linux_dsm_epyc7002/drivers/media/dvb/frontends/tda18271c2dd.c

1064 lines
27 KiB
C
Raw Normal View History

/*
* tda18271c2dd: Driver for the TDA18271C2 tuner
*
* Copyright (C) 2010 Digital Devices GmbH
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/version.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
struct SStandardParam {
s32 m_IFFrequency;
u32 m_BandWidth;
u8 m_EP3_4_0;
u8 m_EB22;
};
struct SMap {
u32 m_Frequency;
u8 m_Param;
};
struct SMapI {
u32 m_Frequency;
s32 m_Param;
};
struct SMap2 {
u32 m_Frequency;
u8 m_Param1;
u8 m_Param2;
};
struct SRFBandMap {
u32 m_RF_max;
u32 m_RF1_Default;
u32 m_RF2_Default;
u32 m_RF3_Default;
};
enum ERegister
{
ID = 0,
TM,
PL,
EP1, EP2, EP3, EP4, EP5,
CPD, CD1, CD2, CD3,
MPD, MD1, MD2, MD3,
EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10,
EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20,
EB21, EB22, EB23,
NUM_REGS
};
struct tda_state {
struct i2c_adapter *i2c;
u8 adr;
u32 m_Frequency;
u32 IF;
u8 m_IFLevelAnalog;
u8 m_IFLevelDigital;
u8 m_IFLevelDVBC;
u8 m_IFLevelDVBT;
u8 m_EP4;
u8 m_EP3_Standby;
bool m_bMaster;
s32 m_SettlingTime;
u8 m_Regs[NUM_REGS];
/* Tracking filter settings for band 0..6 */
u32 m_RF1[7];
s32 m_RF_A1[7];
s32 m_RF_B1[7];
u32 m_RF2[7];
s32 m_RF_A2[7];
s32 m_RF_B2[7];
u32 m_RF3[7];
u8 m_TMValue_RFCal; /* Calibration temperatur */
bool m_bFMInput; /* true to use Pin 8 for FM Radio */
};
static int PowerScan(struct tda_state *state,
u8 RFBand,u32 RF_in,
u32 * pRF_Out, bool *pbcal);
static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len)
{
struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD,
.buf = data, .len = len}};
return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
}
static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0,
.buf = data, .len = len};
if (i2c_transfer(adap, &msg, 1) != 1) {
printk("i2c_write error\n");
return -1;
}
return 0;
}
static int WriteRegs(struct tda_state *state,
u8 SubAddr, u8 *Regs, u16 nRegs)
{
u8 data[nRegs+1];
data[0] = SubAddr;
memcpy(data + 1, Regs, nRegs);
return i2c_write(state->i2c, state->adr, data, nRegs+1);
}
static int WriteReg(struct tda_state *state, u8 SubAddr,u8 Reg)
{
u8 msg[2] = {SubAddr, Reg};
return i2c_write(state->i2c, state->adr, msg, 2);
}
static int Read(struct tda_state *state, u8 * Regs)
{
return i2c_readn(state->i2c, state->adr, Regs, 16);
}
static int ReadExtented(struct tda_state *state, u8 * Regs)
{
return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS);
}
static int UpdateRegs(struct tda_state *state, u8 RegFrom,u8 RegTo)
{
return WriteRegs(state, RegFrom,
&state->m_Regs[RegFrom], RegTo-RegFrom+1);
}
static int UpdateReg(struct tda_state *state, u8 Reg)
{
return WriteReg(state, Reg,state->m_Regs[Reg]);
}
#include "tda18271c2dd_maps.h"
#undef CHK_ERROR
#define CHK_ERROR(s) if ((status = s) < 0) break
static void reset(struct tda_state *state)
{
u32 ulIFLevelAnalog = 0;
