linux_dsm_epyc7002/Documentation/ABI/testing/sysfs-block-zram

109 lines
3.7 KiB
Plaintext
Raw Normal View History

What: /sys/block/zram<id>/disksize
Date: August 2010
Contact: Nitin Gupta <ngupta@vflare.org>
Description:
The disksize file is read-write and specifies the disk size
which represents the limit on the *uncompressed* worth of data
that can be stored in this disk.
Unit: bytes
What: /sys/block/zram<id>/initstate
Date: August 2010
Contact: Nitin Gupta <ngupta@vflare.org>
Description:
The initstate file is read-only and shows the initialization
state of the device.
What: /sys/block/zram<id>/reset
Date: August 2010
Contact: Nitin Gupta <ngupta@vflare.org>
Description:
The reset file is write-only and allows resetting the
device. The reset operation frees all the memory associated
with this device.
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 05:38:14 +07:00
What: /sys/block/zram<id>/max_comp_streams
Date: February 2014
Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Description:
The max_comp_streams file is read-write and specifies the
number of backend's zcomp_strm compression streams (number of
concurrent compress operations).
What: /sys/block/zram<id>/comp_algorithm
Date: February 2014
Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Description:
The comp_algorithm file is read-write and lets to show
available and selected compression algorithms, change
compression algorithm selection.
What: /sys/block/zram<id>/mem_used_max
Date: August 2014
Contact: Minchan Kim <minchan@kernel.org>
Description:
The mem_used_max file is write-only and is used to reset
the counter of maximum memory zram have consumed to store
compressed data. For resetting the value, you should write
"0". Otherwise, you could see -EINVAL.
Unit: bytes
What: /sys/block/zram<id>/mem_limit
Date: August 2014
Contact: Minchan Kim <minchan@kernel.org>
Description:
The mem_limit file is write-only and specifies the maximum
amount of memory ZRAM can use to store the compressed data.
The limit could be changed in run time and "0" means disable
the limit. No limit is the initial state. Unit: bytes
What: /sys/block/zram<id>/compact
Date: August 2015
Contact: Minchan Kim <minchan@kernel.org>
Description:
The compact file is write-only and trigger compaction for
allocator zrm uses. The allocator moves some objects so that
it could free fragment space.
What: /sys/block/zram<id>/io_stat
Date: August 2015
Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Description:
The io_stat file is read-only and accumulates device's I/O
statistics not accounted by block layer. For example,
failed_reads, failed_writes, etc. File format is similar to
block layer statistics file format.
What: /sys/block/zram<id>/mm_stat
Date: August 2015
Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Description:
The mm_stat file is read-only and represents device's mm
statistics (orig_data_size, compr_data_size, etc.) in a format
similar to block layer statistics file format.
What: /sys/block/zram<id>/debug_stat
Date: July 2016
Contact: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Description:
The debug_stat file is read-only and represents various
device's debugging info useful for kernel developers. Its
format is not documented intentionally and may change
anytime without any notice.
What: /sys/block/zram<id>/backing_dev
Date: June 2017
Contact: Minchan Kim <minchan@kernel.org>
Description:
The backing_dev file is read-write and set up backing
device for zram to write incompressible pages.
For using, user should enable CONFIG_ZRAM_WRITEBACK.
What: /sys/block/zram<id>/idle
Date: November 2018
Contact: Minchan Kim <minchan@kernel.org>
Description:
idle file is write-only and mark zram slot as idle.
If system has mounted debugfs, user can see which slots
are idle via /sys/kernel/debug/zram/zram<id>/block_state