2007-07-09 23:51:58 +07:00
|
|
|
/*
|
|
|
|
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
|
|
|
|
* policies)
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
|
|
* are not in our scheduling class.
|
|
|
|
*/
|
2007-10-15 22:00:13 +07:00
|
|
|
static void update_curr_rt(struct rq *rq)
|
2007-07-09 23:51:58 +07:00
|
|
|
{
|
|
|
|
struct task_struct *curr = rq->curr;
|
|
|
|
u64 delta_exec;
|
|
|
|
|
|
|
|
if (!task_has_rt_policy(curr))
|
|
|
|
return;
|
|
|
|
|
2007-08-09 16:16:47 +07:00
|
|
|
delta_exec = rq->clock - curr->se.exec_start;
|
2007-07-09 23:51:58 +07:00
|
|
|
if (unlikely((s64)delta_exec < 0))
|
|
|
|
delta_exec = 0;
|
2007-08-02 22:41:40 +07:00
|
|
|
|
|
|
|
schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
|
2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
curr->se.sum_exec_runtime += delta_exec;
|
2007-08-09 16:16:47 +07:00
|
|
|
curr->se.exec_start = rq->clock;
|
2007-12-03 02:04:49 +07:00
|
|
|
cpuacct_charge(curr, delta_exec);
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
2008-01-26 03:08:03 +07:00
|
|
|
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
|
|
|
|
{
|
|
|
|
WARN_ON(!rt_task(p));
|
|
|
|
rq->rt.rt_nr_running++;
|
2008-01-26 03:08:04 +07:00
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (p->prio < rq->rt.highest_prio)
|
|
|
|
rq->rt.highest_prio = p->prio;
|
|
|
|
#endif /* CONFIG_SMP */
|
2008-01-26 03:08:03 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
|
|
|
|
{
|
|
|
|
WARN_ON(!rt_task(p));
|
|
|
|
WARN_ON(!rq->rt.rt_nr_running);
|
|
|
|
rq->rt.rt_nr_running--;
|
2008-01-26 03:08:04 +07:00
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (rq->rt.rt_nr_running) {
|
|
|
|
struct rt_prio_array *array;
|
|
|
|
|
|
|
|
WARN_ON(p->prio < rq->rt.highest_prio);
|
|
|
|
if (p->prio == rq->rt.highest_prio) {
|
|
|
|
/* recalculate */
|
|
|
|
array = &rq->rt.active;
|
|
|
|
rq->rt.highest_prio =
|
|
|
|
sched_find_first_bit(array->bitmap);
|
|
|
|
} /* otherwise leave rq->highest prio alone */
|
|
|
|
} else
|
|
|
|
rq->rt.highest_prio = MAX_RT_PRIO;
|
|
|
|
#endif /* CONFIG_SMP */
|
2008-01-26 03:08:03 +07:00
|
|
|
}
|
|
|
|
|
2007-08-09 16:16:48 +07:00
|
|
|
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
|
2007-07-09 23:51:58 +07:00
|
|
|
{
|
|
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
|
|
|
|
list_add_tail(&p->run_list, array->queue + p->prio);
|
|
|
|
__set_bit(p->prio, array->bitmap);
|
2008-01-26 03:08:00 +07:00
|
|
|
inc_cpu_load(rq, p->se.load.weight);
|
2008-01-26 03:08:03 +07:00
|
|
|
|
|
|
|
inc_rt_tasks(p, rq);
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Adding/removing a task to/from a priority array:
|
|
|
|
*/
|
2007-08-09 16:16:48 +07:00
|
|
|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
|
2007-07-09 23:51:58 +07:00
|
|
|
{
|
|
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
|
2007-08-09 16:16:48 +07:00
|
|
|
update_curr_rt(rq);
|
2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
list_del(&p->run_list);
|
|
|
|
if (list_empty(array->queue + p->prio))
|
|
|
|
__clear_bit(p->prio, array->bitmap);
|
2008-01-26 03:08:00 +07:00
|
|
|
dec_cpu_load(rq, p->se.load.weight);
|
2008-01-26 03:08:03 +07:00
|
|
|
|
|
|
|
dec_rt_tasks(p, rq);
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Put task to the end of the run list without the overhead of dequeue
|
|
|
|
* followed by enqueue.
