linux_dsm_epyc7002/arch/powerpc/platforms/powernv/pci-ioda.c

3263 lines
86 KiB
C
Raw Normal View History

/*
* Support PCI/PCIe on PowerNV platforms
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/crash_dump.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <linux/memblock.h>
#include <linux/iommu.h>
#include <linux/rculist.h>
#include <linux/sizes.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/xics.h>
#include <asm/debug.h>
#include <asm/firmware.h>
#include <asm/pnv-pci.h>
#include <asm/mmzone.h>
#include <misc/cxl-base.h>
#include "powernv.h"
#include "pci.h"
/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
#define POWERNV_IOMMU_DEFAULT_LEVELS 1
#define POWERNV_IOMMU_MAX_LEVELS 5
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
char pfix[32];
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (pe->flags & PNV_IODA_PE_DEV)
strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
sprintf(pfix, "%04x:%02x ",
pci_domain_nr(pe->pbus), pe->pbus->number);
#ifdef CONFIG_PCI_IOV
else if (pe->flags & PNV_IODA_PE_VF)
sprintf(pfix, "%04x:%02x:%2x.%d",
pci_domain_nr(pe->parent_dev->bus),
(pe->rid & 0xff00) >> 8,
PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
#endif /* CONFIG_PCI_IOV*/
printk("%spci %s: [PE# %.3d] %pV",
level, pfix, pe->pe_number, &vaf);
va_end(args);
}
#define pe_err(pe, fmt, ...) \
pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
#define pe_warn(pe, fmt, ...) \
pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
#define pe_info(pe, fmt, ...) \
pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
static bool pnv_iommu_bypass_disabled __read_mostly;
static int __init iommu_setup(char *str)
{
if (!str)
return -EINVAL;
while (*str) {
if (!strncmp(str, "nobypass", 8)) {
pnv_iommu_bypass_disabled = true;
pr_info("PowerNV: IOMMU bypass window disabled.\n");
break;
}
str += strcspn(str, ",");
if (*str == ',')
str++;
}
return 0;
}
early_param("iommu", iommu_setup);
/*
* stdcix is only supposed to be used in hypervisor real mode as per
* the architecture spec
*/
static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
{
__asm__ __volatile__("stdcix %0,0,%1"
: : "r" (val), "r" (paddr) : "memory");
}
static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
{
return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
}
static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
{
if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
pr_warn("%s: Invalid PE %d on PHB#%x\n",
__func__, pe_no, phb->hose->global_number);
return;
}
if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
pr_debug("%s: PE %d was reserved on PHB#%x\n",
__func__, pe_no, phb->hose->global_number);
phb->ioda.pe_array[pe_no].phb = phb;
phb->ioda.pe_array[pe_no].pe_number = pe_no;
}
static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
{
unsigned long pe;
do {
pe = find_next_zero_bit(phb->ioda.pe_alloc,
phb->ioda.total_pe, 0);
if (pe >= phb->ioda.total_pe)
return IODA_INVALID_PE;
} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
phb->ioda.pe_array[pe].phb = phb;
phb->ioda.pe_array[pe].pe_number = pe;
return pe;
}
static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
{
WARN_ON(phb->ioda.pe_array[pe].pdev);
memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
clear_bit(pe, phb->ioda.pe_alloc);
}
/* The default M64 BAR is shared by all PEs */
static int pnv_ioda2_init_m64(struct pnv_phb *phb)
{
const char *desc;
struct resource *r;
s64 rc;
/* Configure the default M64 BAR */
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
phb->ioda.m64_base,
0, /* unused */
phb->ioda.m64_size);
if (rc != OPAL_SUCCESS) {
desc = "configuring";
goto fail;
}
/* Enable the default M64 BAR */
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
OPAL_ENABLE_M64_SPLIT);
if (rc != OPAL_SUCCESS) {
desc = "enabling";
goto fail;
}
/* Mark the M64 BAR assigned */
set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
/*
* Strip off the segment used by the reserved PE, which is
* expected to be 0 or last one of PE capabicity.
