linux_dsm_epyc7002/arch/mips/mm/tlbex.c

1441 lines
38 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Synthesize TLB refill handlers at runtime.
*
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
* Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2008, 2009 Cavium Networks, Inc.
*
* ... and the days got worse and worse and now you see
* I've gone completly out of my mind.
*
* They're coming to take me a away haha
* they're coming to take me a away hoho hihi haha
* to the funny farm where code is beautiful all the time ...
*
* (Condolences to Napoleon XIV)
*/
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/string.h>
#include <linux/init.h>
#include <asm/mmu_context.h>
#include <asm/war.h>
#include "uasm.h"
static inline int r45k_bvahwbug(void)
{
/* XXX: We should probe for the presence of this bug, but we don't. */
return 0;
}
static inline int r4k_250MHZhwbug(void)
{
/* XXX: We should probe for the presence of this bug, but we don't. */
return 0;
}
static inline int __maybe_unused bcm1250_m3_war(void)
{
return BCM1250_M3_WAR;
}
static inline int __maybe_unused r10000_llsc_war(void)
{
return R10000_LLSC_WAR;
}
/*
* Found by experiment: At least some revisions of the 4kc throw under
* some circumstances a machine check exception, triggered by invalid
* values in the index register. Delaying the tlbp instruction until
* after the next branch, plus adding an additional nop in front of
* tlbwi/tlbwr avoids the invalid index register values. Nobody knows
* why; it's not an issue caused by the core RTL.
*
*/
static int __cpuinit m4kc_tlbp_war(void)
{
return (current_cpu_data.processor_id & 0xffff00) ==
(PRID_COMP_MIPS | PRID_IMP_4KC);
}
/* Handle labels (which must be positive integers). */
enum label_id {
label_second_part = 1,
label_leave,
[MIPS] Load modules to CKSEG0 if CONFIG_BUILD_ELF64=n This is a patch to load 64-bit modules to CKSEG0 so that can be compiled with -msym32 option. This makes each module ~10% smaller. * introduce MODULE_START and MODULE_END * custom module_alloc() * PGD for modules * change XTLB refill handler synthesizer * enable -msym32 for modules again (revert ca78b1a5c6a6e70e052d3ea253828e49b5d07c8a) New XTLB refill handler looks like this: 80000080 dmfc0 k0,C0_BADVADDR 80000084 bltz k0,800000e4 # goto l_module_alloc 80000088 lui k1,0x8046 # %high(pgd_current) 8000008c ld k1,24600(k1) # %low(pgd_current) 80000090 dsrl k0,k0,0x1b # l_vmalloc_done: 80000094 andi k0,k0,0x1ff8 80000098 daddu k1,k1,k0 8000009c dmfc0 k0,C0_BADVADDR 800000a0 ld k1,0(k1) 800000a4 dsrl k0,k0,0x12 800000a8 andi k0,k0,0xff8 800000ac daddu k1,k1,k0 800000b0 dmfc0 k0,C0_XCONTEXT 800000b4 ld k1,0(k1) 800000b8 andi k0,k0,0xff0 800000bc daddu k1,k1,k0 800000c0 ld k0,0(k1) 800000c4 ld k1,8(k1) 800000c8 dsrl k0,k0,0x6 800000cc mtc0 k0,C0_ENTRYLO0 800000d0 dsrl k1,k1,0x6 800000d4 mtc0 k1,C0_ENTRYL01 800000d8 nop 800000dc tlbwr 800000e0 eret 800000e4 dsll k1,k0,0x2 # l_module_alloc: 800000e8 bgez k1,80000008 # goto l_vmalloc 800000ec lui k1,0xc000 800000f0 dsubu k0,k0,k1 800000f4 lui k1,0x8046 # %high(module_pg_dir) 800000f8 beq zero,zero,80000000 800000fc nop 80000000 beq zero,zero,80000090 # goto l_vmalloc_done 80000004 daddiu k1,k1,0x4000 80000008 dsll32 k1,k1,0x0 # l_vmalloc: 8000000c dsubu k0,k0,k1 80000010 beq zero,zero,80000090 # goto l_vmalloc_done 80000014 lui k1,0x8046 # %high(swapper_pg_dir) Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2006-10-25 22:08:31 +07:00
#ifdef MODULE_START
label_module_alloc,
#endif
label_vmalloc,
label_vmalloc_done,
label_tlbw_hazard,
label_split,
label_nopage_tlbl,
label_nopage_tlbs,
label_nopage_tlbm,
label_smp_pgtable_change,
label_r3000_write_probe_fail,
#ifdef CONFIG_HUGETLB_PAGE
label_tlb_huge_update,
#endif
};
UASM_L_LA(_second_part)
UASM_L_LA(_leave)
[MIPS] Load modules to CKSEG0 if CONFIG_BUILD_ELF64=n This is a patch to load 64-bit modules to CKSEG0 so that can be compiled with -msym32 option. This makes each module ~10% smaller. * introduce MODULE_START and MODULE_END * custom module_alloc() * PGD for modules * change XTLB refill handler synthesizer * enable -msym32 for modules again (revert ca78b1a5c6a6e70e052d3ea253828e49b5d07c8a) New XTLB refill handler looks like this: 80000080 dmfc0 k0,C0_BADVADDR 80000084 bltz k0,800000e4 # goto l_module_alloc 80000088 lui k1,0x8046 # %high(pgd_current) 8000008c ld k1,24600(k1) # %low(pgd_current) 80000090 dsrl k0,k0,0x1b # l_vmalloc_done: 80000094 andi k0,k0,0x1ff8 80000098 daddu k1,k1,k0 