u32 ulIFLevelDigital = 2;
u32 ulIFLevelDVBC = 7;
u32 ulIFLevelDVBT = 6;
u32 ulXTOut = 0;
u32 ulStandbyMode = 0x06; // Send in stdb, but leave osc on
u32 ulSlave = 0;
u32 ulFMInput = 0;
u32 ulSettlingTime = 100;
state->m_Frequency = 0;
state->m_SettlingTime = 100;
state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2;
state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2;
state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2;
state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2;
state->m_EP4 = 0x20;
if( ulXTOut != 0 ) state->m_EP4 |= 0x40;
state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F;
state->m_bMaster = (ulSlave == 0);
state->m_SettlingTime = ulSettlingTime;
state->m_bFMInput = (ulFMInput == 2);
}
static bool SearchMap1(struct SMap Map[],
u32 Frequency, u8 *pParam)
{
int i = 0;
while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency) )
i += 1;
if (Map[i].m_Frequency == 0)
return false;
*pParam = Map[i].m_Param;
return true;
}
static bool SearchMap2(struct SMapI Map[],
u32 Frequency, s32 *pParam)
{
int i = 0;
while ((Map[i].m_Frequency != 0) &&
(Frequency > Map[i].m_Frequency) )
i += 1;
if (Map[i].m_Frequency == 0)
return false;
*pParam = Map[i].m_Param;
return true;
}
static bool SearchMap3(struct SMap2 Map[],u32 Frequency,
u8 *pParam1, u8 *pParam2)
{
int i = 0;
while ((Map[i].m_Frequency != 0) &&
(Frequency > Map[i].m_Frequency) )
i += 1;
if (Map[i].m_Frequency == 0)
return false;
*pParam1 = Map[i].m_Param1;
*pParam2 = Map[i].m_Param2;
return true;
}
static bool SearchMap4(struct SRFBandMap Map[],
u32 Frequency, u8 *pRFBand)
{
int i = 0;
while (i < 7 && (Frequency > Map[i].m_RF_max))
i += 1;
if (i == 7)
return false;
*pRFBand = i;
return true;
}
static int ThermometerRead(struct tda_state *state, u8 *pTM_Value)
{
int status = 0;
do {
u8 Regs[16];
state->m_Regs[TM] |= 0x10;
CHK_ERROR(UpdateReg(state,TM));
CHK_ERROR(Read(state,Regs));
if( ( (Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20 ) ||
( (Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00 ) ) {
state->m_Regs[TM] ^= 0x20;
CHK_ERROR(UpdateReg(state,TM));
msleep(10);
CHK_ERROR(Read(state,Regs));
}
*pTM_Value = (Regs[TM] & 0x20 ) ? m_Thermometer_Map_2[Regs[TM] & 0x0F] :
m_Thermometer_Map_1[Regs[TM] & 0x0F] ;
state->m_Regs[TM] &= ~0x10; // Thermometer off
CHK_ERROR(UpdateReg(state,TM));
state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0 ?????????
CHK_ERROR(UpdateReg(state,EP4));
} while(0);
return status;
}
static int StandBy(struct tda_state *state)
{
int status = 0;
do {
state->m_Regs[EB12] &= ~0x20; // PD_AGC1_Det = 0
CHK_ERROR(UpdateReg(state,EB12));
state->m_Regs[EB18] &= ~0x83; // AGC1_loop_off = 0, AGC1_Gain = 6 dB
CHK_ERROR(UpdateReg(state,EB18));
state->m_Regs[EB21] |= 0x03; // AGC2_Gain = -6 dB
state->m_Regs[EP3] = state->m_EP3_Standby;
CHK_ERROR(UpdateReg(state,EP3));
state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LP_Fc[2] = 0
