa 0x30(%rdi),%xmm3
|
|
|
|
movdqa %xmm0,%xmm8
|
|
|
|
movdqa %xmm1,%xmm9
|
|
|
|
movdqa %xmm2,%xmm10
|
|
|
|
movdqa %xmm3,%xmm11
|
|
|
|
|
|
|
|
mov %rcx,%rax
|
2018-12-05 13:20:03 +07:00
|
|
|
call chacha_permute
|
2018-12-05 13:20:02 +07:00
|
|
|
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
# o0 = i0 ^ (x0 + s0)
|
|
|
|
paddd %xmm8,%xmm0
|
2018-11-11 16:36:25 +07:00
|
|
|
cmp $0x10,%rax
|
|
|
|
jl .Lxorpart
|
|
|
|
movdqu 0x00(%rdx),%xmm4
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
pxor %xmm4,%xmm0
|
|
|
|
movdqu %xmm0,0x00(%rsi)
|
|
|
|
# o1 = i1 ^ (x1 + s1)
|
|
|
|
paddd %xmm9,%xmm1
|
2018-11-11 16:36:25 +07:00
|
|
|
movdqa %xmm1,%xmm0
|
|
|
|
cmp $0x20,%rax
|
|
|
|
jl .Lxorpart
|
|
|
|
movdqu 0x10(%rdx),%xmm0
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x10(%rsi)
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
# o2 = i2 ^ (x2 + s2)
|
|
|
|
paddd %xmm10,%xmm2
|
2018-11-11 16:36:25 +07:00
|
|
|
movdqa %xmm2,%xmm0
|
|
|
|
cmp $0x30,%rax
|
|
|
|
jl .Lxorpart
|
|
|
|
movdqu 0x20(%rdx),%xmm0
|
|
|
|
pxor %xmm2,%xmm0
|
|
|
|
movdqu %xmm0,0x20(%rsi)
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
# o3 = i3 ^ (x3 + s3)
|
|
|
|
paddd %xmm11,%xmm3
|
2018-11-11 16:36:25 +07:00
|
|
|
movdqa %xmm3,%xmm0
|
|
|
|
cmp $0x40,%rax
|
|
|
|
jl .Lxorpart
|
|
|
|
movdqu 0x30(%rdx),%xmm0
|
|
|
|
pxor %xmm3,%xmm0
|
|
|
|
movdqu %xmm0,0x30(%rsi)
|
|
|
|
|
|
|
|
.Ldone:
|
2018-12-05 13:20:02 +07:00
|
|
|
FRAME_END
|
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:01 +07:00
|
|
|
ret
|
2018-11-11 16:36:25 +07:00
|
|
|
|
|
|
|
.Lxorpart:
|
|
|
|
# xor remaining bytes from partial register into output
|
|
|
|
mov %rax,%r9
|
|
|
|
and $0x0f,%r9
|
|
|
|
jz .Ldone
|
|
|
|
and $~0x0f,%rax
|
|
|
|
|
|
|
|
mov %rsi,%r11
|
|
|
|
|
|
|
|
lea 8(%rsp),%r10
|
|
|
|
sub $0x10,%rsp
|
|
|
|
and $~31,%rsp
|
|
|
|
|
|
|
|
lea (%rdx,%rax),%rsi
|
|
|
|
mov %rsp,%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
pxor 0x00(%rsp),%xmm0
|
|
|
|
movdqa %xmm0,0x00(%rsp)
|
|
|
|
|
|
|
|
mov %rsp,%rsi
|
|
|
|
lea (%r11,%rax),%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
lea -8(%r10),%rsp
|
|
|
|
jmp .Ldone
|
|
|
|
|
2019-10-11 18:51:04 +07:00
|
|
|
SYM_FUNC_END(chacha_block_xor_ssse3)
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
|
2019-10-11 18:51:04 +07:00
|
|
|
SYM_FUNC_START(hchacha_block_ssse3)
|
2018-12-05 13:20:02 +07:00
|
|
|
# %rdi: Input state matrix, s
|
|
|
|
# %rsi: output (8 32-bit words)
|
2018-12-05 13:20:03 +07:00
|
|
|
# %edx: nrounds
|
2018-12-05 13:20:02 +07:00
|
|
|
FRAME_BEGIN
|
|
|