8000009c dmfc0 k0,C0_BADVADDR 800000a0 ld k1,0(k1) 800000a4 dsrl k0,k0,0x12 800000a8 andi k0,k0,0xff8 800000ac daddu k1,k1,k0 800000b0 dmfc0 k0,C0_XCONTEXT 800000b4 ld k1,0(k1) 800000b8 andi k0,k0,0xff0 800000bc daddu k1,k1,k0 800000c0 ld k0,0(k1) 800000c4 ld k1,8(k1) 800000c8 dsrl k0,k0,0x6 800000cc mtc0 k0,C0_ENTRYLO0 800000d0 dsrl k1,k1,0x6 800000d4 mtc0 k1,C0_ENTRYL01 800000d8 nop 800000dc tlbwr 800000e0 eret 800000e4 dsll k1,k0,0x2 # l_module_alloc: 800000e8 bgez k1,80000008 # goto l_vmalloc 800000ec lui k1,0xc000 800000f0 dsubu k0,k0,k1 800000f4 lui k1,0x8046 # %high(module_pg_dir) 800000f8 beq zero,zero,80000000 800000fc nop 80000000 beq zero,zero,80000090 # goto l_vmalloc_done 80000004 daddiu k1,k1,0x4000 80000008 dsll32 k1,k1,0x0 # l_vmalloc: 8000000c dsubu k0,k0,k1 80000010 beq zero,zero,80000090 # goto l_vmalloc_done 80000014 lui k1,0x8046 # %high(swapper_pg_dir) Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2006-10-25 22:08:31 +07:00
#ifdef MODULE_START
UASM_L_LA(_module_alloc)
[MIPS] R4000/R4400 daddiu erratum workaround This complements the generic R4000/R4400 errata workaround code and adds bits for the daddiu problem. In most places it just modifies handwritten assembly code so that the assembler is allowed to use a temporary register as daddiu may now be treated as a macro that expands to a sequence of li and daddu. It is the AT register or, where AT is unavailable or used explicitly for another purpose, an explicitly-named register is selected, using the .set at=<reg> feature added recently to gas. This feature is only used if CONFIG_CPU_DADDI_WORKAROUNDS has been set, so if the workaround remains disabled, the required version of binutils stays unchanged. Similarly, daddiu instructions put in branch delay slots in noreorder fragments are now taken out of them and the assembler is allowed to reorder them itself as possible (which it does making the whole idea of scheduling them into delay slots manually questionable). Also in the very few places where such a simple conversion was not possible, a handcoded longer sequence is implemented. Other than that there are changes to code responsible for building the TLB fault and page clear/copy handlers to avoid daddiu as appropriate. These are only effective if the erratum is verified to be present at the run time. Finally there is a trivial update to __delay(), because it uses daddiu in a branch delay slot. Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-10-23 18:43:25 +07:00
#endif
UASM_L_LA(_vmalloc)
UASM_L_LA(_vmalloc_done)
UASM_L_LA(_tlbw_hazard)
UASM_L_LA(_split)
UASM_L_LA(_nopage_tlbl)
UASM_L_LA(_nopage_tlbs)
UASM_L_LA(_nopage_tlbm)
UASM_L_LA(_smp_pgtable_change)
UASM_L_LA(_r3000_write_probe_fail)
#ifdef CONFIG_HUGETLB_PAGE
UASM_L_LA(_tlb_huge_update)
#endif
[MIPS] Load modules to CKSEG0 if CONFIG_BUILD_ELF64=n This is a patch to load 64-bit modules to CKSEG0 so that can be compiled with -msym32 option. This makes each module ~10% smaller. * introduce MODULE_START and MODULE_END * custom module_alloc() * PGD for modules * change XTLB refill handler synthesizer * enable -msym32 for modules again (revert ca78b1a5c6a6e70e052d3ea253828e49b5d07c8a) New XTLB refill handler looks like this: 80000080 dmfc0 k0,C0_BADVADDR 80000084 bltz k0,800000e4 # goto l_module_alloc 80000088 lui k1,0x8046 # %high(pgd_current) 8000008c ld k1,24600(k1) # %low(pgd_current) 80000090 dsrl k0,k0,0x1b # l_vmalloc_done: 80000094 andi k0,k0,0x1ff8 80000098 daddu k1,k1,k0 8000009c dmfc0 k0,C0_BADVADDR 800000a0 ld k1,0(k1) 800000a4 dsrl k0,k0,0x12 800000a8 andi k0,k0,0xff8 800000ac daddu k1,k1,k0 800000b0 dmfc0 k0,C0_XCONTEXT 800000b4 ld k1,0(k1) 800000b8 andi k0,k0,0xff0 800000bc daddu k1,k1,k0 800000c0 ld k0,0(k1) 800000c4 ld k1,8(k1) 800000c8 dsrl k0,k0,0x6 800000cc mtc0 k0,C0_ENTRYLO0 800000d0 dsrl k1,k1,0x6 800000d4 mtc0 k1,C0_ENTRYL01 800000d8 nop 800000dc tlbwr 800000e0 eret 800000e4 dsll k1,k0,0x2 # l_module_alloc: 800000e8 bgez k1,80000008 # goto l_vmalloc 800000ec lui k1,0xc000 800000f0 dsubu k0,k0,k1 800000f4 lui k1,0x8046 # %high(module_pg_dir) 800000f8 beq zero,zero,80000000 800000fc nop 80000000 beq zero,zero,80000090 # goto l_vmalloc_done 80000004 daddiu k1,k1,0x4000 80000008 dsll32 k1,k1,0x0 # l_vmalloc: 8000000c dsubu k0,k0,k1 80000010 beq zero,zero,80000090 # goto l_vmalloc_done 80000014 lui k1,0x8046 # %high(swapper_pg_dir) Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2006-10-25 22:08:31 +07:00
/*
* For debug purposes.