|
|
|
|
*/
|
|
|
|
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
|
|
|
|
{
|
|
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
|
|
|
|
list_move_tail(&p->run_list, array->queue + p->prio);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-10-15 22:00:08 +07:00
|
|
|
yield_task_rt(struct rq *rq)
|
2007-07-09 23:51:58 +07:00
|
|
|
{
|
2007-10-15 22:00:08 +07:00
|
|
|
requeue_task_rt(rq, rq->curr);
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Preempt the current task with a newly woken task if needed:
|
|
|
|
*/
|
|
|
|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
|
|
|
|
{
|
|
|
|
if (p->prio < rq->curr->prio)
|
|
|
|
resched_task(rq->curr);
|
|
|
|
}
|
|
|
|
|
2007-08-09 16:16:48 +07:00
|
|
|
static struct task_struct *pick_next_task_rt(struct rq *rq)
|
2007-07-09 23:51:58 +07:00
|
|
|
{
|
|
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
struct task_struct *next;
|
|
|
|
struct list_head *queue;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
|
|
if (idx >= MAX_RT_PRIO)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
queue = array->queue + idx;
|
|
|
|
next = list_entry(queue->next, struct task_struct, run_list);
|
|
|
|
|
2007-08-09 16:16:47 +07:00
|
|
|
next->se.exec_start = rq->clock;
|
2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
return next;
|
|
|
|
}
|
|
|
|
|
2007-08-09 16:16:49 +07:00
|
|
|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
|
2007-07-09 23:51:58 +07:00
|
|
|
{
|
2007-08-09 16:16:48 +07:00
|
|
|
update_curr_rt(rq);
|
2007-07-09 23:51:58 +07:00
|
|
|
p->se.exec_start = 0;
|
|
|
|
}
|
|
|
|
|
2007-10-24 23:23:51 +07:00
|
|
|
#ifdef CONFIG_SMP
|
2008-01-26 03:08:05 +07:00
|
|
|
/* Only try algorithms three times */
|
|
|
|
#define RT_MAX_TRIES 3
|
|
|
|
|
|
|
|
static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
|
|
|
|
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
|
|
|
|
|
|
|
|
/* Return the second highest RT task, NULL otherwise */
|
|
|
|
static struct task_struct *pick_next_highest_task_rt(struct rq *rq)
|
|
|
|
{
|
|
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
struct task_struct *next;
|
|
|
|
struct list_head *queue;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
assert_spin_locked(&rq->lock);
|
|
|
|
|
|
|
|
if (likely(rq->rt.rt_nr_running < 2))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
|
|
if (unlikely(idx >= MAX_RT_PRIO)) {
|
|
|
|
WARN_ON(1); /* rt_nr_running is bad */
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
queue = array->queue + idx;
|
|
|
|
next = list_entry(queue->next, struct task_struct, run_list);
|
|
|
|
if (unlikely(next != rq->curr))
|
|
|
|
return next;
|
|
|
|
|
|
|
|
if (queue->next->next != queue) {
|
|
|
|
/* same prio task */
|
|
|
|
next = list_entry(queue->next->next, struct task_struct, run_list);
|
|
|
|
return next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* slower, but more flexible */
|
|
|
|
idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
|
|
|
|
if (unlikely(idx >= MAX_RT_PRIO)) {
|
|
|
|
WARN_ON(1); /* rt_nr_running was 2 and above! */
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
queue = array->queue + idx;
|
|
|
|
next = list_entry(queue->next, struct task_struct, run_list);
|
|
|
|
|
|
|
|
return next;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
|
|
|
|
|
|
|
|
/* Will lock the rq it finds */
|
|
|
|
static struct rq *find_lock_lowest_rq(struct task_struct *task,
|
|
|
|
struct rq *this_rq)
|
|
|
|
{
|
|
|
|
struct rq *lowest_rq = NULL;
|
|
|
|
int cpu;
|
|
|
|
int tries;
|
|
|
|
cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
|
|
|
|
|
|
|
|
cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
|
|
|
|
|
|
|
|
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
|
|
|
|
/*
|
|
|
|
* Scan each rq for the lowest prio.
|
|
|
|
*/
|
|
|
|
for_each_cpu_mask(cpu, *cpu_mask) {
|
|
|
|
struct rq *rq = &per_cpu(runqueues, cpu);
|
|
|
|
|
|
|
|
if (cpu == this_rq->cpu)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* We look for lowest RT prio or non-rt CPU */
|
|
|
|
if (rq->rt.highest_prio >= MAX_RT_PRIO) {
|
|
|
|
lowest_rq = rq;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* no locking for now */
|
|
|
|
if (rq->rt.highest_prio > task->prio &&
|
|
|
|
(!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
|
|
|
|
lowest_rq = rq;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!lowest_rq)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* if the prio of this runqueue changed, try again */
|
|
|
|
if (double_lock_balance(this_rq, lowest_rq)) {
|
|
|
|
/*
|
|
|
|
* We had to unlock the run queue. In
|
|
|
|
* the mean time, task could have
|
|
|
|
* migrated already or had its affinity changed.