|
|
|
|
|
movdqa 0x00(%rdi),%xmm0
|
|
|
|
movdqa 0x10(%rdi),%xmm1
|
|
|
|
movdqa 0x20(%rdi),%xmm2
|
|
|
|
movdqa 0x30(%rdi),%xmm3
|
|
|
|
|
2018-12-05 13:20:03 +07:00
|
|
|
mov %edx,%r8d
|
|
|
|
call chacha_permute
|
2018-12-05 13:20:02 +07:00
|
|
|
|
|
|
|
movdqu %xmm0,0x00(%rsi)
|
|
|
|
movdqu %xmm3,0x10(%rsi)
|
|
|
|
|
|
|
|
FRAME_END
|
|
|
|
ret
|
2019-10-11 18:51:04 +07:00
|
|
|
SYM_FUNC_END(hchacha_block_ssse3)
|
2018-12-05 13:20:02 +07:00
|
|
|
|
2019-10-11 18:51:04 +07:00
|
|
|
SYM_FUNC_START(chacha_4block_xor_ssse3)
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
# %rdi: Input state matrix, s
|
2018-11-11 16:36:26 +07:00
|
|
|
# %rsi: up to 4 data blocks output, o
|
|
|
|
# %rdx: up to 4 data blocks input, i
|
|
|
|
# %rcx: input/output length in bytes
|
2018-12-05 13:20:03 +07:00
|
|
|
# %r8d: nrounds
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
|
2018-12-05 13:20:03 +07:00
|
|
|
# This function encrypts four consecutive ChaCha blocks by loading the
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
# the state matrix in SSE registers four times. As we need some scratch
|
|
|
|
# registers, we save the first four registers on the stack. The
|
|
|
|
# algorithm performs each operation on the corresponding word of each
|
|
|
|
# state matrix, hence requires no word shuffling. For final XORing step
|
|
|
|
# we transpose the matrix by interleaving 32- and then 64-bit words,
|
|
|
|
# which allows us to do XOR in SSE registers. 8/16-bit word rotation is
|
|
|
|
# done with the slightly better performing SSSE3 byte shuffling,
|
|
|
|
# 7/12-bit word rotation uses traditional shift+OR.
|
|
|
|
|
2017-10-09 03:50:53 +07:00
|
|
|
lea 8(%rsp),%r10
|
2016-01-21 23:24:08 +07:00
|
|
|
sub $0x80,%rsp
|
|
|
|
and $~63,%rsp
|
2018-11-11 16:36:26 +07:00
|
|
|
mov %rcx,%rax
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
|
|
|
|
# x0..15[0-3] = s0..3[0..3]
|
|
|
|
movq 0x00(%rdi),%xmm1
|
|
|
|
pshufd $0x00,%xmm1,%xmm0
|
|
|
|
pshufd $0x55,%xmm1,%xmm1
|
|
|
|
movq 0x08(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
movq 0x10(%rdi),%xmm5
|
|
|
|
pshufd $0x00,%xmm5,%xmm4
|
|
|
|
pshufd $0x55,%xmm5,%xmm5
|
|
|
|
movq 0x18(%rdi),%xmm7
|
|
|
|
pshufd $0x00,%xmm7,%xmm6
|
|
|
|
pshufd $0x55,%xmm7,%xmm7
|
|
|
|
movq 0x20(%rdi),%xmm9
|
|
|
|
pshufd $0x00,%xmm9,%xmm8
|
|
|
|
pshufd $0x55,%xmm9,%xmm9
|
|
|
|
movq 0x28(%rdi),%xmm11
|
|
|
|
pshufd $0x00,%xmm11,%xmm10
|
|
|
|
pshufd $0x55,%xmm11,%xmm11
|
|
|
|
movq 0x30(%rdi),%xmm13
|
|
|
|
pshufd $0x00,%xmm13,%xmm12
|
|
|
|
pshufd $0x55,%xmm13,%xmm13
|
|
|
|