CHK_ERROR(UpdateRegs(state,EB21,EB23));
} while(0);
return status;
}
static int CalcMainPLL(struct tda_state *state, u32 freq)
{
u8 PostDiv;
u8 Div;
u64 OscFreq;
u32 MainDiv;
if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) {
return -EINVAL;
}
OscFreq = (u64) freq * (u64) Div;
OscFreq *= (u64) 16384;
do_div(OscFreq, (u64)16000000);
MainDiv = OscFreq;
state->m_Regs[MPD] = PostDiv & 0x77;
state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F);
state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF);
state->m_Regs[MD3] = ((MainDiv ) & 0xFF);
return UpdateRegs(state, MPD, MD3);
}
static int CalcCalPLL(struct tda_state *state, u32 freq)
{
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",freq));
u8 PostDiv;
u8 Div;
u64 OscFreq;
u32 CalDiv;
if( !SearchMap3(m_Cal_PLL_Map,freq,&PostDiv,&Div) )
{
return -EINVAL;
}
OscFreq = (u64)freq * (u64)Div;
//CalDiv = u32( OscFreq * 16384 / 16000000 );
OscFreq*=(u64)16384;
do_div(OscFreq, (u64)16000000);
CalDiv=OscFreq;
state->m_Regs[CPD] = PostDiv;
state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF);
state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF);
state->m_Regs[CD3] = ((CalDiv ) & 0xFF);
return UpdateRegs(state,CPD,CD3);
}
static int CalibrateRF(struct tda_state *state,
u8 RFBand,u32 freq, s32 * pCprog)
{
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " ID = %02x\n",state->m_Regs[ID]));
int status = 0;
u8 Regs[NUM_REGS];
do {
u8 BP_Filter=0;
u8 GainTaper=0;
u8 RFC_K=0;
u8 RFC_M=0;
state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0
CHK_ERROR(UpdateReg(state,EP4));
state->m_Regs[EB18] |= 0x03; // AGC1_Gain = 3
CHK_ERROR(UpdateReg(state,EB18));
// Switching off LT (as datasheet says) causes calibration on C1 to fail
// (Readout of Cprog is allways 255)
if( state->m_Regs[ID] != 0x83 ) // C1: ID == 83, C2: ID == 84
{
state->m_Regs[EP3] |= 0x40; // SM_LT = 1
}
if( ! ( SearchMap1(m_BP_Filter_Map,freq,&BP_Filter) &&
SearchMap1(m_GainTaper_Map,freq,&GainTaper) &&
SearchMap3(m_KM_Map,freq,&RFC_K,&RFC_M)) )
{
return -EINVAL;
}
state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter;
state->m_Regs[EP2] = (RFBand << 5) | GainTaper;
state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2);
CHK_ERROR(UpdateRegs(state,EP1,EP3));
CHK_ERROR(UpdateReg(state,EB13));
state->m_Regs[EB4] |= 0x20; // LO_ForceSrce = 1
CHK_ERROR(UpdateReg(state,EB4));
state->m_Regs[EB7] |= 0x20; // CAL_ForceSrce = 1
CHK_ERROR(UpdateReg(state,EB7));
state->m_Regs[EB14] = 0; // RFC_Cprog = 0
CHK_ERROR(UpdateReg(state,EB14));
state->m_Regs[EB20] &= ~0x20; // ForceLock = 0;
CHK_ERROR(UpdateReg(state,EB20));
state->m_Regs[EP4] |= 0x03; // CAL_Mode = 3
CHK_ERROR(UpdateRegs(state,EP4,EP5));
CHK_ERROR(CalcCalPLL(state,freq));
CHK_ERROR(CalcMainPLL(state,freq + 1000000));
msleep(5);
CHK_ERROR(UpdateReg(state,EP2));
CHK_ERROR(UpdateReg(state,EP1));
CHK_ERROR(UpdateReg(state,EP2));