|
|
|
|
* Also make sure that it wasn't scheduled on its rq.
|
|
|
|
*/
|
|
|
|
if (unlikely(task_rq(task) != this_rq ||
|
|
|
|
!cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
|
|
|
|
task_running(this_rq, task) ||
|
|
|
|
!task->se.on_rq)) {
|
|
|
|
spin_unlock(&lowest_rq->lock);
|
|
|
|
lowest_rq = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this rq is still suitable use it. */
|
|
|
|
if (lowest_rq->rt.highest_prio > task->prio)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* try again */
|
|
|
|
spin_unlock(&lowest_rq->lock);
|
|
|
|
lowest_rq = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return lowest_rq;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the current CPU has more than one RT task, see if the non
|
|
|
|
* running task can migrate over to a CPU that is running a task
|
|
|
|
* of lesser priority.
|
|
|
|
*/
|
|
|
|
static int push_rt_task(struct rq *this_rq)
|
|
|
|
{
|
|
|
|
struct task_struct *next_task;
|
|
|
|
struct rq *lowest_rq;
|
|
|
|
int ret = 0;
|
|
|
|
int paranoid = RT_MAX_TRIES;
|
|
|
|
|
|
|
|
assert_spin_locked(&this_rq->lock);
|
|
|
|
|
|
|
|
next_task = pick_next_highest_task_rt(this_rq);
|
|
|
|
if (!next_task)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
retry:
|
|
|
|
if (unlikely(next_task == this_rq->curr))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It's possible that the next_task slipped in of
|
|
|
|
* higher priority than current. If that's the case
|
|
|
|
* just reschedule current.
|
|
|
|
*/
|
|
|
|
if (unlikely(next_task->prio < this_rq->curr->prio)) {
|
|
|
|
resched_task(this_rq->curr);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We might release this_rq lock */
|
|
|
|
get_task_struct(next_task);
|
|
|
|
|
|
|
|
/* find_lock_lowest_rq locks the rq if found */
|
|
|
|
lowest_rq = find_lock_lowest_rq(next_task, this_rq);
|
|
|
|
if (!lowest_rq) {
|
|
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
|
|
* find lock_lowest_rq releases this_rq->lock
|
|
|
|
* so it is possible that next_task has changed.
|
|
|
|
* If it has, then try again.
|
|
|
|
*/
|
|
|
|
task = pick_next_highest_task_rt(this_rq);
|
|
|
|
if (unlikely(task != next_task) && task && paranoid--) {
|
|
|
|
put_task_struct(next_task);
|
|
|
|
next_task = task;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert_spin_locked(&lowest_rq->lock);
|
|
|
|
|
|
|
|
deactivate_task(this_rq, next_task, 0);
|
|
|
|
set_task_cpu(next_task, lowest_rq->cpu);
|
|
|
|
activate_task(lowest_rq, next_task, 0);
|
|
|
|
|
|
|
|
resched_task(lowest_rq->curr);
|
|
|
|
|
|
|
|
spin_unlock(&lowest_rq->lock);
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
out:
|
|
|
|
put_task_struct(next_task);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* TODO: Currently we just use the second highest prio task on
|
|
|
|
* the queue, and stop when it can't migrate (or there's
|
|
|
|
* no more RT tasks). There may be a case where a lower
|
|
|
|
* priority RT task has a different affinity than the
|
|
|
|
* higher RT task. In this case the lower RT task could
|
|
|
|
* possibly be able to migrate where as the higher priority
|
|
|
|
* RT task could not. We currently ignore this issue.
|
|
|
|
* Enhancements are welcome!
|
|
|
|
*/
|
|
|
|
static void push_rt_tasks(struct rq *rq)
|
|
|
|
{
|
|
|
|
/* push_rt_task will return true if it moved an RT */
|
|
|
|
while (push_rt_task(rq))
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void schedule_tail_balance_rt(struct rq *rq)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* If we have more than one rt_task queued, then
|
|
|
|
* see if we can push the other rt_tasks off to other CPUS.
|
|
|
|
* Note we may release the rq lock, and since
|
|
|
|
* the lock was owned by prev, we need to release it
|
|
|
|
* first via finish_lock_switch and then reaquire it here.