movq 0x38(%rdi),%xmm15
|
|
|
|
pshufd $0x00,%xmm15,%xmm14
|
|
|
|
pshufd $0x55,%xmm15,%xmm15
|
|
|
|
# x0..3 on stack
|
|
|
|
movdqa %xmm0,0x00(%rsp)
|
|
|
|
movdqa %xmm1,0x10(%rsp)
|
|
|
|
movdqa %xmm2,0x20(%rsp)
|
|
|
|
movdqa %xmm3,0x30(%rsp)
|
|
|
|
|
|
|
|
movdqa CTRINC(%rip),%xmm1
|
|
|
|
movdqa ROT8(%rip),%xmm2
|
|
|
|
movdqa ROT16(%rip),%xmm3
|
|
|
|
|
|
|
|
# x12 += counter values 0-3
|
|
|
|
paddd %xmm1,%xmm12
|
|
|
|
|
|
|
|
.Ldoubleround4:
|
|
|
|
# x0 += x4, x12 = rotl32(x12 ^ x0, 16)
|
|
|
|
movdqa 0x00(%rsp),%xmm0
|
|
|
|
paddd %xmm4,%xmm0
|
|
|
|
movdqa %xmm0,0x00(%rsp)
|
|
|
|
pxor %xmm0,%xmm12
|
|
|
|
pshufb %xmm3,%xmm12
|
|
|
|
# x1 += x5, x13 = rotl32(x13 ^ x1, 16)
|
|
|
|
movdqa 0x10(%rsp),%xmm0
|
|
|
|
paddd %xmm5,%xmm0
|
|
|
|
movdqa %xmm0,0x10(%rsp)
|
|
|
|
pxor %xmm0,%xmm13
|
|
|
|
pshufb %xmm3,%xmm13
|
|
|
|
# x2 += x6, x14 = rotl32(x14 ^ x2, 16)
|
|
|
|
movdqa 0x20(%rsp),%xmm0
|
|
|
|
paddd %xmm6,%xmm0
|
|
|
|
movdqa %xmm0,0x20(%rsp)
|
|
|
|
pxor %xmm0,%xmm14
|
|
|
|
pshufb %xmm3,%xmm14
|
|
|
|
# x3 += x7, x15 = rotl32(x15 ^ x3, 16)
|
|
|
|
movdqa 0x30(%rsp),%xmm0
|
|
|
|
paddd %xmm7,%xmm0
|
|
|
|
movdqa %xmm0,0x30(%rsp)
|
|
|
|
pxor %xmm0,%xmm15
|
|
|
|
pshufb %xmm3,%xmm15
|
|
|
|
|
|
|
|
# x8 += x12, x4 = rotl32(x4 ^ x8, 12)
|
|
|
|
paddd %xmm12,%xmm8
|
|
|
|
pxor %xmm8,%xmm4
|
|
|
|
movdqa %xmm4,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm4
|
|
|
|
por %xmm0,%xmm4
|
|
|
|
# x9 += x13, x5 = rotl32(x5 ^ x9, 12)
|
|
|
|
paddd %xmm13,%xmm9
|
|
|
|
pxor %xmm9,%xmm5
|
|
|
|
movdqa %xmm5,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm5
|
|
|
|
por %xmm0,%xmm5
|
|
|
|
# x10 += x14, x6 = rotl32(x6 ^ x10, 12)
|
|
|
|
paddd %xmm14,%xmm10
|
|
|
|
pxor %xmm10,%xmm6
|
|
|
|
movdqa %xmm6,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm6
|
|
|
|
por %xmm0,%xmm6
|
|
|
|
# x11 += x15, x7 = rotl32(x7 ^ x11, 12)
|
|
|
|
paddd %xmm15,%xmm11
|
|
|
|
pxor %xmm11,%xmm7
|
|
|
|
movdqa %xmm7,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm7
|
|
|
|
por %xmm0,%xmm7
|
|
|
|
|
|
|
|
# x0 += x4, x12 = rotl32(x12 ^ x0, 8)
|
|
|
|
movdqa 0x00(%rsp),%xmm0
|
|
|
|
paddd %xmm4,%xmm0
|
|
|
|
movdqa %xmm0,0x00(%rsp)
|
|
|
|
pxor %xmm0,%xmm12
|
|
|
|
pshufb %xmm2,%xmm12
|
|
|
|
# x1 += x5, x13 = rotl32(x13 ^ x1, 8)
|
|
|
|
movdqa 0x10(%rsp),%xmm0
|
|
|
|
paddd %xmm5,%xmm0
|
|
|
|
movdqa %xmm0,0x10(%rsp)
|
|
|
|
pxor %xmm0,%xmm13
|
|
|
|
pshufb %xmm2,%xmm13
|
|
|
|
# x2 += x6, x14 = rotl32(x14 ^ x2, 8)
|
|
|
|
movdqa 0x20(%rsp),%xmm0
|
|
|
|
paddd %xmm6,%xmm0
|
|
|
|
movdqa %xmm0,0x20(%rsp)
|
|
|
|
