linux_dsm_epyc7002/drivers/edac/skx_edac.c

1359 lines
33 KiB
C
Raw Normal View History

/*
* EDAC driver for Intel(R) Xeon(R) Skylake processors
* Copyright (c) 2016, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <linux/adxl.h>
#include <acpi/nfit.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>
#include "edac_module.h"
#define EDAC_MOD_STR "skx_edac"
#define MSG_SIZE 1024
/*
* Debug macros
*/
#define skx_printk(level, fmt, arg...) \
edac_printk(level, "skx", fmt, ##arg)
#define skx_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
/*
* Get a bit field at register value <v>, from bit <lo> to bit <hi>
*/
#define GET_BITFIELD(v, lo, hi) \
(((v) & GENMASK_ULL((hi), (lo))) >> (lo))
static LIST_HEAD(skx_edac_list);
static u64 skx_tolm, skx_tohm;
static char *skx_msg;
static unsigned int nvdimm_count;
enum {
INDEX_SOCKET,
INDEX_MEMCTRL,
INDEX_CHANNEL,
INDEX_DIMM,
INDEX_MAX
};
static const char * const component_names[] = {
[INDEX_SOCKET] = "ProcessorSocketId",
[INDEX_MEMCTRL] = "MemoryControllerId",
[INDEX_CHANNEL] = "ChannelId",
[INDEX_DIMM] = "DimmSlotId",
};
static int component_indices[ARRAY_SIZE(component_names)];
static int adxl_component_count;
static const char * const *adxl_component_names;
static u64 *adxl_values;
static char *adxl_msg;
#define NUM_IMC 2 /* memory controllers per socket */
#define NUM_CHANNELS 3 /* channels per memory controller */
#define NUM_DIMMS 2 /* Max DIMMS per channel */
#define MASK26 0x3FFFFFF /* Mask for 2^26 */
#define MASK29 0x1FFFFFFF /* Mask for 2^29 */
/*
* Each cpu socket contains some pci devices that provide global
* information, and also some that are local to each of the two
* memory controllers on the die.
*/
struct skx_dev {
struct list_head list;
u8 bus[4];
int seg;
struct pci_dev *sad_all;
struct pci_dev *util_all;
u32 mcroute;
struct skx_imc {
struct mem_ctl_info *mci;
u8 mc; /* system wide mc# */
u8 lmc; /* socket relative mc# */
u8 src_id, node_id;
struct skx_channel {
struct pci_dev *cdev;
struct skx_dimm {
u8 close_pg;
u8 bank_xor_enable;
u8 fine_grain_bank;
u8 rowbits;
u8 colbits;
} dimms[NUM_DIMMS];
} chan[NUM_CHANNELS];
} imc[NUM_IMC];
};
static int skx_num_sockets;
struct skx_pvt {
struct skx_imc *imc;
};
struct decoded_addr {
struct skx_dev *dev;
u64 addr;
int socket;
int imc;
int channel;
u64 chan_addr;
int sktways;
int chanways;
int dimm;
int rank;
int channel_rank;
u64 rank_address;
int row;
int column;
int bank_address;
int bank_group;
};
static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
{
struct skx_dev *d;
list_for_each_entry(d, &skx_edac_list, list) {
if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
return d;
}
return NULL;
}
enum munittype {
CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
};
struct munit {
u16 did;
u16 devfn[NUM_IMC];
u8 busidx;
u8 per_socket;
enum munittype mtype;
};
/*
* List of PCI device ids that we need together with some device
* number and function numbers to tell which memory controller the
* device belongs to.
*/
static const struct munit skx_all_munits[] = {
{ 0x2054, { }, 1, 1, SAD_ALL },
{ 0x2055, { }, 1, 1, UTIL_ALL },
{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
{ 0x208e, { }, 1, 0, SAD },
{ }
};
/*
* We use the per-socket device 0x2016 to count how many sockets are present,
* and to detemine which PCI buses are associated with each socket. Allocate
* and build the full list of all the skx_dev structures that we need here.