*/
static inline void dump_handler(const u32 *handler, int count)
{
int i;
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < count; i++)
pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
pr_debug("\t.set pop\n");
}
/* The only general purpose registers allowed in TLB handlers. */
#define K0 26
#define K1 27
/* Some CP0 registers */
#define C0_INDEX 0, 0
#define C0_ENTRYLO0 2, 0
#define C0_TCBIND 2, 2
#define C0_ENTRYLO1 3, 0
#define C0_CONTEXT 4, 0
#define C0_PAGEMASK 5, 0
#define C0_BADVADDR 8, 0
#define C0_ENTRYHI 10, 0
#define C0_EPC 14, 0
#define C0_XCONTEXT 20, 0
#ifdef CONFIG_64BIT
# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
#else
# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
#endif
/* The worst case length of the handler is around 18 instructions for
* R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
* Maximum space available is 32 instructions for R3000 and 64
* instructions for R4000.
*
* We deliberately chose a buffer size of 128, so we won't scribble
* over anything important on overflow before we panic.
*/
static u32 tlb_handler[128] __cpuinitdata;
/* simply assume worst case size for labels and relocs */
static struct uasm_label labels[128] __cpuinitdata;
static struct uasm_reloc relocs[128] __cpuinitdata;
/*
* The R3000 TLB handler is simple.
*/
static void __cpuinit build_r3000_tlb_refill_handler(void)
{
long pgdc = (long)pgd_current;
u32 *p;
memset(tlb_handler, 0, sizeof(tlb_handler));
p = tlb_handler;
uasm_i_mfc0(&p, K0, C0_BADVADDR);
uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
uasm_i_srl(&p, K0, K0, 22); /* load delay */
uasm_i_sll(&p, K0, K0, 2);
uasm_i_addu(&p, K1, K1, K0);
uasm_i_mfc0(&p, K0, C0_CONTEXT);
uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
uasm_i_addu(&p, K1, K1, K0);
uasm_i_lw(&p, K0, 0, K1);
uasm_i_nop(&p); /* load delay */
uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
uasm_i_tlbwr(&p); /* cp0 delay */
uasm_i_jr(&p, K1);
uasm_i_rfe(&p); /* branch delay */
if (p > tlb_handler + 32)
panic("TLB refill handler space exceeded");
pr_debug("Wrote TLB refill handler (%u instructions).\n",
(unsigned int)(p - tlb_handler));
memcpy((void *)ebase, tlb_handler, 0x80);
dump_handler((u32 *)ebase, 32);
}
/*
* The R4000 TLB handler is much more complicated. We have two
* consecutive handler areas with 32 instructions space each.
* Since they aren't used at the same time, we can overflow in the
* other one.To keep things simple, we first assume linear space,
* then we relocate it to the final handler layout as needed.
*/
static u32 final_handler[64] __cpuinitdata;
/*
* Hazards
*
* From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
* 2. A timing hazard exists for the TLBP instruction.
*
* stalling_instruction
* TLBP
*
* The JTLB is being read for the TLBP throughout the stall generated by the
* previous instruction. This is not really correct as the stalling instruction
* can modify the address used to access the JTLB. The failure symptom is that
* the TLBP instruction will use an address created for the stalling instruction
* and not the address held in C0_ENHI and thus report the wrong results.
*
* The software work-around is to not allow the instruction preceding the TLBP
* to stall - make it an NOP or some other instruction guaranteed not to stall.
*
* Errata 2 will not be fixed. This errata is also on the R5000.
*
* As if we MIPS hackers wouldn't know how to nop pipelines happy ...
*/
static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
{
switch (current_cpu_type()) {
/* Found by experiment: R4600 v2.0/R4700 needs this, too. */
case CPU_R4600:
case CPU_R4700:
case CPU_R5000:
case CPU_R5000A:
case CPU_NEVADA:
uasm_i_nop(p);
uasm_i_tlbp(p);
break;
default:
uasm_i_tlbp(p);
break;
}
}
/*
* Write random or indexed TLB entry, and care about the hazards from
* the preceeding mtc0 and for the following eret.
*/
enum tlb_write_entry { tlb_random, tlb_indexed };
static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
struct uasm_reloc **r,
enum tlb_write_entry wmode)
{
void(*tlbw)(u32 **) = NULL;
switch (wmode) {
case tlb_random: tlbw = uasm_i_tlbwr; break;
case tlb_indexed: tlbw = uasm_i_tlbwi; break;
}
if (cpu_has_mips_r2) {
if (cpu_has_mips_r2_exec_hazard)
uasm_i_ehb(p);
tlbw(p);
return;
}
switch (current_cpu_type()) {
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
/*
* This branch uses up a mtc0 hazard nop slot and saves
* two nops after the tlbw instruction.
*/
uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
tlbw(p);
uasm_l_tlbw_hazard(l, *p);
uasm_i_nop(p);
break;
case CPU_R4600:
case CPU_R4700:
case CPU_R5000:
case CPU_R5000A:
uasm_i_nop(p);
tlbw(p);
uasm_i_nop(p);
break;
case CPU_R4300:
case CPU_5KC:
case CPU_TX49XX:
case CPU_PR4450:
uasm_i_nop(p);
tlbw(p);
break;
case CPU_R10000:
case CPU_R12000:
case CPU_R14000:
case CPU_4KC:
case CPU_4KEC:
case CPU_SB1:
case CPU_SB1A:
case CPU_4KSC:
case CPU_20KC:
case CPU_25KF:
case CPU_BCM3302:
case CPU_BCM4710:
case CPU_LOONGSON2:
case CPU_BCM6338:
case CPU_BCM6345:
case CPU_BCM6348:
case CPU_BCM6358:
case CPU_R5500:
if (m4kc_tlbp_war())
uasm_i_nop(p);
case CPU_ALCHEMY:
tlbw(p);
break;
case CPU_NEVADA:
uasm_i_nop(p); /* QED specifies 2 nops hazard */
/*
* This branch uses up a mtc0 hazard nop slot and saves
* a nop after the tlbw instruction.