*/
r = &phb->hose->mem_resources[1];
if (phb->ioda.reserved_pe == 0)
r->start += phb->ioda.m64_segsize;
else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
r->end -= phb->ioda.m64_segsize;
else
pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
phb->ioda.reserved_pe);
return 0;
fail:
pr_warn(" Failure %lld %s M64 BAR#%d\n",
rc, desc, phb->ioda.m64_bar_idx);
opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
phb->ioda.m64_bar_idx,
OPAL_DISABLE_M64);
return -EIO;
}
static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
unsigned long *pe_bitmap)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct resource *r;
resource_size_t base, sgsz, start, end;
int segno, i;
base = phb->ioda.m64_base;
sgsz = phb->ioda.m64_segsize;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
r = &pdev->resource[i];
if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
continue;
start = _ALIGN_DOWN(r->start - base, sgsz);
end = _ALIGN_UP(r->end - base, sgsz);
for (segno = start / sgsz; segno < end / sgsz; segno++) {
if (pe_bitmap)
set_bit(segno, pe_bitmap);
else
pnv_ioda_reserve_pe(phb, segno);
}
}
}
static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
unsigned long *pe_bitmap,
bool all)
{
struct pci_dev *pdev;
list_for_each_entry(pdev, &bus->devices, bus_list) {
pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
if (all && pdev->subordinate)
pnv_ioda2_reserve_m64_pe(pdev->subordinate,
pe_bitmap, all);
}
}
static int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *master_pe, *pe;
unsigned long size, *pe_alloc;
int i;
/* Root bus shouldn't use M64 */
if (pci_is_root_bus(bus))
return IODA_INVALID_PE;
/* Allocate bitmap */
size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
pe_alloc = kzalloc(size, GFP_KERNEL);
if (!pe_alloc) {
pr_warn("%s: Out of memory !\n",
__func__);
return IODA_INVALID_PE;
}
/* Figure out reserved PE numbers by the PE */
pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
/*
* the current bus might not own M64 window and that's all
* contributed by its child buses. For the case, we needn't
* pick M64 dependent PE#.
*/
if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
kfree(pe_alloc);
return IODA_INVALID_PE;
}
/*
* Figure out the master PE and put all slave PEs to master
* PE's list to form compound PE.
*/
master_pe = NULL;
i = -1;
while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
phb->ioda.total_pe) {
pe = &phb->ioda.pe_array[i];
if (!master_pe) {
pe->flags |= PNV_IODA_PE_MASTER;
INIT_LIST_HEAD(&pe->slaves);
master_pe = pe;
} else {
pe->flags |= PNV_IODA_PE_SLAVE;
pe->master = master_pe;
list_add_tail(&pe->list, &master_pe->slaves);
}
}
kfree(pe_alloc);
return master_pe->pe_number;
}
static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
{
struct pci_controller *hose = phb->hose;
struct device_node *dn = hose->dn;
struct resource *res;
const u32 *r;
u64 pci_addr;
/* FIXME: Support M64 for P7IOC */
if (phb->type != PNV_PHB_IODA2) {
pr_info(" Not support M64 window\n");
return;
}
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
pr_info(" Firmware too old to support M64 window\n");
return;
}
r = of_get_property(dn, "ibm,opal-m64-window", NULL);
if (!r) {
pr_info(" No <ibm,opal-m64-window> on %s\n",
dn->full_name);
return;
}
res = &hose->mem_resources[1];
res->name = dn->full_name;
res->start = of_translate_address(dn, r + 2);
res->end = res->start + of_read_number(r + 4, 2) - 1;
res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
pci_addr = of_read_number(r, 2);
hose->mem_offset[1] = res->start - pci_addr;
phb->ioda.m64_size = resource_size(res);
phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
phb->ioda.m64_base = pci_addr;
pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
res->start, res->end, pci_addr);
/* Use last M64 BAR to cover M64 window */
phb->ioda.m64_bar_idx = 15;
phb->init_m64 = pnv_ioda2_init_m64;
phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
}
static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
{
struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
struct pnv_ioda_pe *slave;
s64 rc;
/* Fetch master PE */
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
return;
pe_no = pe->pe_number;
}
/* Freeze master PE */
rc = opal_pci_eeh_freeze_set(phb->opal_id,
pe_no,
OPAL_EEH_ACTION_SET_FREEZE_ALL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number, pe_no);
return;
}
/* Freeze slave PEs */
if (!(pe->flags & PNV_IODA_PE_MASTER))
return;
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_set(phb->opal_id,
slave->pe_number,
OPAL_EEH_ACTION_SET_FREEZE_ALL);
if (rc != OPAL_SUCCESS)
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number,
slave->pe_number);
}
}
static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
{
struct pnv_ioda_pe *pe, *slave;
s64 rc;
/* Find master PE */
pe = &phb->ioda.pe_array[pe_no];
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
pe_no = pe->pe_number;
}
/* Clear frozen state for master PE */
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
__func__, rc, opt, phb->hose->global_number, pe_no);
return -EIO;
}
if (!(pe->flags & PNV_IODA_PE_MASTER))
return 0;
/* Clear frozen state for slave PEs */
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_clear(phb->opal_id,
slave->pe_number,
opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
__func__, rc, opt, phb->hose->global_number,
slave->pe_number);
return -EIO;
}
}
return 0;
}
static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
{
struct pnv_ioda_pe *slave, *pe;
u8 fstate, state;
__be16 pcierr;
s64 rc;
/* Sanity check on PE number */
if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
return OPAL_EEH_STOPPED_PERM_UNAVAIL;
/*
* Fetch the master PE and the PE instance might be
* not initialized yet.