*/
static int get_all_bus_mappings(void)
{
struct pci_dev *pdev, *prev;
struct skx_dev *d;
u32 reg;
int ndev = 0;
prev = NULL;
for (;;) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
if (!pdev)
break;
ndev++;
d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d) {
pci_dev_put(pdev);
return -ENOMEM;
}
d->seg = pci_domain_nr(pdev->bus);
pci_read_config_dword(pdev, 0xCC, &reg);
d->bus[0] = GET_BITFIELD(reg, 0, 7);
d->bus[1] = GET_BITFIELD(reg, 8, 15);
d->bus[2] = GET_BITFIELD(reg, 16, 23);
d->bus[3] = GET_BITFIELD(reg, 24, 31);
edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
list_add_tail(&d->list, &skx_edac_list);
skx_num_sockets++;
prev = pdev;
}
return ndev;
}
static int get_all_munits(const struct munit *m)
{
struct pci_dev *pdev, *prev;
struct skx_dev *d;
u32 reg;
int i = 0, ndev = 0;
prev = NULL;
for (;;) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
if (!pdev)
break;
ndev++;
if (m->per_socket == NUM_IMC) {
for (i = 0; i < NUM_IMC; i++)
if (m->devfn[i] == pdev->devfn)
break;
if (i == NUM_IMC)
goto fail;
}
d = get_skx_dev(pdev->bus, m->busidx);
if (!d)
goto fail;
/* Be sure that the device is enabled */
if (unlikely(pci_enable_device(pdev) < 0)) {
skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
PCI_VENDOR_ID_INTEL, m->did);
goto fail;
}
switch (m->mtype) {
case CHAN0: case CHAN1: case CHAN2:
pci_dev_get(pdev);
d->imc[i].chan[m->mtype].cdev = pdev;
break;
case SAD_ALL:
pci_dev_get(pdev);
d->sad_all = pdev;
break;
case UTIL_ALL:
pci_dev_get(pdev);
d->util_all = pdev;
break;
case SAD:
/*
* one of these devices per core, including cores
* that don't exist on this SKU. Ignore any that
* read a route table of zero, make sure all the
* non-zero values match.
*/
pci_read_config_dword(pdev, 0xB4, &reg);
if (reg != 0) {
if (d->mcroute == 0)
d->mcroute = reg;
else if (d->mcroute != reg) {
skx_printk(KERN_ERR,
"mcroute mismatch\n");
goto fail;
}
}
ndev--;
break;
}
prev = pdev;
}
return ndev;
fail:
pci_dev_put(pdev);
return -ENODEV;
}
static const struct x86_cpu_id skx_cpuids[] = {
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
{ }
};
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
static u8 get_src_id(struct skx_dev *d)
{
u32 reg;
pci_read_config_dword(d->util_all, 0xF0, &reg);
return GET_BITFIELD(reg, 12, 14);
}
static u8 skx_get_node_id(struct skx_dev *d)
{
u32 reg;
pci_read_config_dword(d->util_all, 0xF4, &reg);
return GET_BITFIELD(reg, 0, 2);
}
static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
int maxval, char *name)
{
u32 val = GET_BITFIELD(reg, lobit, hibit);
if (val < minval || val > maxval) {
edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
return -EINVAL;
}
return val + add;
}
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
#define IS_NVDIMM_PRESENT(mcddrtcfg, i) GET_BITFIELD((mcddrtcfg), (i), (i))
#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
static int get_width(u32 mtr)
{
switch (GET_BITFIELD(mtr, 8, 9)) {
case 0:
return DEV_X4;
case 1:
return DEV_X8;
case 2:
return DEV_X16;
}
return DEV_UNKNOWN;
}
static int skx_get_hi_lo(void)
{
struct pci_dev *pdev;
u32 reg;
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
if (!pdev) {
edac_dbg(0, "Can't get tolm/tohm\n");
return -ENODEV;
}
pci_read_config_dword(pdev, 0xD0, &reg);
skx_tolm = reg;
pci_read_config_dword(pdev, 0xD4, &reg);
skx_tohm = reg;
pci_read_config_dword(pdev, 0xD8, &reg);
skx_tohm |= (u64)reg << 32;
pci_dev_put(pdev);
edac_dbg(2, "tolm=0x%llx tohm=0x%llx\n", skx_tolm, skx_tohm);
return 0;
}
static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
struct skx_imc *imc, int chan, int dimmno)
{
int banks = 16, ranks, rows, cols, npages;
u64 size;
ranks = numrank(mtr);
rows = numrow(mtr);
cols = numcol(mtr);
/*
* Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
*/
size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
npages = MiB_TO_PAGES(size);
edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%#x, col: 0x%#x\n",
imc->mc, chan, dimmno, size, npages,
banks, 1 << ranks, rows, cols);
imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