CHK_ERROR(UpdateReg(state,EP1));
state->m_Regs[EB4] &= ~0x20; // LO_ForceSrce = 0
CHK_ERROR(UpdateReg(state,EB4));
state->m_Regs[EB7] &= ~0x20; // CAL_ForceSrce = 0
CHK_ERROR(UpdateReg(state,EB7));
msleep(10);
state->m_Regs[EB20] |= 0x20; // ForceLock = 1;
CHK_ERROR(UpdateReg(state,EB20));
msleep(60);
state->m_Regs[EP4] &= ~0x03; // CAL_Mode = 0
state->m_Regs[EP3] &= ~0x40; // SM_LT = 0
state->m_Regs[EB18] &= ~0x03; // AGC1_Gain = 0
CHK_ERROR(UpdateReg(state,EB18));
CHK_ERROR(UpdateRegs(state,EP3,EP4));
CHK_ERROR(UpdateReg(state,EP1));
CHK_ERROR(ReadExtented(state,Regs));
*pCprog = Regs[EB14];
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Cprog = %d\n",Regs[EB14]));
} while(0);
return status;
}
static int RFTrackingFiltersInit(struct tda_state *state,
u8 RFBand)
{
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
int status = 0;
u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default;
u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default;
u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default;
bool bcal = false;
s32 Cprog_cal1 = 0;
s32 Cprog_table1 = 0;
s32 Cprog_cal2 = 0;
s32 Cprog_table2 = 0;
s32 Cprog_cal3 = 0;
s32 Cprog_table3 = 0;
state->m_RF_A1[RFBand] = 0;
state->m_RF_B1[RFBand] = 0;
state->m_RF_A2[RFBand] = 0;
state->m_RF_B2[RFBand] = 0;
do {
CHK_ERROR(PowerScan(state,RFBand,RF1,&RF1,&bcal));
if( bcal ) {
CHK_ERROR(CalibrateRF(state,RFBand,RF1,&Cprog_cal1));
}
SearchMap2(m_RF_Cal_Map,RF1,&Cprog_table1);
if( !bcal ) {
Cprog_cal1 = Cprog_table1;
}
state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1;
//state->m_RF_A1[RF_Band] = ????
if( RF2 == 0 ) break;
CHK_ERROR(PowerScan(state,RFBand,RF2,&RF2,&bcal));
if( bcal ) {
CHK_ERROR(CalibrateRF(state,RFBand,RF2,&Cprog_cal2));
}
SearchMap2(m_RF_Cal_Map,RF2,&Cprog_table2);
if( !bcal )
{
Cprog_cal2 = Cprog_table2;
}
state->m_RF_A1[RFBand] =
(Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) /
((s32)(RF2)-(s32)(RF1));
if( RF3 == 0 ) break;
CHK_ERROR(PowerScan(state,RFBand,RF3,&RF3,&bcal));
if( bcal )
{
CHK_ERROR(CalibrateRF(state,RFBand,RF3,&Cprog_cal3));
}
SearchMap2(m_RF_Cal_Map,RF3,&Cprog_table3);
if( !bcal )
{
Cprog_cal3 = Cprog_table3;
}
state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3)-(s32)(RF2));
state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2;
} while(0);
state->m_RF1[RFBand] = RF1;
state->m_RF2[RFBand] = RF2;
state->m_RF3[RFBand] = RF3;
#if 0
printk("%s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __FUNCTION__,
RFBand,RF1,state->m_RF_A1[RFBand],state->m_RF_B1[RFBand],RF2,
state->m_RF_A2[RFBand],state->m_RF_B2[RFBand],RF3);
#endif
return status;
}
static int PowerScan(struct tda_state *state,
u8 RFBand,u32 RF_in, u32 * pRF_Out, bool *pbcal)
{
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d,%d)\n",RFBand,RF_in));
int status = 0;
do {
u8 Gain_Taper=0;
s32 RFC_Cprog=0;
u8 CID_Target=0;
u8 CountLimit=0;
u32 freq_MainPLL;