*/
pe = &phb->ioda.pe_array[pe_no];
if (pe->flags & PNV_IODA_PE_SLAVE) {
pe = pe->master;
WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
pe_no = pe->pe_number;
}
/* Check the master PE */
rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
&state, &pcierr, NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting "
"PHB#%x-PE#%x state\n",
__func__, rc,
phb->hose->global_number, pe_no);
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
}
/* Check the slave PE */
if (!(pe->flags & PNV_IODA_PE_MASTER))
return state;
list_for_each_entry(slave, &pe->slaves, list) {
rc = opal_pci_eeh_freeze_status(phb->opal_id,
slave->pe_number,
&fstate,
&pcierr,
NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting "
"PHB#%x-PE#%x state\n",
__func__, rc,
phb->hose->global_number, slave->pe_number);
return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
}
/*
* Override the result based on the ascending
* priority.
*/
if (fstate > state)
state = fstate;
}
return state;
}
/* Currently those 2 are only used when MSIs are enabled, this will change
* but in the meantime, we need to protect them to avoid warnings
*/
#ifdef CONFIG_PCI_MSI
static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(dev);
if (!pdn)
return NULL;
if (pdn->pe_number == IODA_INVALID_PE)
return NULL;
return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */
static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
struct pnv_ioda_pe *parent,
struct pnv_ioda_pe *child,
bool is_add)
{
const char *desc = is_add ? "adding" : "removing";
uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
OPAL_REMOVE_PE_FROM_DOMAIN;
struct pnv_ioda_pe *slave;
long rc;
/* Parent PE affects child PE */
rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
child->pe_number, op);
if (rc != OPAL_SUCCESS) {
pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
rc, desc);
return -ENXIO;
}
if (!(child->flags & PNV_IODA_PE_MASTER))
return 0;
/* Compound case: parent PE affects slave PEs */
list_for_each_entry(slave, &child->slaves, list) {
rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
slave->pe_number, op);
if (rc != OPAL_SUCCESS) {
pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
rc, desc);
return -ENXIO;
}
}
return 0;
}
static int pnv_ioda_set_peltv(struct pnv_phb *phb,
struct pnv_ioda_pe *pe,
bool is_add)
{
struct pnv_ioda_pe *slave;
struct pci_dev *pdev = NULL;
int ret;
/*
* Clear PE frozen state. If it's master PE, we need
* clear slave PE frozen state as well.
*/
if (is_add) {
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
if (pe->flags & PNV_IODA_PE_MASTER) {
list_for_each_entry(slave, &pe->slaves, list)
opal_pci_eeh_freeze_clear(phb->opal_id,
slave->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
}
}
/*
* Associate PE in PELT. We need add the PE into the
* corresponding PELT-V as well. Otherwise, the error
* originated from the PE might contribute to other
* PEs.