|
|
|
|
*/
|
|
|
|
if (unlikely(rq->rt.rt_nr_running > 1)) {
|
|
|
|
spin_lock_irq(&rq->lock);
|
|
|
|
push_rt_tasks(rq);
|
|
|
|
spin_unlock_irq(&rq->lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-07-09 23:51:58 +07:00
|
|
|
/*
|
|
|
|
* Load-balancing iterator. Note: while the runqueue stays locked
|
|
|
|
* during the whole iteration, the current task might be
|
|
|
|
* dequeued so the iterator has to be dequeue-safe. Here we
|
|
|
|
* achieve that by always pre-iterating before returning
|
|
|
|
* the current task:
|
|
|
|
*/
|
|
|
|
static struct task_struct *load_balance_start_rt(void *arg)
|
|
|
|
{
|
|
|
|
struct rq *rq = arg;
|
|
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
struct list_head *head, *curr;
|
|
|
|
struct task_struct *p;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
|
|
if (idx >= MAX_RT_PRIO)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
head = array->queue + idx;
|
|
|
|
curr = head->prev;
|
|
|
|
|
|
|
|
p = list_entry(curr, struct task_struct, run_list);
|
|
|
|
|
|
|
|
curr = curr->prev;
|
|
|
|
|
|
|
|
rq->rt.rt_load_balance_idx = idx;
|
|
|
|
rq->rt.rt_load_balance_head = head;
|
|
|
|
rq->rt.rt_load_balance_curr = curr;
|
|
|
|
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct task_struct *load_balance_next_rt(void *arg)
|
|
|
|
{
|
|
|
|
struct rq *rq = arg;
|
|
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
struct list_head *head, *curr;
|
|
|
|
struct task_struct *p;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
idx = rq->rt.rt_load_balance_idx;
|
|
|
|
head = rq->rt.rt_load_balance_head;
|
|
|
|
curr = rq->rt.rt_load_balance_curr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we arrived back to the head again then
|
|
|
|
* iterate to the next queue (if any):
|
|
|
|
*/
|
|
|
|
if (unlikely(head == curr)) {
|
|
|
|
int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
|
|
|
|
|
|
|
|
if (next_idx >= MAX_RT_PRIO)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
idx = next_idx;
|
|
|
|
head = array->queue + idx;
|
|
|
|
curr = head->prev;
|
|
|
|
|
|
|
|
rq->rt.rt_load_balance_idx = idx;
|
|
|
|
rq->rt.rt_load_balance_head = head;
|
|
|
|
}
|
|
|
|
|
|
|
|
p = list_entry(curr, struct task_struct, run_list);
|
|
|
|
|
|
|
|
curr = curr->prev;
|
|
|
|
|
|
|
|
rq->rt.rt_load_balance_curr = curr;
|
|
|
|
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
sched: simplify move_tasks()
The move_tasks() function is currently multiplexed with two distinct
capabilities:
1. attempt to move a specified amount of weighted load from one run
queue to another; and
2. attempt to move a specified number of tasks from one run queue to
another.
The first of these capabilities is used in two places, load_balance()
and load_balance_idle(), and in both of these cases the return value of
move_tasks() is used purely to decide if tasks/load were moved and no
notice of the actual number of tasks moved is taken.
The second capability is used in exactly one place,
active_load_balance(), to attempt to move exactly one task and, as
before, the return value is only used as an indicator of success or failure.
This multiplexing of sched_task() was introduced, by me, as part of the
smpnice patches and was motivated by the fact that the alternative, one
function to move specified load and one to move a single task, would
have led to two functions of roughly the same complexity as the old
move_tasks() (or the new balance_tasks()). However, the new modular
design of the new CFS scheduler allows a simpler solution to be adopted
and this patch addresses that solution by:
1. adding a new function, move_one_task(), to be used by
active_load_balance(); and
2. making move_tasks() a single purpose function that tries to move a
specified weighted load and returns 1 for success and 0 for failure.
One of the consequences of these changes is that neither move_one_task()
or the new move_tasks() care how many tasks sched_class.load_balance()
moves and this enables its interface to be simplified by returning the
amount of load moved as its result and removing the load_moved pointer
from the argument list. This helps simplify the new move_tasks() and
slightly reduces the amount of work done in each of
sched_class.load_balance()'s implementations.
Further simplification, e.g. changes to balance_tasks(), are possible
but (slightly) complicated by the special needs of load_balance_fair()
so I've left them to a later patch (if this one gets accepted).
NB Since move_tasks() gets called with two run queue locks held even
small reductions in overhead are worthwhile.