*/
uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
tlbw(p);
uasm_l_tlbw_hazard(l, *p);
break;
case CPU_RM7000:
uasm_i_nop(p);
uasm_i_nop(p);
uasm_i_nop(p);
uasm_i_nop(p);
tlbw(p);
break;
case CPU_RM9000:
/*
* When the JTLB is updated by tlbwi or tlbwr, a subsequent
* use of the JTLB for instructions should not occur for 4
* cpu cycles and use for data translations should not occur
* for 3 cpu cycles.
*/
uasm_i_ssnop(p);
uasm_i_ssnop(p);
uasm_i_ssnop(p);
uasm_i_ssnop(p);
tlbw(p);
uasm_i_ssnop(p);
uasm_i_ssnop(p);
uasm_i_ssnop(p);
uasm_i_ssnop(p);
break;
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4181:
case CPU_VR4181A:
uasm_i_nop(p);
uasm_i_nop(p);
tlbw(p);
uasm_i_nop(p);
uasm_i_nop(p);
break;
case CPU_VR4131:
case CPU_VR4133:
case CPU_R5432:
uasm_i_nop(p);
uasm_i_nop(p);
tlbw(p);
break;
default:
panic("No TLB refill handler yet (CPU type: %d)",
current_cpu_data.cputype);
break;
}
}
#ifdef CONFIG_HUGETLB_PAGE
static __cpuinit void build_huge_tlb_write_entry(u32 **p,
struct uasm_label **l,
struct uasm_reloc **r,
unsigned int tmp,
enum tlb_write_entry wmode)
{
/* Set huge page tlb entry size */
uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
build_tlb_write_entry(p, l, r, wmode);
/* Reset default page size */
if (PM_DEFAULT_MASK >> 16) {
uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
uasm_il_b(p, r, label_leave);
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
} else if (PM_DEFAULT_MASK) {
uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
uasm_il_b(p, r, label_leave);
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
} else {
uasm_il_b(p, r, label_leave);
uasm_i_mtc0(p, 0, C0_PAGEMASK);
}
}
/*
* Check if Huge PTE is present, if so then jump to LABEL.
*/
static void __cpuinit
build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
unsigned int pmd, int lid)
{
UASM_i_LW(p, tmp, 0, pmd);
uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
uasm_il_bnez(p, r, tmp, lid);
}
static __cpuinit void build_huge_update_entries(u32 **p,
unsigned int pte,
unsigned int tmp)
{
int small_sequence;
/*
* A huge PTE describes an area the size of the
* configured huge page size. This is twice the
* of the large TLB entry size we intend to use.
* A TLB entry half the size of the configured
* huge page size is configured into entrylo0
* and entrylo1 to cover the contiguous huge PTE
* address space.
*/
small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
/* We can clobber tmp. It isn't used after this.*/
if (!small_sequence)
uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
UASM_i_SRL(p, pte, pte, 6); /* convert to entrylo */
uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* load it */
/* convert to entrylo1 */
if (small_sequence)
UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
else
UASM_i_ADDU(p, pte, pte, tmp);
uasm_i_mtc0(p, pte, C0_ENTRYLO1); /* load it */
}
static __cpuinit void build_huge_handler_tail(u32 **p,
struct uasm_reloc **r,
struct uasm_label **l,
unsigned int pte,
unsigned int ptr)
{
#ifdef CONFIG_SMP
UASM_i_SC(p, pte, 0, ptr);
uasm_il_beqz(p, r, pte, label_tlb_huge_update);
UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
#else
UASM_i_SW(p, pte, 0, ptr);
#endif
build_huge_update_entries(p, pte, ptr);
build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed);
}
#endif /* CONFIG_HUGETLB_PAGE */
#ifdef CONFIG_64BIT
/*
* TMP and PTR are scratch.
* TMP will be clobbered, PTR will hold the pmd entry.
*/
static void __cpuinit
build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
unsigned int tmp, unsigned int ptr)
{
long pgdc = (long)pgd_current;
/*
* The vmalloc handling is not in the hotpath.
*/
uasm_i_dmfc0(p, tmp, C0_BADVADDR);
uasm_il_bltz(p, r, tmp, label_vmalloc);
/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
#ifdef CONFIG_SMP
# ifdef CONFIG_MIPS_MT_SMTC
/*
* SMTC uses TCBind value as "CPU" index
*/
uasm_i_mfc0(p, ptr, C0_TCBIND);
uasm_i_dsrl(p, ptr, ptr, 19);
# else
/*
* 64 bit SMP running in XKPHYS has smp_processor_id() << 3
* stored in CONTEXT.
*/
uasm_i_dmfc0(p, ptr, C0_CONTEXT);
uasm_i_dsrl(p, ptr, ptr, 23);
#endif
UASM_i_LA_mostly(p, tmp, pgdc);
uasm_i_daddu(p, ptr, ptr, tmp);
uasm_i_dmfc0(p, tmp, C0_BADVADDR);
uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
#else
UASM_i_LA_mostly(p, ptr, pgdc);
uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
#endif
uasm_l_vmalloc_done(l, *p);
if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
uasm_i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
else
uasm_i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
uasm_i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
}
/*
* BVADDR is the faulting address, PTR is scratch.