imc->chan[chan].dimms[dimmno].rowbits = rows;
imc->chan[chan].dimms[dimmno].colbits = cols;
dimm->nr_pages = npages;
dimm->grain = 32;
dimm->dtype = get_width(mtr);
dimm->mtype = MEM_DDR4;
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
imc->src_id, imc->lmc, chan, dimmno);
return 1;
}
static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
int chan, int dimmno)
{
int smbios_handle;
u32 dev_handle;
u16 flags;
u64 size = 0;
nvdimm_count++;
dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
imc->src_id, 0);
smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
if (smbios_handle == -EOPNOTSUPP) {
pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n");
goto unknown_size;
}
if (smbios_handle < 0) {
skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
goto unknown_size;
}
if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
goto unknown_size;
}
size = dmi_memdev_size(smbios_handle);
if (size == ~0ull)
skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
dev_handle, smbios_handle);
unknown_size:
dimm->nr_pages = size >> PAGE_SHIFT;
dimm->grain = 32;
dimm->dtype = DEV_UNKNOWN;
dimm->mtype = MEM_NVDIMM;
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
imc->src_id, imc->lmc, chan, dimmno);
return (size == 0 || size == ~0ull) ? 0 : 1;
}
#define SKX_GET_MTMTR(dev, reg) \
pci_read_config_dword((dev), 0x87c, &reg)
static bool skx_check_ecc(struct pci_dev *pdev)
{
u32 mtmtr;
SKX_GET_MTMTR(pdev, mtmtr);
return !!GET_BITFIELD(mtmtr, 2, 2);
}
static int skx_get_dimm_config(struct mem_ctl_info *mci)
{
struct skx_pvt *pvt = mci->pvt_info;
struct skx_imc *imc = pvt->imc;
u32 mtr, amap, mcddrtcfg;
struct dimm_info *dimm;
int i, j;
int ndimms;
for (i = 0; i < NUM_CHANNELS; i++) {
ndimms = 0;
pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
for (j = 0; j < NUM_DIMMS; j++) {
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
mci->n_layers, i, j, 0);
pci_read_config_dword(imc->chan[i].cdev,
0x80 + 4*j, &mtr);
if (IS_DIMM_PRESENT(mtr))
ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
ndimms += get_nvdimm_info(dimm, imc, i, j);
}
if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
return -ENODEV;
}
}
return 0;
}
static void skx_unregister_mci(struct skx_imc *imc)
{
struct mem_ctl_info *mci = imc->mci;
if (!mci)
return;
edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
/* Remove MC sysfs nodes */
edac_mc_del_mc(mci->pdev);
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
kfree(mci->ctl_name);
edac_mc_free(mci);
}
static int skx_register_mci(struct skx_imc *imc)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct pci_dev *pdev = imc->chan[0].cdev;
struct skx_pvt *pvt;
int rc;
/* allocate a new MC control structure */
layers[0].type = EDAC_MC_LAYER_CHANNEL;
layers[0].size = NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
layers[1].size = NUM_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
sizeof(struct skx_pvt));
if (unlikely(!mci))
return -ENOMEM;
edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
/* Associate skx_dev and mci for future usage */
imc->mci = mci;
pvt = mci->pvt_info;
pvt->imc = imc;
mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
imc->node_id, imc->lmc);
if (!mci->ctl_name) {
rc = -ENOMEM;
goto fail0;
}
mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = EDAC_MOD_STR;
mci->dev_name = pci_name(imc->chan[0].cdev);
mci->ctl_page_to_phys = NULL;
rc = skx_get_dimm_config(mci);
if (rc < 0)
goto fail;
/* record ptr to the generic device */
mci->pdev = &pdev->dev;
/* add this new MC control structure to EDAC's list of MCs */
if (unlikely(edac_mc_add_mc(mci))) {
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
rc = -EINVAL;
goto fail;
}
return 0;
fail:
kfree(mci->ctl_name);
fail0:
edac_mc_free(mci);
imc->mci = NULL;
return rc;
}
#define SKX_MAX_SAD 24
#define SKX_GET_SAD(d, i, reg) \
pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
#define SKX_GET_ILV(d, i, reg) \
pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
#define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