u8 Regs[NUM_REGS];
u8 CID_Gain;
s32 Count = 0;
int sign = 1;
bool wait = false;
if( ! (SearchMap2(m_RF_Cal_Map,RF_in,&RFC_Cprog) &&
SearchMap1(m_GainTaper_Map,RF_in,&Gain_Taper) &&
SearchMap3(m_CID_Target_Map,RF_in,&CID_Target,&CountLimit) )) {
printk("%s Search map failed\n", __FUNCTION__);
return -EINVAL;
}
state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper;
state->m_Regs[EB14] = (RFC_Cprog);
CHK_ERROR(UpdateReg(state,EP2));
CHK_ERROR(UpdateReg(state,EB14));
freq_MainPLL = RF_in + 1000000;
CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
msleep(5);
state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; // CAL_mode = 1
CHK_ERROR(UpdateReg(state,EP4));
CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement
CHK_ERROR(ReadExtented(state,Regs));
CID_Gain = Regs[EB10] & 0x3F;
state->m_Regs[ID] = Regs[ID]; // Chip version, (needed for C1 workarround in CalibrateRF )
*pRF_Out = RF_in;
while( CID_Gain < CID_Target ) {
freq_MainPLL = RF_in + sign * Count + 1000000;
CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
msleep( wait ? 5 : 1 );
wait = false;
CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement
CHK_ERROR(ReadExtented(state,Regs));
CID_Gain = Regs[EB10] & 0x3F;
Count += 200000;
if( Count < CountLimit * 100000 ) continue;
if( sign < 0 ) break;
sign = -sign;
Count = 200000;
wait = true;
}
CHK_ERROR(status);
if( CID_Gain >= CID_Target )
{
*pbcal = true;
*pRF_Out = freq_MainPLL - 1000000;
}
else
{
*pbcal = false;
}
} while(0);
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Found = %d RF = %d\n",*pbcal,*pRF_Out));
return status;
}
static int PowerScanInit(struct tda_state *state)
{
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
int status = 0;
do
{
state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12;
state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); // If level = 0, Cal mode = 0
CHK_ERROR(UpdateRegs(state,EP3,EP4));
state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03 ); // AGC 1 Gain = 0
CHK_ERROR(UpdateReg(state,EB18));
state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03 ); // AGC 2 Gain = 0 (Datasheet = 3)
state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06 ); // ForceLP_Fc2_En = 1, LPFc[2] = 1
CHK_ERROR(UpdateRegs(state,EB21,EB23));
} while(0);
return status;
}
static int CalcRFFilterCurve(struct tda_state *state)
{
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
int status = 0;
do
{
msleep(200); // Temperature stabilisation
CHK_ERROR(PowerScanInit(state));
CHK_ERROR(RFTrackingFiltersInit(state,0));
CHK_ERROR(RFTrackingFiltersInit(state,1));
CHK_ERROR(RFTrackingFiltersInit(state,2));
CHK_ERROR(RFTrackingFiltersInit(state,3));
CHK_ERROR(RFTrackingFiltersInit(state,4));
CHK_ERROR(RFTrackingFiltersInit(state,5));
CHK_ERROR(RFTrackingFiltersInit(state,6));
CHK_ERROR(ThermometerRead(state,&state->m_TMValue_RFCal)); // also switches off Cal mode !!!