* PTR will hold the pgd for vmalloc.
*/
static void __cpuinit
build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
unsigned int bvaddr, unsigned int ptr)
{
long swpd = (long)swapper_pg_dir;
uasm_l_vmalloc(l, *p);
if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
uasm_il_b(p, r, label_vmalloc_done);
uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
} else {
UASM_i_LA_mostly(p, ptr, swpd);
uasm_il_b(p, r, label_vmalloc_done);
if (uasm_in_compat_space_p(swpd))
uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
[MIPS] R4000/R4400 daddiu erratum workaround This complements the generic R4000/R4400 errata workaround code and adds bits for the daddiu problem. In most places it just modifies handwritten assembly code so that the assembler is allowed to use a temporary register as daddiu may now be treated as a macro that expands to a sequence of li and daddu. It is the AT register or, where AT is unavailable or used explicitly for another purpose, an explicitly-named register is selected, using the .set at=<reg> feature added recently to gas. This feature is only used if CONFIG_CPU_DADDI_WORKAROUNDS has been set, so if the workaround remains disabled, the required version of binutils stays unchanged. Similarly, daddiu instructions put in branch delay slots in noreorder fragments are now taken out of them and the assembler is allowed to reorder them itself as possible (which it does making the whole idea of scheduling them into delay slots manually questionable). Also in the very few places where such a simple conversion was not possible, a handcoded longer sequence is implemented. Other than that there are changes to code responsible for building the TLB fault and page clear/copy handlers to avoid daddiu as appropriate. These are only effective if the erratum is verified to be present at the run time. Finally there is a trivial update to __delay(), because it uses daddiu in a branch delay slot. Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-10-23 18:43:25 +07:00
else
uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
}
}
#else /* !CONFIG_64BIT */
/*
* TMP and PTR are scratch.
* TMP will be clobbered, PTR will hold the pgd entry.
*/
static void __cpuinit __maybe_unused
build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
{
long pgdc = (long)pgd_current;
/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
#ifdef CONFIG_SMP
#ifdef CONFIG_MIPS_MT_SMTC
/*
* SMTC uses TCBind value as "CPU" index
*/
uasm_i_mfc0(p, ptr, C0_TCBIND);
UASM_i_LA_mostly(p, tmp, pgdc);
uasm_i_srl(p, ptr, ptr, 19);
#else
/*
* smp_processor_id() << 3 is stored in CONTEXT.
*/
uasm_i_mfc0(p, ptr, C0_CONTEXT);
UASM_i_LA_mostly(p, tmp, pgdc);
uasm_i_srl(p, ptr, ptr, 23);
#endif
uasm_i_addu(p, ptr, tmp, ptr);
#else
UASM_i_LA_mostly(p, ptr, pgdc);
#endif
uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
}
#endif /* !CONFIG_64BIT */
static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
{
unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
switch (current_cpu_type()) {
case CPU_VR41XX:
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4131:
case CPU_VR4181:
case CPU_VR4181A:
case CPU_VR4133:
shift += 2;
break;
default:
break;
}
if (shift)
UASM_i_SRL(p, ctx, ctx, shift);
uasm_i_andi(p, ctx, ctx, mask);
}
static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
{
/*
* Bug workaround for the Nevada. It seems as if under certain
* circumstances the move from cp0_context might produce a
* bogus result when the mfc0 instruction and its consumer are
* in a different cacheline or a load instruction, probably any
* memory reference, is between them.
*/
switch (current_cpu_type()) {
case CPU_NEVADA:
UASM_i_LW(p, ptr, 0, ptr);
GET_CONTEXT(p, tmp); /* get context reg */
break;
default:
GET_CONTEXT(p, tmp); /* get context reg */
UASM_i_LW(p, ptr, 0, ptr);
break;
}
build_adjust_context(p, tmp);
UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
}
static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
unsigned int ptep)
{
/*
* 64bit address support (36bit on a 32bit CPU) in a 32bit
* Kernel is a special case. Only a few CPUs use it.
*/
#ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits) {
uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
uasm_i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
uasm_i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
} else {
int pte_off_even = sizeof(pte_t) / 2;
int pte_off_odd = pte_off_even + sizeof(pte_t);
/* The pte entries are pre-shifted */
uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
}
#else
UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
if (r45k_bvahwbug())
build_tlb_probe_entry(p);
UASM_i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
if (r4k_250MHZhwbug())
uasm_i_mtc0(p, 0, C0_ENTRYLO0);
uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
UASM_i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
if (r45k_bvahwbug())
uasm_i_mfc0(p, tmp, C0_INDEX);
if (r4k_250MHZhwbug())
uasm_i_mtc0(p, 0, C0_ENTRYLO1);
uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
#endif
}
/*
* For a 64-bit kernel, we are using the 64-bit XTLB refill exception
* because EXL == 0. If we wrap, we can also use the 32 instruction
* slots before the XTLB refill exception handler which belong to the
* unused TLB refill exception.