#define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
#define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
#define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
#define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
#define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
#define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
#define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
#define SKX_ILV_TARGET(tgt) ((tgt) & 7)
static bool skx_sad_decode(struct decoded_addr *res)
{
struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
u64 addr = res->addr;
int i, idx, tgt, lchan, shift;
u32 sad, ilv;
u64 limit, prev_limit;
int remote = 0;
/* Simple sanity check for I/O space or out of range */
if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
edac_dbg(0, "Address 0x%llx out of range\n", addr);
return false;
}
restart:
prev_limit = 0;
for (i = 0; i < SKX_MAX_SAD; i++) {
SKX_GET_SAD(d, i, sad);
limit = SKX_SAD_LIMIT(sad);
if (SKX_SAD_ENABLE(sad)) {
if (addr >= prev_limit && addr <= limit)
goto sad_found;
}
prev_limit = limit + 1;
}
edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
return false;
sad_found:
SKX_GET_ILV(d, i, ilv);
switch (SKX_SAD_INTERLEAVE(sad)) {
case 0:
idx = GET_BITFIELD(addr, 6, 8);
break;
case 1:
idx = GET_BITFIELD(addr, 8, 10);
break;
case 2:
idx = GET_BITFIELD(addr, 12, 14);
break;
case 3:
idx = GET_BITFIELD(addr, 30, 32);
break;
}
tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
/* If point to another node, find it and start over */
if (SKX_ILV_REMOTE(tgt)) {
if (remote) {
edac_dbg(0, "Double remote!\n");
return false;
}
remote = 1;
list_for_each_entry(d, &skx_edac_list, list) {
if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
goto restart;
}
edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
return false;
}
if (SKX_SAD_MOD3(sad) == 0)
lchan = SKX_ILV_TARGET(tgt);
else {
switch (SKX_SAD_MOD3MODE(sad)) {
case 0:
shift = 6;
break;
case 1:
shift = 8;
break;
case 2:
shift = 12;
break;
default:
edac_dbg(0, "illegal mod3mode\n");
return false;
}
switch (SKX_SAD_MOD3ASMOD2(sad)) {
case 0:
lchan = (addr >> shift) % 3;
break;
case 1:
lchan = (addr >> shift) % 2;
break;
case 2:
lchan = (addr >> shift) % 2;
lchan = (lchan << 1) | !lchan;
break;
case 3:
lchan = ((addr >> shift) % 2) << 1;
break;
}
lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
}
res->dev = d;
res->socket = d->imc[0].src_id;
res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
res->addr, res->socket, res->imc, res->channel);
return true;
}
#define SKX_MAX_TAD 8
#define SKX_GET_TADBASE(d, mc, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
#define SKX_GET_TADWAYNESS(d, mc, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
#define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
#define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
#define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
#define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
#define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
#define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
#define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
/* which bit used for both socket and channel interleave */
static int skx_granularity[] = { 6, 8, 12, 30 };
static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
{
addr >>= shift;
addr /= ways;
addr <<= shift;
return addr | (lowbits & ((1ull << shift) - 1));
}
static bool skx_tad_decode(struct decoded_addr *res)
{
int i;
u32 base, wayness, chnilvoffset;
int skt_interleave_bit, chn_interleave_bit;
u64 channel_addr;
for (i = 0; i < SKX_MAX_TAD; i++) {
SKX_GET_TADBASE(res->dev, res->imc, i, base);
SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
goto tad_found;
}
edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
return false;
tad_found:
res->sktways = SKX_TAD_SKTWAYS(wayness);
res->chanways = SKX_TAD_CHNWAYS(wayness);
skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
/* Must handle channel first, then socket */
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