pxor %xmm0,%xmm14
|
|
|
|
pshufb %xmm2,%xmm14
|
|
|
|
# x3 += x7, x15 = rotl32(x15 ^ x3, 8)
|
|
|
|
movdqa 0x30(%rsp),%xmm0
|
|
|
|
paddd %xmm7,%xmm0
|
|
|
|
movdqa %xmm0,0x30(%rsp)
|
|
|
|
pxor %xmm0,%xmm15
|
|
|
|
pshufb %xmm2,%xmm15
|
|
|
|
|
|
|
|
# x8 += x12, x4 = rotl32(x4 ^ x8, 7)
|
|
|
|
paddd %xmm12,%xmm8
|
|
|
|
pxor %xmm8,%xmm4
|
|
|
|
movdqa %xmm4,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm4
|
|
|
|
por %xmm0,%xmm4
|
|
|
|
# x9 += x13, x5 = rotl32(x5 ^ x9, 7)
|
|
|
|
paddd %xmm13,%xmm9
|
|
|
|
pxor %xmm9,%xmm5
|
|
|
|
movdqa %xmm5,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm5
|
|
|
|
por %xmm0,%xmm5
|
|
|
|
# x10 += x14, x6 = rotl32(x6 ^ x10, 7)
|
|
|
|
paddd %xmm14,%xmm10
|
|
|
|
pxor %xmm10,%xmm6
|
|
|
|
movdqa %xmm6,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm6
|
|
|
|
por %xmm0,%xmm6
|
|
|
|
# x11 += x15, x7 = rotl32(x7 ^ x11, 7)
|
|
|
|
paddd %xmm15,%xmm11
|
|
|
|
pxor %xmm11,%xmm7
|
|
|
|
movdqa %xmm7,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm7
|
|
|
|
por %xmm0,%xmm7
|
|
|
|
|
|
|
|
# x0 += x5, x15 = rotl32(x15 ^ x0, 16)
|
|
|
|
movdqa 0x00(%rsp),%xmm0
|
|
|
|
paddd %xmm5,%xmm0
|
|
|
|
movdqa %xmm0,0x00(%rsp)
|
|
|
|
pxor %xmm0,%xmm15
|
|
|
|
pshufb %xmm3,%xmm15
|
|
|
|
# x1 += x6, x12 = rotl32(x12 ^ x1, 16)
|
|
|
|
movdqa 0x10(%rsp),%xmm0
|
|
|
|
paddd %xmm6,%xmm0
|
|
|
|
movdqa %xmm0,0x10(%rsp)
|
|
|
|
pxor %xmm0,%xmm12
|
|
|
|
pshufb %xmm3,%xmm12
|
|
|
|
# x2 += x7, x13 = rotl32(x13 ^ x2, 16)
|
|
|
|
movdqa 0x20(%rsp),%xmm0
|
|
|
|
paddd %xmm7,%xmm0
|
|
|
|
movdqa %xmm0,0x20(%rsp)
|
|
|
|
pxor %xmm0,%xmm13
|
|
|
|
pshufb %xmm3,%xmm13
|
|
|
|
# x3 += x4, x14 = rotl32(x14 ^ x3, 16)
|
|
|
|
movdqa 0x30(%rsp),%xmm0
|
|
|
|
paddd %xmm4,%xmm0
|
|
|
|
movdqa %xmm0,0x30(%rsp)
|
|
|
|
pxor %xmm0,%xmm14
|
|
|
|
pshufb %xmm3,%xmm14
|
|
|
|
|
|
|
|
# x10 += x15, x5 = rotl32(x5 ^ x10, 12)
|
|
|
|
paddd %xmm15,%xmm10
|
|
|
|
pxor %xmm10,%xmm5
|
|
|
|
movdqa %xmm5,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm5
|
|
|
|
por %xmm0,%xmm5
|
|
|
|
# x11 += x12, x6 = rotl32(x6 ^ x11, 12)
|
|
|
|
paddd %xmm12,%xmm11
|
|
|
|
pxor %xmm11,%xmm6
|
|
|
|
movdqa %xmm6,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm6
|
|
|
|
por %xmm0,%xmm6
|
|
|
|
# x8 += x13, x7 = rotl32(x7 ^ x8, 12)
|
|
|
|
paddd %xmm13,%xmm8
|
|
|
|
pxor %xmm8,%xmm7
|
|
|
|
movdqa %xmm7,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm7
|
|
|
|
por %xmm0,%xmm7
|
|
|
|
# x9 += x14, x4 = rotl32(x4 ^ x9, 12)
|
|
|
|
paddd %xmm14,%xmm9
|
|
|
|
pxor %xmm9,%xmm4
|
|
|
|
movdqa %xmm4,%xmm0
|
|
|
|
pslld $12,%xmm0