[ mingo@elte.hu ]
this change also reduces code size nicely:
text data bss dec hex filename
39216 3618 24 42858 a76a sched.o.before
39173 3618 24 42815 a73f sched.o.after
Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 16:16:46 +07:00
|
|
|
static unsigned long
|
2007-07-09 23:51:58 +07:00
|
|
|
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
2007-10-24 23:23:51 +07:00
|
|
|
unsigned long max_load_move,
|
|
|
|
struct sched_domain *sd, enum cpu_idle_type idle,
|
|
|
|
int *all_pinned, int *this_best_prio)
|
2007-07-09 23:51:58 +07:00
|
|
|
{
|
|
|
|
struct rq_iterator rt_rq_iterator;
|
|
|
|
|
|
|
|
rt_rq_iterator.start = load_balance_start_rt;
|
|
|
|
rt_rq_iterator.next = load_balance_next_rt;
|
|
|
|
/* pass 'busiest' rq argument into
|
|
|
|
* load_balance_[start|next]_rt iterators
|
|
|
|
*/
|
|
|
|
rt_rq_iterator.arg = busiest;
|
|
|
|
|
2007-10-24 23:23:51 +07:00
|
|
|
return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
|
|
|
|
idle, all_pinned, this_best_prio, &rt_rq_iterator);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
|
struct sched_domain *sd, enum cpu_idle_type idle)
|
|
|
|
{
|
|
|
|
struct rq_iterator rt_rq_iterator;
|
|
|
|
|
|
|
|
rt_rq_iterator.start = load_balance_start_rt;
|
|
|
|
rt_rq_iterator.next = load_balance_next_rt;
|
|
|
|
rt_rq_iterator.arg = busiest;
|
2007-07-09 23:51:58 +07:00
|
|
|
|
2007-10-24 23:23:51 +07:00
|
|
|
return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
|
|
|
|
&rt_rq_iterator);
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
2008-01-26 03:08:05 +07:00
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
# define schedule_tail_balance_rt(rq) do { } while (0)
|
|
|
|
#endif /* CONFIG_SMP */
|
2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
static void task_tick_rt(struct rq *rq, struct task_struct *p)
|
|
|
|
{
|
2007-12-20 21:01:17 +07:00
|
|
|
update_curr_rt(rq);
|
|
|
|
|
2007-07-09 23:51:58 +07:00
|
|
|
/*
|
|
|
|
* RR tasks need a special form of timeslice management.
|
|
|
|
* FIFO tasks have no timeslices.
|
|
|
|
*/
|
|
|
|
if (p->policy != SCHED_RR)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (--p->time_slice)
|
|
|
|
return;
|
|
|
|
|
2007-10-15 22:00:13 +07:00
|
|
|
p->time_slice = DEF_TIMESLICE;
|
2007-07-09 23:51:58 +07:00
|
|
|
|
2007-08-25 01:39:10 +07:00
|
|
|
/*
|
|
|
|
* Requeue to the end of queue if we are not the only element
|
|
|
|
* on the queue:
|
|
|
|
*/
|
|
|
|
if (p->run_list.prev != p->run_list.next) {
|
|
|
|
requeue_task_rt(rq, p);
|
|
|
|
set_tsk_need_resched(p);
|
|
|
|
}
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
2007-10-15 22:00:08 +07:00
|
|
|
static void set_curr_task_rt(struct rq *rq)
|
|
|
|
{
|
|
|
|
struct task_struct *p = rq->curr;
|
|
|
|
|
|
|
|
p->se.exec_start = rq->clock;
|
|
|
|
}
|
|
|
|
|
2007-10-15 22:00:12 +07:00
|
|
|
const struct sched_class rt_sched_class = {
|
|
|
|
.next = &fair_sched_class,
|
2007-07-09 23:51:58 +07:00
|
|
|
.enqueue_task = enqueue_task_rt,
|
|
|
|
.dequeue_task = dequeue_task_rt,
|
|
|
|
.yield_task = yield_task_rt,
|
|
|
|
|
|
|
|
.check_preempt_curr = check_preempt_curr_rt,
|
|
|
|
|
|
|
|
.pick_next_task = pick_next_task_rt,
|
|
|
|
.put_prev_task = put_prev_task_rt,
|
|
|
|
|
2007-10-24 23:23:51 +07:00
|
|
|
#ifdef CONFIG_SMP
|
2007-07-09 23:51:58 +07:00
|
|
|
.load_balance = load_balance_rt,
|
2007-10-24 23:23:51 +07:00
|
|
|
.move_one_task = move_one_task_rt,
|
2007-10-24 23:23:51 +07:00
|
|
|
#endif
|
2007-07-09 23:51:58 +07:00
|
|
|
|
2007-10-15 22:00:08 +07:00
|
|
|
.set_curr_task = set_curr_task_rt,
|
2007-07-09 23:51:58 +07:00
|
|
|
.task_tick = task_tick_rt,
|
|
|
|
};
|