*/
ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
if (ret)
return ret;
/* For compound PEs, any one affects all of them */
if (pe->flags & PNV_IODA_PE_MASTER) {
list_for_each_entry(slave, &pe->slaves, list) {
ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
if (ret)
return ret;
}
}
if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
pdev = pe->pbus->self;
else if (pe->flags & PNV_IODA_PE_DEV)
pdev = pe->pdev->bus->self;
#ifdef CONFIG_PCI_IOV
else if (pe->flags & PNV_IODA_PE_VF)
pdev = pe->parent_dev;
#endif /* CONFIG_PCI_IOV */
while (pdev) {
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *parent;
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
parent = &phb->ioda.pe_array[pdn->pe_number];
ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
if (ret)
return ret;
}
pdev = pdev->bus->self;
}
return 0;
}
#ifdef CONFIG_PCI_IOV
static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
int64_t rc;
long rid_end, rid;
/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
if (pe->pbus) {
int count;
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
parent = pe->pbus->self;
if (pe->flags & PNV_IODA_PE_BUS_ALL)
count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
else
count = 1;
switch(count) {
case 1: bcomp = OpalPciBusAll; break;
case 2: bcomp = OpalPciBus7Bits; break;
case 4: bcomp = OpalPciBus6Bits; break;
case 8: bcomp = OpalPciBus5Bits; break;
case 16: bcomp = OpalPciBus4Bits; break;
case 32: bcomp = OpalPciBus3Bits; break;
default:
dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
count);
/* Do an exact match only */
bcomp = OpalPciBusAll;
}
rid_end = pe->rid + (count << 8);
} else {
if (pe->flags & PNV_IODA_PE_VF)
parent = pe->parent_dev;
else
parent = pe->pdev->bus->self;
bcomp = OpalPciBusAll;
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
rid_end = pe->rid + 1;
}
/* Clear the reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
phb->ioda.pe_rmap[rid] = 0;
/* Release from all parents PELT-V */
while (parent) {
struct pci_dn *pdn = pci_get_pdn(parent);
if (pdn && pdn->pe_number != IODA_INVALID_PE) {
rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
/* XXX What to do in case of error ? */
}
parent = parent->bus->self;
}
opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
/* Disassociate PE in PELT */
rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
if (rc)
pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
if (rc)
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
pe->pbus = NULL;
pe->pdev = NULL;
pe->parent_dev = NULL;
return 0;
}
#endif /* CONFIG_PCI_IOV */
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
long rc, rid_end, rid;
/* Bus validation ? */
if (pe->pbus) {
int count;
dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
parent = pe->pbus->self;
if (pe->flags & PNV_IODA_PE_BUS_ALL)
count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
else
count = 1;
switch(count) {
case 1: bcomp = OpalPciBusAll; break;
case 2: bcomp = OpalPciBus7Bits; break;
case 4: bcomp = OpalPciBus6Bits; break;
case 8: bcomp = OpalPciBus5Bits; break;
case 16: bcomp = OpalPciBus4Bits; break;
case 32: bcomp = OpalPciBus3Bits; break;
default:
dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
count);
/* Do an exact match only */
bcomp = OpalPciBusAll;
}
rid_end = pe->rid + (count << 8);
} else {
#ifdef CONFIG_PCI_IOV
if (pe->flags & PNV_IODA_PE_VF)
parent = pe->parent_dev;
else
#endif /* CONFIG_PCI_IOV */
parent = pe->pdev->bus->self;
bcomp = OpalPciBusAll;
dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
rid_end = pe->rid + 1;
}
/*
* Associate PE in PELT. We need add the PE into the
* corresponding PELT-V as well. Otherwise, the error
* originated from the PE might contribute to other
* PEs.
*/
rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
bcomp, dcomp, fcomp, OPAL_MAP_PE);
if (rc) {
pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
return -ENXIO;
}
/* Configure PELTV */
pnv_ioda_set_peltv(phb, pe, true);
/* Setup reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
phb->ioda.pe_rmap[rid] = pe->pe_number;
/* Setup one MVTs on IODA1 */
if (phb->type != PNV_PHB_IODA1) {
pe->mve_number = 0;
goto out;
}
pe->mve_number = pe->pe_number;
rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
if (rc != OPAL_SUCCESS) {
pe_err(pe, "OPAL error %ld setting up MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
} else {
rc = opal_pci_set_mve_enable(phb->opal_id,
pe->mve_number, OPAL_ENABLE_MVE);
if (rc) {
pe_err(pe, "OPAL error %ld enabling MVE %d\n",
rc, pe->mve_number);
pe->mve_number = -1;
}
}
out:
return 0;
}
static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
struct pnv_ioda_pe *lpe;
list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
if (lpe->dma_weight < pe->dma_weight) {
list_add_tail(&pe->dma_link, &lpe->dma_link);
return;
}
}
list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
}
static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
{
/* This is quite simplistic. The "base" weight of a device
* is 10. 0 means no DMA is to be accounted for it.