|
|
|
|
psrld $20,%xmm4
|
|
|
|
por %xmm0,%xmm4
|
|
|
|
|
|
|
|
# x0 += x5, x15 = rotl32(x15 ^ x0, 8)
|
|
|
|
movdqa 0x00(%rsp),%xmm0
|
|
|
|
paddd %xmm5,%xmm0
|
|
|
|
movdqa %xmm0,0x00(%rsp)
|
|
|
|
pxor %xmm0,%xmm15
|
|
|
|
pshufb %xmm2,%xmm15
|
|
|
|
# x1 += x6, x12 = rotl32(x12 ^ x1, 8)
|
|
|
|
movdqa 0x10(%rsp),%xmm0
|
|
|
|
paddd %xmm6,%xmm0
|
|
|
|
movdqa %xmm0,0x10(%rsp)
|
|
|
|
pxor %xmm0,%xmm12
|
|
|
|
pshufb %xmm2,%xmm12
|
|
|
|
# x2 += x7, x13 = rotl32(x13 ^ x2, 8)
|
|
|
|
movdqa 0x20(%rsp),%xmm0
|
|
|
|
paddd %xmm7,%xmm0
|
|
|
|
movdqa %xmm0,0x20(%rsp)
|
|
|
|
pxor %xmm0,%xmm13
|
|
|
|
pshufb %xmm2,%xmm13
|
|
|
|
# x3 += x4, x14 = rotl32(x14 ^ x3, 8)
|
|
|
|
movdqa 0x30(%rsp),%xmm0
|
|
|
|
paddd %xmm4,%xmm0
|
|
|
|
movdqa %xmm0,0x30(%rsp)
|
|
|
|
pxor %xmm0,%xmm14
|
|
|
|
pshufb %xmm2,%xmm14
|
|
|
|
|
|
|
|
# x10 += x15, x5 = rotl32(x5 ^ x10, 7)
|
|
|
|
paddd %xmm15,%xmm10
|
|
|
|
pxor %xmm10,%xmm5
|
|
|
|
movdqa %xmm5,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm5
|
|
|
|
por %xmm0,%xmm5
|
|
|
|
# x11 += x12, x6 = rotl32(x6 ^ x11, 7)
|
|
|
|
paddd %xmm12,%xmm11
|
|
|
|
pxor %xmm11,%xmm6
|
|
|
|
movdqa %xmm6,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm6
|
|
|
|
por %xmm0,%xmm6
|
|
|
|
# x8 += x13, x7 = rotl32(x7 ^ x8, 7)
|
|
|
|
paddd %xmm13,%xmm8
|
|
|
|
pxor %xmm8,%xmm7
|
|
|
|
movdqa %xmm7,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm7
|
|
|
|
por %xmm0,%xmm7
|
|
|
|
# x9 += x14, x4 = rotl32(x4 ^ x9, 7)
|
|
|
|
paddd %xmm14,%xmm9
|
|
|
|
pxor %xmm9,%xmm4
|
|
|
|
movdqa %xmm4,%xmm0
|
|
|
|
pslld $7,%xmm0
|
|
|
|
psrld $25,%xmm4
|
|
|
|
por %xmm0,%xmm4
|
|
|
|
|
2018-12-05 13:20:03 +07:00
|
|
|
sub $2,%r8d
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
jnz .Ldoubleround4
|
|
|
|
|
|
|
|
# x0[0-3] += s0[0]
|
|
|
|
# x1[0-3] += s0[1]
|
|
|
|
movq 0x00(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd 0x00(%rsp),%xmm2
|
|
|
|
movdqa %xmm2,0x00(%rsp)
|
|
|
|
paddd 0x10(%rsp),%xmm3
|
|
|
|
movdqa %xmm3,0x10(%rsp)
|
|
|
|
# x2[0-3] += s0[2]
|
|
|
|
# x3[0-3] += s0[3]
|
|
|
|
movq 0x08(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd 0x20(%rsp),%xmm2
|
|
|
|
movdqa %xmm2,0x20(%rsp)
|
|
|
|
paddd 0x30(%rsp),%xmm3
|
|
|
|
movdqa %xmm3,0x30(%rsp)
|
|
|
|
|
|
|
|
# x4[0-3] += s1[0]
|
|
|
|
# x5[0-3] += s1[1]
|
|
|
|
movq 0x10(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd %xmm2,%xmm4
|
|
|
|
paddd %xmm3,%xmm5
|
|
|
|
# x6[0-3] += s1[2]
|
|
|
|
# x7[0-3] += s1[3]
|
|
|
|
movq 0x18(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd %xmm2,%xmm6
|
|
|
|