} while(0);
return status;
}
static int FixedContentsI2CUpdate(struct tda_state *state)
{
static u8 InitRegs[] = {
0x08,0x80,0xC6,
0xDF,0x16,0x60,0x80,
0x80,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,
0xFC,0x01,0x84,0x41,
0x01,0x84,0x40,0x07,
0x00,0x00,0x96,0x3F,
0xC1,0x00,0x8F,0x00,
0x00,0x8C,0x00,0x20,
0xB3,0x48,0xB0,
};
int status = 0;
memcpy(&state->m_Regs[TM],InitRegs,EB23-TM+1);
do {
CHK_ERROR(UpdateRegs(state,TM,EB23));
// AGC1 gain setup
state->m_Regs[EB17] = 0x00;
CHK_ERROR(UpdateReg(state,EB17));
state->m_Regs[EB17] = 0x03;
CHK_ERROR(UpdateReg(state,EB17));
state->m_Regs[EB17] = 0x43;
CHK_ERROR(UpdateReg(state,EB17));
state->m_Regs[EB17] = 0x4C;
CHK_ERROR(UpdateReg(state,EB17));
// IRC Cal Low band
state->m_Regs[EP3] = 0x1F;
state->m_Regs[EP4] = 0x66;
state->m_Regs[EP5] = 0x81;
state->m_Regs[CPD] = 0xCC;
state->m_Regs[CD1] = 0x6C;
state->m_Regs[CD2] = 0x00;
state->m_Regs[CD3] = 0x00;
state->m_Regs[MPD] = 0xC5;
state->m_Regs[MD1] = 0x77;
state->m_Regs[MD2] = 0x08;
state->m_Regs[MD3] = 0x00;
CHK_ERROR(UpdateRegs(state,EP2,MD3)); // diff between sw and datasheet (ep3-md3)
//state->m_Regs[EB4] = 0x61; // missing in sw
//CHK_ERROR(UpdateReg(state,EB4));
//msleep(1);
//state->m_Regs[EB4] = 0x41;
//CHK_ERROR(UpdateReg(state,EB4));
msleep(5);
CHK_ERROR(UpdateReg(state,EP1));
msleep(5);
state->m_Regs[EP5] = 0x85;
state->m_Regs[CPD] = 0xCB;
state->m_Regs[CD1] = 0x66;
state->m_Regs[CD2] = 0x70;
CHK_ERROR(UpdateRegs(state,EP3,CD3));
msleep(5);
CHK_ERROR(UpdateReg(state,EP2));
msleep(30);
// IRC Cal mid band
state->m_Regs[EP5] = 0x82;
state->m_Regs[CPD] = 0xA8;
state->m_Regs[CD2] = 0x00;
state->m_Regs[MPD] = 0xA1; // Datasheet = 0xA9
state->m_Regs[MD1] = 0x73;
state->m_Regs[MD2] = 0x1A;
CHK_ERROR(UpdateRegs(state,EP3,MD3));
msleep(5);
CHK_ERROR(UpdateReg(state,EP1));
msleep(5);
state->m_Regs[EP5] = 0x86;
state->m_Regs[CPD] = 0xA8;
state->m_Regs[CD1] = 0x66;
state->m_Regs[CD2] = 0xA0;
CHK_ERROR(UpdateRegs(state,EP3,CD3));
msleep(5);
CHK_ERROR(UpdateReg(state,EP2));
msleep(30);
// IRC Cal high band
state->m_Regs[EP5] = 0x83;
state->m_Regs[CPD] = 0x98;
state->m_Regs[CD1] = 0x65;
state->m_Regs[CD2] = 0x00;
state->m_Regs[MPD] = 0x91; // Datasheet = 0x91
state->m_Regs[MD1] = 0x71;
state->m_Regs[MD2] = 0xCD;
CHK_ERROR(UpdateRegs(state,EP3,MD3));
msleep(5);
CHK_ERROR(UpdateReg(state,EP1));
msleep(5);
state->m_Regs[EP5] = 0x87;
state->m_Regs[CD1] = 0x65;
state->m_Regs[CD2] = 0x50;
CHK_ERROR(UpdateRegs(state,EP3,CD3));
msleep(5);
CHK_ERROR(UpdateReg(state,EP2));
msleep(30);
// Back to normal
state->m_Regs[EP4] = 0x64;
CHK_ERROR(UpdateReg(state,EP4));
CHK_ERROR(UpdateReg(state,EP1));
} while(0);
return status;
}
static int InitCal(struct tda_state *state)
{
int status = 0;
do
{
CHK_ERROR(FixedContentsI2CUpdate(state));
CHK_ERROR(CalcRFFilterCurve(state));
CHK_ERROR(StandBy(state));
//m_bInitDone = true;
} while(0);
return status;
};
static int RFTrackingFiltersCorrection(struct tda_state *state,
u32 Frequency)
{
int status = 0;
s32 Cprog_table;
u8 RFBand;
u8 dCoverdT;
if( !SearchMap2(m_RF_Cal_Map,Frequency,&Cprog_table) ||
!SearchMap4(m_RF_Band_Map,Frequency,&RFBand) ||
!SearchMap1(m_RF_Cal_DC_Over_DT_Map,Frequency,&dCoverdT) )
{
return -EINVAL;
}
do
{
u8 TMValue_Current;
u32 RF1 = state->m_RF1[RFBand];
u32 RF2 = state->m_RF1[RFBand];
u32 RF3 = state->m_RF1[RFBand];
s32 RF_A1 = state->m_RF_A1[RFBand];
s32 RF_B1 = state->m_RF_B1[RFBand];
s32 RF_A2 = state->m_RF_A2[RFBand];
s32 RF_B2 = state->m_RF_B2[RFBand];
s32 Capprox = 0;
int TComp;
state->m_Regs[EP3] &= ~0xE0; // Power up
CHK_ERROR(UpdateReg(state,EP3));
CHK_ERROR(ThermometerRead(state,&TMValue_Current));
if( RF3 == 0 || Frequency < RF2 )
{
Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table;
}
else
{
Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table;
}
TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000;
Capprox += TComp;
if( Capprox < 0 ) Capprox = 0;
else if( Capprox > 255 ) Capprox = 255;
// TODO Temperature compensation. There is defenitely a scale factor
// missing in the datasheet, so leave it out for now.