res->chanways, channel_addr);
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
res->sktways, channel_addr);
} else {
/* Handle socket then channel. Preserve low bits from original address */
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
res->sktways, res->addr);
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
res->chanways, res->addr);
}
res->chan_addr = channel_addr;
edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
res->addr, res->chan_addr, res->sktways, res->chanways);
return true;
}
#define SKX_MAX_RIR 4
#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
0x108 + 4 * (i), &reg)
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
0x120 + 16 * idx + 4 * (i), &reg)
#define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
#define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
#define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
#define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
#define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
static bool skx_rir_decode(struct decoded_addr *res)
{
int i, idx, chan_rank;
int shift;
u32 rirway, rirlv;
u64 rank_addr, prev_limit = 0, limit;
if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
shift = 6;
else
shift = 13;
for (i = 0; i < SKX_MAX_RIR; i++) {
SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
limit = SKX_RIR_LIMIT(rirway);
if (SKX_RIR_VALID(rirway)) {
if (prev_limit <= res->chan_addr &&
res->chan_addr <= limit)
goto rir_found;
}
prev_limit = limit;
}
edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
return false;
rir_found:
rank_addr = res->chan_addr >> shift;
rank_addr /= SKX_RIR_WAYS(rirway);
rank_addr <<= shift;
rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
res->rank_address = rank_addr;
idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
chan_rank = SKX_RIR_CHAN_RANK(rirlv);
res->channel_rank = chan_rank;
res->dimm = chan_rank / 4;
res->rank = chan_rank % 4;
edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
res->addr, res->dimm, res->rank,
res->channel_rank, res->rank_address);
return true;
}
static u8 skx_close_row[] = {
15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
};
static u8 skx_close_column[] = {
3, 4, 5, 14, 19, 23, 24, 25, 26, 27
};
static u8 skx_open_row[] = {
14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
};
static u8 skx_open_column[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
static u8 skx_open_fine_column[] = {
3, 4, 5, 7, 8, 9, 10, 11, 12, 13
};
static int skx_bits(u64 addr, int nbits, u8 *bits)
{
int i, res = 0;
for (i = 0; i < nbits; i++)
res |= ((addr >> bits[i]) & 1) << i;
return res;
}
static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
{
int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
if (do_xor)
ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
return ret;
}
static bool skx_mad_decode(struct decoded_addr *r)
{
struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
int bg0 = dimm->fine_grain_bank ? 6 : 13;
if (dimm->close_pg) {
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
r->column |= 0x400; /* C10 is autoprecharge, always set */
r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
} else {
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
if (dimm->fine_grain_bank)
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
else
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
}
r->row &= (1u << dimm->rowbits) - 1;
edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
r->addr, r->row, r->column, r->bank_address,
r->bank_group);
return true;
}
static bool skx_decode(struct decoded_addr *res)
{
return skx_sad_decode(res) && skx_tad_decode(res) &&
skx_rir_decode(res) && skx_mad_decode(res);
}
static bool skx_adxl_decode(struct decoded_addr *res)
{
int i, len = 0;
if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
res->addr < BIT_ULL(32))) {
edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
return false;
}
if (adxl_decode(res->addr, adxl_values)) {
edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
return false;
}
res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]];