paddd %xmm3,%xmm7
|
|
|
|
|
|
|
|
# x8[0-3] += s2[0]
|
|
|
|
# x9[0-3] += s2[1]
|
|
|
|
movq 0x20(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd %xmm2,%xmm8
|
|
|
|
paddd %xmm3,%xmm9
|
|
|
|
# x10[0-3] += s2[2]
|
|
|
|
# x11[0-3] += s2[3]
|
|
|
|
movq 0x28(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd %xmm2,%xmm10
|
|
|
|
paddd %xmm3,%xmm11
|
|
|
|
|
|
|
|
# x12[0-3] += s3[0]
|
|
|
|
# x13[0-3] += s3[1]
|
|
|
|
movq 0x30(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd %xmm2,%xmm12
|
|
|
|
paddd %xmm3,%xmm13
|
|
|
|
# x14[0-3] += s3[2]
|
|
|
|
# x15[0-3] += s3[3]
|
|
|
|
movq 0x38(%rdi),%xmm3
|
|
|
|
pshufd $0x00,%xmm3,%xmm2
|
|
|
|
pshufd $0x55,%xmm3,%xmm3
|
|
|
|
paddd %xmm2,%xmm14
|
|
|
|
paddd %xmm3,%xmm15
|
|
|
|
|
|
|
|
# x12 += counter values 0-3
|
|
|
|
paddd %xmm1,%xmm12
|
|
|
|
|
|
|
|
# interleave 32-bit words in state n, n+1
|
|
|
|
movdqa 0x00(%rsp),%xmm0
|
|
|
|
movdqa 0x10(%rsp),%xmm1
|
|
|
|
movdqa %xmm0,%xmm2
|
|
|
|
punpckldq %xmm1,%xmm2
|
|
|
|
punpckhdq %xmm1,%xmm0
|
|
|
|
movdqa %xmm2,0x00(%rsp)
|
|
|
|
movdqa %xmm0,0x10(%rsp)
|
|
|
|
movdqa 0x20(%rsp),%xmm0
|
|
|
|
movdqa 0x30(%rsp),%xmm1
|
|
|
|
movdqa %xmm0,%xmm2
|
|
|
|
punpckldq %xmm1,%xmm2
|
|
|
|
punpckhdq %xmm1,%xmm0
|
|
|
|
movdqa %xmm2,0x20(%rsp)
|
|
|
|
movdqa %xmm0,0x30(%rsp)
|
|
|
|
movdqa %xmm4,%xmm0
|
|
|
|
punpckldq %xmm5,%xmm4
|
|
|
|
punpckhdq %xmm5,%xmm0
|
|
|
|
movdqa %xmm0,%xmm5
|
|
|
|
movdqa %xmm6,%xmm0
|
|
|
|
punpckldq %xmm7,%xmm6
|
|
|
|
punpckhdq %xmm7,%xmm0
|
|
|
|
movdqa %xmm0,%xmm7
|
|
|
|
movdqa %xmm8,%xmm0
|
|
|
|
punpckldq %xmm9,%xmm8
|
|
|
|
punpckhdq %xmm9,%xmm0
|
|
|
|
movdqa %xmm0,%xmm9
|
|
|
|
movdqa %xmm10,%xmm0
|
|
|
|
punpckldq %xmm11,%xmm10
|
|
|
|
punpckhdq %xmm11,%xmm0
|
|
|
|
movdqa %xmm0,%xmm11
|
|
|
|
movdqa %xmm12,%xmm0
|
|
|
|
punpckldq %xmm13,%xmm12
|
|
|
|
punpckhdq %xmm13,%xmm0
|
|
|
|
movdqa %xmm0,%xmm13
|
|
|
|
movdqa %xmm14,%xmm0
|
|
|
|
punpckldq %xmm15,%xmm14
|
|
|
|
punpckhdq %xmm15,%xmm0
|
|
|
|
movdqa %xmm0,%xmm15
|
|
|
|
|
|
|
|
# interleave 64-bit words in state n, n+2
|
|
|
|
movdqa 0x00(%rsp),%xmm0
|
|
|
|
movdqa 0x20(%rsp),%xmm1
|
|
|
|
movdqa %xmm0,%xmm2
|
|
|
|
punpcklqdq %xmm1,%xmm2
|
|
|
|
punpckhqdq %xmm1,%xmm0
|
|
|
|
movdqa %xmm2,0x00(%rsp)
|
|
|
|
movdqa %xmm0,0x20(%rsp)
|
|
|
|
movdqa 0x10(%rsp),%xmm0
|
|
|
|
movdqa 0x30(%rsp),%xmm1
|
|
|
|
movdqa %xmm0,%xmm2
|
|
|
|
punpcklqdq %xmm1,%xmm2
|
|
|
|
punpckhqdq %xmm1,%xmm0
|
|
|
|
movdqa %xmm2,0x10(%rsp)
|
|
|
|
movdqa %xmm0,0x30(%rsp)
|
|
|
|
movdqa %xmm4,%xmm0
|
|
|
|
punpcklqdq %xmm6,%xmm4
|
|
|
|