state->m_Regs[EB14] = (Capprox );
CHK_ERROR(UpdateReg(state,EB14));
} while(0);
return status;
}
static int ChannelConfiguration(struct tda_state *state,
u32 Frequency, int Standard)
{
s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency;
int status = 0;
u8 BP_Filter = 0;
u8 RF_Band = 0;
u8 GainTaper = 0;
u8 IR_Meas;
state->IF=IntermediateFrequency;
//printk("%s Freq = %d Standard = %d IF = %d\n",__FUNCTION__,Frequency,Standard,IntermediateFrequency);
// get values from tables
if(! ( SearchMap1(m_BP_Filter_Map,Frequency,&BP_Filter) &&
SearchMap1(m_GainTaper_Map,Frequency,&GainTaper) &&
SearchMap1(m_IR_Meas_Map,Frequency,&IR_Meas) &&
SearchMap4(m_RF_Band_Map,Frequency,&RF_Band) ) )
{
printk("%s SearchMap failed\n", __FUNCTION__);
return -EINVAL;
}
do
{
state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0;
state->m_Regs[EP3] &= ~0x04; // switch RFAGC to high speed mode
// m_EP4 default for XToutOn, CAL_Mode (0)
state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax )? state->m_IFLevelDigital : state->m_IFLevelAnalog );
//state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
if( Standard <= HF_AnalogMax ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog;
else if( Standard <= HF_ATSC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT;
else if( Standard <= HF_DVBC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC;
else state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
if( (Standard == HF_FM_Radio) && state->m_bFMInput ) state->m_Regs[EP4] |= 80;
state->m_Regs[MPD] &= ~0x80;
if( Standard > HF_AnalogMax ) state->m_Regs[MPD] |= 0x80; // Add IF_notch for digital
state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22;
// Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM )
if( Standard == HF_FM_Radio ) state->m_Regs[EB23] |= 0x06; // ForceLP_Fc2_En = 1, LPFc[2] = 1
else state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LPFc[2] = 0
CHK_ERROR(UpdateRegs(state,EB22,EB23));
state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; // Dis_Power_level = 1, Filter
state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas;
state->m_Regs[EP2] = (RF_Band << 5) | GainTaper;
state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) |
(state->m_bMaster ? 0x04 : 0x00); // CALVCO_FortLOn = MS
// AGC1_always_master = 0
// AGC_firstn = 0
CHK_ERROR(UpdateReg(state,EB1));
if( state->m_bMaster )
{
CHK_ERROR(CalcMainPLL(state,Frequency + IntermediateFrequency));
CHK_ERROR(UpdateRegs(state,TM,EP5));
state->m_Regs[EB4] |= 0x20; // LO_forceSrce = 1
CHK_ERROR(UpdateReg(state,EB4));
msleep(1);
state->m_Regs[EB4] &= ~0x20; // LO_forceSrce = 0
CHK_ERROR(UpdateReg(state,EB4));
}
else
{
u8 PostDiv;
u8 Div;
CHK_ERROR(CalcCalPLL(state,Frequency + IntermediateFrequency));
SearchMap3(m_Cal_PLL_Map,Frequency + IntermediateFrequency,&PostDiv,&Div);
state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77);