res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]];
for (i = 0; i < adxl_component_count; i++) {
if (adxl_values[i] == ~0x0ull)
continue;
len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
adxl_component_names[i], adxl_values[i]);
if (MSG_SIZE - len <= 0)
break;
}
return true;
}
static void skx_mce_output_error(struct mem_ctl_info *mci,
const struct mce *m,
struct decoded_addr *res)
{
enum hw_event_mc_err_type tp_event;
char *type, *optype;
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
bool overflow = GET_BITFIELD(m->status, 62, 62);
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
bool recoverable;
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
u32 mscod = GET_BITFIELD(m->status, 16, 31);
u32 errcode = GET_BITFIELD(m->status, 0, 15);
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
recoverable = GET_BITFIELD(m->status, 56, 56);
if (uncorrected_error) {
core_err_cnt = 1;
if (ripv) {
type = "FATAL";
tp_event = HW_EVENT_ERR_FATAL;
} else {
type = "NON_FATAL";
tp_event = HW_EVENT_ERR_UNCORRECTED;
}
} else {
type = "CORRECTED";
tp_event = HW_EVENT_ERR_CORRECTED;
}
/*
* According with Table 15-9 of the Intel Architecture spec vol 3A,
* memory errors should fit in this mask:
* 000f 0000 1mmm cccc (binary)
* where:
* f = Correction Report Filtering Bit. If 1, subsequent errors
* won't be shown
* mmm = error type
* cccc = channel
* If the mask doesn't match, report an error to the parsing logic
*/
if (!((errcode & 0xef80) == 0x80)) {
optype = "Can't parse: it is not a mem";
} else {
switch (optypenum) {
case 0:
optype = "generic undef request error";
break;
case 1:
optype = "memory read error";
break;
case 2:
optype = "memory write error";
break;
case 3:
optype = "addr/cmd error";
break;
case 4:
optype = "memory scrubbing error";
break;
default:
optype = "reserved";
break;
}
}
if (adxl_component_count) {
snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "",
mscod, errcode, adxl_msg);
} else {
snprintf(skx_msg, MSG_SIZE,
"%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "",
mscod, errcode,
res->socket, res->imc, res->rank,
res->bank_group, res->bank_address, res->row, res->column);
}
edac_dbg(0, "%s\n", skx_msg);
/* Call the helper to output message */
edac_mc_handle_error(tp_event, mci, core_err_cnt,
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
res->channel, res->dimm, -1,
optype, skx_msg);
}
static struct mem_ctl_info *get_mci(int src_id, int lmc)
{
struct skx_dev *d;
if (lmc > NUM_IMC - 1) {
skx_printk(KERN_ERR, "Bad lmc %d\n", lmc);
return NULL;
}
list_for_each_entry(d, &skx_edac_list, list) {
if (d->imc[0].src_id == src_id)
return d->imc[lmc].mci;
}
skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc);
return NULL;
}
static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
struct decoded_addr res;
struct mem_ctl_info *mci;
char *type;
if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
return NOTIFY_DONE;
/* ignore unless this is memory related with an address */
if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
return NOTIFY_DONE;
memset(&res, 0, sizeof(res));
res.addr = mce->addr;
if (adxl_component_count) {
if (!skx_adxl_decode(&res))
return NOTIFY_DONE;
mci = get_mci(res.socket, res.imc);
} else {
if (!skx_decode(&res))
return NOTIFY_DONE;
mci = res.dev->imc[res.imc].mci;
}
if (!mci)
return NOTIFY_DONE;
if (mce->mcgstatus & MCG_STATUS_MCIP)
type = "Exception";
else
type = "Event";
skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
"Bank %d: %016Lx\n", mce->extcpu, type,
mce->mcgstatus, mce->bank, mce->status);
skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
"%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
mce->time, mce->socketid, mce->apicid);
skx_mce_output_error(mci, mce, &res);
return NOTIFY_DONE;
}
static struct notifier_block skx_mce_dec = {
.notifier_call = skx_mce_check_error,
.priority = MCE_PRIO_EDAC,
};
#ifdef CONFIG_EDAC_DEBUG
/*
* Debug feature.
* Exercise the address decode logic by writing an address to
* /sys/kernel/debug/edac/skx_test/addr.