punpckhqdq %xmm6,%xmm0
|
|
|
|
movdqa %xmm0,%xmm6
|
|
|
|
movdqa %xmm5,%xmm0
|
|
|
|
punpcklqdq %xmm7,%xmm5
|
|
|
|
punpckhqdq %xmm7,%xmm0
|
|
|
|
movdqa %xmm0,%xmm7
|
|
|
|
movdqa %xmm8,%xmm0
|
|
|
|
punpcklqdq %xmm10,%xmm8
|
|
|
|
punpckhqdq %xmm10,%xmm0
|
|
|
|
movdqa %xmm0,%xmm10
|
|
|
|
movdqa %xmm9,%xmm0
|
|
|
|
punpcklqdq %xmm11,%xmm9
|
|
|
|
punpckhqdq %xmm11,%xmm0
|
|
|
|
movdqa %xmm0,%xmm11
|
|
|
|
movdqa %xmm12,%xmm0
|
|
|
|
punpcklqdq %xmm14,%xmm12
|
|
|
|
punpckhqdq %xmm14,%xmm0
|
|
|
|
movdqa %xmm0,%xmm14
|
|
|
|
movdqa %xmm13,%xmm0
|
|
|
|
punpcklqdq %xmm15,%xmm13
|
|
|
|
punpckhqdq %xmm15,%xmm0
|
|
|
|
movdqa %xmm0,%xmm15
|
|
|
|
|
|
|
|
# xor with corresponding input, write to output
|
|
|
|
movdqa 0x00(%rsp),%xmm0
|
2018-11-11 16:36:26 +07:00
|
|
|
cmp $0x10,%rax
|
|
|
|
jl .Lxorpart4
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqu 0x00(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x00(%rsi)
|
2018-11-11 16:36:26 +07:00
|
|
|
|
|
|
|
movdqu %xmm4,%xmm0
|
|
|
|
cmp $0x20,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x10(%rdx),%xmm1
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
pxor %xmm1,%xmm0
|
2018-11-11 16:36:26 +07:00
|
|
|
movdqu %xmm0,0x10(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm8,%xmm0
|
|
|
|
cmp $0x30,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x20(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x20(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm12,%xmm0
|
|
|
|
cmp $0x40,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x30(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x30(%rsi)
|
|
|
|
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqa 0x20(%rsp),%xmm0
|
2018-11-11 16:36:26 +07:00
|
|
|
cmp $0x50,%rax
|
|
|
|
jl .Lxorpart4
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqu 0x40(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x40(%rsi)
|
2018-11-11 16:36:26 +07:00
|
|
|
|
|
|
|
movdqu %xmm6,%xmm0
|
|
|
|
cmp $0x60,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x50(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x50(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm10,%xmm0
|
|
|
|
cmp $0x70,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x60(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x60(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm14,%xmm0
|
|
|
|
cmp $0x80,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x70(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x70(%rsi)
|
|
|
|
|
|
|
|
movdqa 0x10(%rsp),%xmm0
|
|
|
|