*/
#define MIPS64_REFILL_INSNS 32
static void __cpuinit build_r4000_tlb_refill_handler(void)
{
u32 *p = tlb_handler;
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
u32 *f;
unsigned int final_len;
memset(tlb_handler, 0, sizeof(tlb_handler));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
memset(final_handler, 0, sizeof(final_handler));
/*
* create the plain linear handler
*/
if (bcm1250_m3_war()) {
UASM_i_MFC0(&p, K0, C0_BADVADDR);
UASM_i_MFC0(&p, K1, C0_ENTRYHI);
uasm_i_xor(&p, K0, K0, K1);
UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
uasm_il_bnez(&p, &r, K0, label_leave);
/* No need for uasm_i_nop */
}
#ifdef CONFIG_64BIT
build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
#else
build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
#endif
#ifdef CONFIG_HUGETLB_PAGE
build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
#endif
build_get_ptep(&p, K0, K1);
build_update_entries(&p, K0, K1);
build_tlb_write_entry(&p, &l, &r, tlb_random);
uasm_l_leave(&l, p);
uasm_i_eret(&p); /* return from trap */
#ifdef CONFIG_HUGETLB_PAGE
uasm_l_tlb_huge_update(&l, p);
UASM_i_LW(&p, K0, 0, K1);
build_huge_update_entries(&p, K0, K1);
build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random);
#endif
#ifdef CONFIG_64BIT
build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
#endif
/*
* Overflow check: For the 64bit handler, we need at least one
* free instruction slot for the wrap-around branch. In worst
* case, if the intended insertion point is a delay slot, we
* need three, with the second nop'ed and the third being
* unused.
*/
/* Loongson2 ebase is different than r4k, we have more space */
#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
if ((p - tlb_handler) > 64)
panic("TLB refill handler space exceeded");
#else
if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
|| (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
&& uasm_insn_has_bdelay(relocs,
tlb_handler + MIPS64_REFILL_INSNS - 3)))
panic("TLB refill handler space exceeded");
#endif
/*
* Now fold the handler in the TLB refill handler space.
*/
#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
f = final_handler;
/* Simplest case, just copy the handler. */
uasm_copy_handler(relocs, labels, tlb_handler, p, f);
final_len = p - tlb_handler;
#else /* CONFIG_64BIT */
f = final_handler + MIPS64_REFILL_INSNS;
if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
/* Just copy the handler. */
uasm_copy_handler(relocs, labels, tlb_handler, p, f);
final_len = p - tlb_handler;
} else {
#if defined(CONFIG_HUGETLB_PAGE)
const enum label_id ls = label_tlb_huge_update;
#elif defined(MODULE_START)
const enum label_id ls = label_module_alloc;
#else
const enum label_id ls = label_vmalloc;
#endif
u32 *split;
int ov = 0;
int i;
for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
;
BUG_ON(i == ARRAY_SIZE(labels));
split = labels[i].addr;
/*
* See if we have overflown one way or the other.
*/
if (split > tlb_handler + MIPS64_REFILL_INSNS ||
split < p - MIPS64_REFILL_INSNS)
ov = 1;
if (ov) {
/*
* Split two instructions before the end. One
* for the branch and one for the instruction
* in the delay slot.
*/
split = tlb_handler + MIPS64_REFILL_INSNS - 2;
/*
* If the branch would fall in a delay slot,
* we must back up an additional instruction
* so that it is no longer in a delay slot.
*/
if (uasm_insn_has_bdelay(relocs, split - 1))
split--;
}
/* Copy first part of the handler. */
uasm_copy_handler(relocs, labels, tlb_handler, split, f);
f += split - tlb_handler;
if (ov) {
/* Insert branch. */
uasm_l_split(&l, final_handler);
uasm_il_b(&f, &r, label_split);
if (uasm_insn_has_bdelay(relocs, split))
uasm_i_nop(&f);
else {
uasm_copy_handler(relocs, labels,
split, split + 1, f);
uasm_move_labels(labels, f, f + 1, -1);
f++;
split++;
}
}
/* Copy the rest of the handler. */
uasm_copy_handler(relocs, labels, split, p, final_handler);
final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
(p - split);
}
#endif /* CONFIG_64BIT */
uasm_resolve_relocs(relocs, labels);
pr_debug("Wrote TLB refill handler (%u instructions).\n",
final_len);
memcpy((void *)ebase, final_handler, 0x100);
dump_handler((u32 *)ebase, 64);
}
/*
* TLB load/store/modify handlers.
*
* Only the fastpath gets synthesized at runtime, the slowpath for
* do_page_fault remains normal asm.
*/
extern void tlb_do_page_fault_0(void);
extern void tlb_do_page_fault_1(void);
/*
* 128 instructions for the fastpath handler is generous and should
* never be exceeded.
*/
#define FASTPATH_SIZE 128
u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
static void __cpuinit
iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
{
#ifdef CONFIG_SMP
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
uasm_i_lld(p, pte, 0, ptr);
else
# endif
UASM_i_LL(p, pte, 0, ptr);
#else
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
uasm_i_ld(p, pte, 0, ptr);
else
# endif
UASM_i_LW(p, pte, 0, ptr);
#endif
}
static void __cpuinit
iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
unsigned int mode)
{
#ifdef CONFIG_64BIT_PHYS_ADDR
unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
#endif
uasm_i_ori(p, pte, pte, mode);
#ifdef CONFIG_SMP
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
uasm_i_scd(p, pte, 0, ptr);
else
# endif
UASM_i_SC(p, pte, 0, ptr);
if (r10000_llsc_war())
uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
else
uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
# ifdef CONFIG_64BIT_PHYS_ADDR
if (!cpu_has_64bits) {
/* no uasm_i_nop needed */
uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
uasm_i_ori(p, pte, pte, hwmode);
uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
/* no uasm_i_nop needed */
uasm_i_lw(p, pte, 0, ptr);
} else
uasm_i_nop(p);
# else
uasm_i_nop(p);
# endif
#else
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
uasm_i_sd(p, pte, 0, ptr);
else
# endif
UASM_i_SW(p, pte, 0, ptr);
# ifdef CONFIG_64BIT_PHYS_ADDR
if (!cpu_has_64bits) {
uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
uasm_i_ori(p, pte, pte, hwmode);
uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
uasm_i_lw(p, pte, 0, ptr);
}
# endif
#endif
}
/*
* Check if PTE is present, if not then jump to LABEL. PTR points to
* the page table where this PTE is located, PTE will be re-loaded
* with it's original value.