*/
static struct dentry *skx_test;
static int debugfs_u64_set(void *data, u64 val)
{
struct mce m;
pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
memset(&m, 0, sizeof(m));
/* ADDRV + MemRd + Unknown channel */
m.status = MCI_STATUS_ADDRV + 0x90;
/* One corrected error */
m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
m.addr = val;
skx_mce_check_error(NULL, 0, &m);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static void setup_skx_debug(void)
{
skx_test = edac_debugfs_create_dir("skx_test");
if (!skx_test)
return;
if (!edac_debugfs_create_file("addr", 0200, skx_test,
NULL, &fops_u64_wo)) {
debugfs_remove(skx_test);
skx_test = NULL;
}
}
static void teardown_skx_debug(void)
{
debugfs_remove_recursive(skx_test);
}
#else
static void setup_skx_debug(void) {}
static void teardown_skx_debug(void) {}
#endif /*CONFIG_EDAC_DEBUG*/
static void skx_remove(void)
{
int i, j;
struct skx_dev *d, *tmp;
edac_dbg(0, "\n");
list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
list_del(&d->list);
for (i = 0; i < NUM_IMC; i++) {
skx_unregister_mci(&d->imc[i]);
for (j = 0; j < NUM_CHANNELS; j++)
pci_dev_put(d->imc[i].chan[j].cdev);
}
pci_dev_put(d->util_all);
pci_dev_put(d->sad_all);
kfree(d);
}
}
static void __init skx_adxl_get(void)
{
const char * const *names;
int i, j;
names = adxl_get_component_names();
if (!names) {
skx_printk(KERN_NOTICE, "No firmware support for address translation.");
skx_printk(KERN_CONT, " Only decoding DDR4 address!\n");
return;
}
for (i = 0; i < INDEX_MAX; i++) {
for (j = 0; names[j]; j++) {
if (!strcmp(component_names[i], names[j])) {
component_indices[i] = j;
break;
}
}
if (!names[j])
goto err;
}
adxl_component_names = names;
while (*names++)
adxl_component_count++;
adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
GFP_KERNEL);
if (!adxl_values) {
adxl_component_count = 0;
return;
}
adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
if (!adxl_msg) {
adxl_component_count = 0;
kfree(adxl_values);
}
return;
err:
skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
component_names[i]);
for (j = 0; names[j]; j++)
skx_printk(KERN_CONT, "%s ", names[j]);
skx_printk(KERN_CONT, "\n");
}
static void __exit skx_adxl_put(void)
{
kfree(adxl_values);
kfree(adxl_msg);
}
/*
* skx_init:
* make sure we are running on the correct cpu model
* search for all the devices we need
* check which DIMMs are present.
*/
static int __init skx_init(void)
{
const struct x86_cpu_id *id;
const struct munit *m;
const char *owner;
int rc = 0, i;
u8 mc = 0, src_id, node_id;
struct skx_dev *d;
edac_dbg(2, "\n");
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
id = x86_match_cpu(skx_cpuids);
if (!id)
return -ENODEV;
rc = skx_get_hi_lo();
if (rc)
return rc;
rc = get_all_bus_mappings();
if (rc < 0)
goto fail;
if (rc == 0) {
edac_dbg(2, "No memory controllers found\n");
return -ENODEV;
}
for (m = skx_all_munits; m->did; m++) {
rc = get_all_munits(m);
if (rc < 0)
goto fail;
if (rc != m->per_socket * skx_num_sockets) {
edac_dbg(2, "Expected %d, got %d of 0x%x\n",
m->per_socket * skx_num_sockets, rc, m->did);
rc = -ENODEV;
goto fail;
}
}
list_for_each_entry(d, &skx_edac_list, list) {
src_id = get_src_id(d);
node_id = skx_get_node_id(d);
edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
for (i = 0; i < NUM_IMC; i++) {
d->imc[i].mc = mc++;
d->imc[i].lmc = i;
d->imc[i].src_id = src_id;
d->imc[i].node_id = node_id;
rc = skx_register_mci(&d->imc[i]);
if (rc < 0)
goto fail;
}
}
skx_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
if (!skx_msg) {
rc = -ENOMEM;
goto fail;
}
if (nvdimm_count)
skx_adxl_get();
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
setup_skx_debug();
mce_register_decode_chain(&skx_mce_dec);
return 0;
fail:
skx_remove();
return rc;
}
static void __exit skx_exit(void)
{
edac_dbg(2, "\n");
mce_unregister_decode_chain(&skx_mce_dec);
teardown_skx_debug();
if (nvdimm_count)
skx_adxl_put();
kfree(skx_msg);
skx_remove();
}
module_init(skx_init);
module_exit(skx_exit);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Luck");
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");