CHK_ERROR(UpdateReg(state,MPD));
CHK_ERROR(UpdateRegs(state,TM,EP5));
state->m_Regs[EB7] |= 0x20; // CAL_forceSrce = 1
CHK_ERROR(UpdateReg(state,EB7));
msleep(1);
state->m_Regs[EB7] &= ~0x20; // CAL_forceSrce = 0
CHK_ERROR(UpdateReg(state,EB7));
}
msleep(20);
if( Standard != HF_FM_Radio )
{
state->m_Regs[EP3] |= 0x04; // RFAGC to normal mode
}
CHK_ERROR(UpdateReg(state,EP3));
} while(0);
return status;
}
static int sleep(struct dvb_frontend* fe)
{
struct tda_state *state = fe->tuner_priv;
StandBy(state);
return 0;
}
static int init(struct dvb_frontend* fe)
{
//struct tda_state *state = fe->tuner_priv;
return 0;
}
static int release(struct dvb_frontend* fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int set_params(struct dvb_frontend *fe,
struct dvb_frontend_parameters *params)
{
struct tda_state *state = fe->tuner_priv;
int status = 0;
int Standard;
state->m_Frequency = params->frequency;
if (fe->ops.info.type == FE_OFDM)
switch (params->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
Standard = HF_DVBT_6MHZ;
break;
case BANDWIDTH_7_MHZ:
Standard = HF_DVBT_7MHZ;
break;
default:
case BANDWIDTH_8_MHZ:
Standard = HF_DVBT_8MHZ;
break;
}
else if (fe->ops.info.type == FE_QAM) {
Standard = HF_DVBC_8MHZ;
} else
return -EINVAL;
do {
CHK_ERROR(RFTrackingFiltersCorrection(state,params->frequency));
CHK_ERROR(ChannelConfiguration(state,params->frequency,Standard));
msleep(state->m_SettlingTime); // Allow AGC's to settle down
} while(0);
return status;
}
#if 0
static int GetSignalStrength(s32 * pSignalStrength,u32 RFAgc,u32 IFAgc)
{
if( IFAgc < 500 ) {
// Scale this from 0 to 50000
*pSignalStrength = IFAgc * 100;
} else {
// Scale range 500-1500 to 50000-80000
*pSignalStrength = 50000 + (IFAgc - 500) * 30;
}
return 0;
}
#endif
static int get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct tda_state *state = fe->tuner_priv;
*frequency = state->IF;
return 0;
}
static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
//struct tda_state *state = fe->tuner_priv;
//*bandwidth = priv->bandwidth;
return 0;
}
static struct dvb_tuner_ops tuner_ops = {
.info = {
.name = "NXP TDA18271C2D",
.frequency_min = 47125000,
.frequency_max = 865000000,
.frequency_step = 62500
},
.init = init,
.sleep = sleep,
.set_params = set_params,
.release = release,
.get_frequency = get_frequency,
.get_bandwidth = get_bandwidth,
};
struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c, u8 adr)
{
struct tda_state *state;
state = kzalloc(sizeof(struct tda_state), GFP_KERNEL);
if (!state)
return NULL;
fe->tuner_priv = state;
state->adr = adr;
state->i2c = i2c;
memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
reset(state);
InitCal(state);
return fe;
}
EXPORT_SYMBOL_GPL(tda18271c2dd_attach);
MODULE_DESCRIPTION("TDA18271C2 driver");
MODULE_AUTHOR("DD");
MODULE_LICENSE("GPL");
/*
* Local variables:
* c-basic-offset: 8
* End:
*/