*/
static void __cpuinit
build_pte_present(u32 **p, struct uasm_reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
uasm_il_bnez(p, r, pte, lid);
iPTE_LW(p, pte, ptr);
}
/* Make PTE valid, store result in PTR. */
static void __cpuinit
build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
unsigned int ptr)
{
unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
iPTE_SW(p, r, pte, ptr, mode);
}
/*
* Check if PTE can be written to, if not branch to LABEL. Regardless
* restore PTE with value from PTR when done.
*/
static void __cpuinit
build_pte_writable(u32 **p, struct uasm_reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
uasm_il_bnez(p, r, pte, lid);
iPTE_LW(p, pte, ptr);
}
/* Make PTE writable, update software status bits as well, then store
* at PTR.
*/
static void __cpuinit
build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
unsigned int ptr)
{
unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
| _PAGE_DIRTY);
iPTE_SW(p, r, pte, ptr, mode);
}
/*
* Check if PTE can be modified, if not branch to LABEL. Regardless
* restore PTE with value from PTR when done.
*/
static void __cpuinit
build_pte_modifiable(u32 **p, struct uasm_reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
uasm_i_andi(p, pte, pte, _PAGE_WRITE);
uasm_il_beqz(p, r, pte, lid);
iPTE_LW(p, pte, ptr);
}
/*
* R3000 style TLB load/store/modify handlers.
*/
/*
* This places the pte into ENTRYLO0 and writes it with tlbwi.
* Then it returns.
*/
static void __cpuinit
build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
{
uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
uasm_i_tlbwi(p);
uasm_i_jr(p, tmp);
uasm_i_rfe(p); /* branch delay */
}
/*
* This places the pte into ENTRYLO0 and writes it with tlbwi
* or tlbwr as appropriate. This is because the index register
* may have the probe fail bit set as a result of a trap on a
* kseg2 access, i.e. without refill. Then it returns.
*/
static void __cpuinit
build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
struct uasm_reloc **r, unsigned int pte,
unsigned int tmp)
{
uasm_i_mfc0(p, tmp, C0_INDEX);
uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
uasm_i_tlbwi(p); /* cp0 delay */
uasm_i_jr(p, tmp);
uasm_i_rfe(p); /* branch delay */
uasm_l_r3000_write_probe_fail(l, *p);
uasm_i_tlbwr(p); /* cp0 delay */
uasm_i_jr(p, tmp);
uasm_i_rfe(p); /* branch delay */
}
static void __cpuinit
build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
unsigned int ptr)
{
long pgdc = (long)pgd_current;
uasm_i_mfc0(p, pte, C0_BADVADDR);
uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
uasm_i_srl(p, pte, pte, 22); /* load delay */
uasm_i_sll(p, pte, pte, 2);
uasm_i_addu(p, ptr, ptr, pte);
uasm_i_mfc0(p, pte, C0_CONTEXT);
uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
uasm_i_addu(p, ptr, ptr, pte);
uasm_i_lw(p, pte, 0, ptr);
uasm_i_tlbp(p); /* load delay */
}
static void __cpuinit build_r3000_tlb_load_handler(void)
{
u32 *p = handle_tlbl;
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(handle_tlbl, 0, sizeof(handle_tlbl));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
uasm_i_nop(&p); /* load delay */
build_make_valid(&p, &r, K0, K1);
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
uasm_l_nopage_tlbl(&l, p);
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
uasm_i_nop(&p);
if ((p - handle_tlbl) > FASTPATH_SIZE)
panic("TLB load handler fastpath space exceeded");
uasm_resolve_relocs(relocs, labels);
pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbl));
dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
}
static void __cpuinit build_r3000_tlb_store_handler(void)
{
u32 *p = handle_tlbs;
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(handle_tlbs, 0, sizeof(handle_tlbs));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
uasm_i_nop(&p); /* load delay */
build_make_write(&p, &r, K0, K1);
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
uasm_l_nopage_tlbs(&l, p);
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
uasm_i_nop(&p);
if ((p - handle_tlbs) > FASTPATH_SIZE)
panic("TLB store handler fastpath space exceeded");
uasm_resolve_relocs(relocs, labels);
pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbs));
dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
}
static void __cpuinit build_r3000_tlb_modify_handler(void)
{
u32 *p = handle_tlbm;
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(handle_tlbm, 0, sizeof(handle_tlbm));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
uasm_i_nop(&p); /* load delay */
build_make_write(&p, &r, K0, K1);
build_r3000_pte_reload_tlbwi(&p, K0, K1);
uasm_l_nopage_tlbm(&l, p);
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
uasm_i_nop(&p);
if ((p - handle_tlbm) > FASTPATH_SIZE)
panic("TLB modify handler fastpath space exceeded");
uasm_resolve_relocs(relocs, labels);
pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbm));
dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
}
/*
* R4000 style TLB load/store/modify handlers.
*/
static void __cpuinit
build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
struct uasm_reloc **r, unsigned int pte,
unsigned int ptr)
{
#ifdef CONFIG_64BIT
build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
#else
build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
#endif
#ifdef CONFIG_HUGETLB_PAGE
/*
* For huge tlb entries, pmd doesn't contain an address but
* instead contains the tlb pte. Check the PAGE_HUGE bit and
* see if we need to jump to huge tlb processing.