cmp $0x90,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x80(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x80(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm5,%xmm0
|
|
|
|
cmp $0xa0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0x90(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0x90(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm9,%xmm0
|
|
|
|
cmp $0xb0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0xa0(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0xa0(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm13,%xmm0
|
|
|
|
cmp $0xc0,%rax
|
|
|
|
jl .Lxorpart4
|
|
|
|
movdqu 0xb0(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0xb0(%rsi)
|
|
|
|
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqa 0x30(%rsp),%xmm0
|
2018-11-11 16:36:26 +07:00
|
|
|
cmp $0xd0,%rax
|
|
|
|
jl .Lxorpart4
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqu 0xc0(%rdx),%xmm1
|
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0xc0(%rsi)
|
2018-11-11 16:36:26 +07:00
|
|
|
|
|
|
|
movdqu %xmm7,%xmm0
|
|
|
|
cmp $0xe0,%rax
|
|
|
|
jl .Lxorpart4
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqu 0xd0(%rdx),%xmm1
|
2018-11-11 16:36:26 +07:00
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0xd0(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm11,%xmm0
|
|
|
|
cmp $0xf0,%rax
|
|
|
|
jl .Lxorpart4
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqu 0xe0(%rdx),%xmm1
|
2018-11-11 16:36:26 +07:00
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0xe0(%rsi)
|
|
|
|
|
|
|
|
movdqu %xmm15,%xmm0
|
|
|
|
cmp $0x100,%rax
|
|
|
|
jl .Lxorpart4
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
movdqu 0xf0(%rdx),%xmm1
|
2018-11-11 16:36:26 +07:00
|
|
|
pxor %xmm1,%xmm0
|
|
|
|
movdqu %xmm0,0xf0(%rsi)
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
|
2018-11-11 16:36:26 +07:00
|
|
|
.Ldone4:
|
2017-10-09 03:50:53 +07:00
|
|
|
lea -8(%r10),%rsp
|
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 00:14:02 +07:00
|
|
|
ret
|
2018-11-11 16:36:26 +07:00
|
|
|
|
|
|
|
.Lxorpart4:
|
|
|
|
# xor remaining bytes from partial register into output
|
|
|
|
mov %rax,%r9
|
|
|
|
and $0x0f,%r9
|
|
|
|
jz .Ldone4
|
|
|
|
and $~0x0f,%rax
|
|
|
|
|
|
|
|
mov %rsi,%r11
|
|
|
|
|
|
|
|
lea (%rdx,%rax),%rsi
|
|
|
|
mov %rsp,%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
pxor 0x00(%rsp),%xmm0
|
|
|
|
movdqa %xmm0,0x00(%rsp)
|
|
|
|
|
|
|
|
mov %rsp,%rsi
|
|
|
|
lea (%r11,%rax),%rdi
|
|
|
|
mov %r9,%rcx
|
|
|
|
rep movsb
|
|
|
|
|
|
|
|
jmp .Ldone4
|
|
|
|
|
2019-10-11 18:51:04 +07:00
|
|
|
SYM_FUNC_END(chacha_4block_xor_ssse3)
|