*/
build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update);
#endif
UASM_i_MFC0(p, pte, C0_BADVADDR);
UASM_i_LW(p, ptr, 0, ptr);
UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
UASM_i_ADDU(p, ptr, ptr, pte);
#ifdef CONFIG_SMP
uasm_l_smp_pgtable_change(l, *p);
#endif
iPTE_LW(p, pte, ptr); /* get even pte */
if (!m4kc_tlbp_war())
build_tlb_probe_entry(p);
}
static void __cpuinit
build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
struct uasm_reloc **r, unsigned int tmp,
unsigned int ptr)
{
uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
build_update_entries(p, tmp, ptr);
build_tlb_write_entry(p, l, r, tlb_indexed);
uasm_l_leave(l, *p);
uasm_i_eret(p); /* return from trap */
#ifdef CONFIG_64BIT
build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
#endif
}
static void __cpuinit build_r4000_tlb_load_handler(void)
{
u32 *p = handle_tlbl;
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(handle_tlbl, 0, sizeof(handle_tlbl));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
if (bcm1250_m3_war()) {
UASM_i_MFC0(&p, K0, C0_BADVADDR);
UASM_i_MFC0(&p, K1, C0_ENTRYHI);
uasm_i_xor(&p, K0, K0, K1);
UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
uasm_il_bnez(&p, &r, K0, label_leave);
/* No need for uasm_i_nop */
}
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
if (m4kc_tlbp_war())
build_tlb_probe_entry(&p);
build_make_valid(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
#ifdef CONFIG_HUGETLB_PAGE
/*
* This is the entry point when build_r4000_tlbchange_handler_head
* spots a huge page.
*/
uasm_l_tlb_huge_update(&l, p);
iPTE_LW(&p, K0, K1);
build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
build_tlb_probe_entry(&p);
uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID));
build_huge_handler_tail(&p, &r, &l, K0, K1);
#endif
uasm_l_nopage_tlbl(&l, p);
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
uasm_i_nop(&p);
if ((p - handle_tlbl) > FASTPATH_SIZE)
panic("TLB load handler fastpath space exceeded");
uasm_resolve_relocs(relocs, labels);
pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbl));
dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
}
static void __cpuinit build_r4000_tlb_store_handler(void)
{
u32 *p = handle_tlbs;
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(handle_tlbs, 0, sizeof(handle_tlbs));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
if (m4kc_tlbp_war())
build_tlb_probe_entry(&p);
build_make_write(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
#ifdef CONFIG_HUGETLB_PAGE
/*
* This is the entry point when
* build_r4000_tlbchange_handler_head spots a huge page.
*/
uasm_l_tlb_huge_update(&l, p);
iPTE_LW(&p, K0, K1);
build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
build_tlb_probe_entry(&p);
uasm_i_ori(&p, K0, K0,
_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
build_huge_handler_tail(&p, &r, &l, K0, K1);
#endif
uasm_l_nopage_tlbs(&l, p);
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
uasm_i_nop(&p);
if ((p - handle_tlbs) > FASTPATH_SIZE)
panic("TLB store handler fastpath space exceeded");
uasm_resolve_relocs(relocs, labels);
pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbs));
dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
}
static void __cpuinit build_r4000_tlb_modify_handler(void)
{
u32 *p = handle_tlbm;
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(handle_tlbm, 0, sizeof(handle_tlbm));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
if (m4kc_tlbp_war())
build_tlb_probe_entry(&p);
/* Present and writable bits set, set accessed and dirty bits. */
build_make_write(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
#ifdef CONFIG_HUGETLB_PAGE
/*
* This is the entry point when
* build_r4000_tlbchange_handler_head spots a huge page.
*/
uasm_l_tlb_huge_update(&l, p);
iPTE_LW(&p, K0, K1);
build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
build_tlb_probe_entry(&p);
uasm_i_ori(&p, K0, K0,
_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
build_huge_handler_tail(&p, &r, &l, K0, K1);
#endif
uasm_l_nopage_tlbm(&l, p);
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
uasm_i_nop(&p);
if ((p - handle_tlbm) > FASTPATH_SIZE)
panic("TLB modify handler fastpath space exceeded");
uasm_resolve_relocs(relocs, labels);
pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbm));
dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
}
void __cpuinit build_tlb_refill_handler(void)
{
/*
* The refill handler is generated per-CPU, multi-node systems
* may have local storage for it. The other handlers are only
* needed once.
*/
static int run_once = 0;
switch (current_cpu_type()) {
case CPU_R2000:
case CPU_R3000:
case CPU_R3000A:
case CPU_R3081E:
case CPU_TX3912:
case CPU_TX3922:
case CPU_TX3927:
build_r3000_tlb_refill_handler();
if (!run_once) {
build_r3000_tlb_load_handler();
build_r3000_tlb_store_handler();
build_r3000_tlb_modify_handler();
run_once++;
}
break;
case CPU_R6000:
case CPU_R6000A:
panic("No R6000 TLB refill handler yet");
break;
case CPU_R8000:
panic("No R8000 TLB refill handler yet");
break;
default:
build_r4000_tlb_refill_handler();
if (!run_once) {
build_r4000_tlb_load_handler();
build_r4000_tlb_store_handler();
build_r4000_tlb_modify_handler();
run_once++;
}
}
}
void __cpuinit flush_tlb_handlers(void)
{
local_flush_icache_range((unsigned long)handle_tlbl,
(unsigned long)handle_tlbl + sizeof(handle_tlbl));
local_flush_icache_range((unsigned long)handle_tlbs,
(unsigned long)handle_tlbs + sizeof(handle_tlbs));
local_flush_icache_range((unsigned long)handle_tlbm,
(unsigned long)handle_tlbm + sizeof(handle_tlbm));
}