*/
/* If it's a bridge, no DMA */
if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
return 0;
/* Reduce the weight of slow USB controllers */
if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
dev->class == PCI_CLASS_SERIAL_USB_EHCI)
return 3;
/* Increase the weight of RAID (includes Obsidian) */
if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
return 15;
/* Default */
return 10;
}
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
struct pci_dn *pdn = pci_get_pdn(dev);
int i;
struct resource *res, res2;
resource_size_t size;
u16 num_vfs;
if (!dev->is_physfn)
return -EINVAL;
/*
* "offset" is in VFs. The M64 windows are sized so that when they
* are segmented, each segment is the same size as the IOV BAR.
* Each segment is in a separate PE, and the high order bits of the
* address are the PE number. Therefore, each VF's BAR is in a
* separate PE, and changing the IOV BAR start address changes the
* range of PEs the VFs are in.
*/
num_vfs = pdn->num_vfs;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
if (!pnv_pci_is_mem_pref_64(res->flags))
continue;
/*
* The actual IOV BAR range is determined by the start address
* and the actual size for num_vfs VFs BAR. This check is to
* make sure that after shifting, the range will not overlap
* with another device.
*/
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2.flags = res->flags;
res2.start = res->start + (size * offset);
res2.end = res2.start + (size * num_vfs) - 1;
if (res2.end > res->end) {
dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
i, &res2, res, num_vfs, offset);
return -EBUSY;
}
}
/*
* After doing so, there would be a "hole" in the /proc/iomem when
* offset is a positive value. It looks like the device return some
* mmio back to the system, which actually no one could use it.
*/
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
if (!pnv_pci_is_mem_pref_64(res->flags))
continue;
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2 = *res;
res->start += size * offset;
dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
i, &res2, res, (offset > 0) ? "En" : "Dis",
num_vfs, offset);
pci_update_resource(dev, i + PCI_IOV_RESOURCES);
}
return 0;
}
#endif /* CONFIG_PCI_IOV */
#if 0
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(dev);
struct pnv_ioda_pe *pe;
int pe_num;
if (!pdn) {
pr_err("%s: Device tree node not associated properly\n",
pci_name(dev));
return NULL;
}
if (pdn->pe_number != IODA_INVALID_PE)
return NULL;
/* PE#0 has been pre-set */
if (dev->bus->number == 0)
pe_num = 0;
else
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available, disabling device\n",
pci_name(dev));
return NULL;
}
/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
* pointer in the PE data structure, both should be destroyed at the
* same time. However, this needs to be looked at more closely again
* once we actually start removing things (Hotplug, SR-IOV, ...)
*
* At some point we want to remove the PDN completely anyways
*/
pe = &phb->ioda.pe_array[pe_num];
pci_dev_get(dev);
pdn->pcidev = dev;
pdn->pe_number = pe_num;
pe->pdev = dev;
pe->pbus = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = dev->bus->number << 8 | pdn->devfn;
pe_info(pe, "Associated device to PE\n");
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pdn->pe_number = IODA_INVALID_PE;
pe->pdev = NULL;
pci_dev_put(dev);
return NULL;
}
/* Assign a DMA weight to the device */
pe->dma_weight = pnv_ioda_dma_weight(dev);
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
return pe;
}
#endif /* Useful for SRIOV case */
static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
struct pci_dn *pdn = pci_get_pdn(dev);
if (pdn == NULL) {
pr_warn("%s: No device node associated with device !\n",
pci_name(dev));
continue;
}
pdn->pe_number = pe->pe_number;
pe->dma_weight += pnv_ioda_dma_weight(dev);
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
pnv_ioda_setup_same_PE(dev->subordinate, pe);
}
}
/*
* There're 2 types of PCI bus sensitive PEs: One that is compromised of
* single PCI bus. Another one that contains the primary PCI bus and its
* subordinate PCI devices and buses. The second type of PE is normally
* orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
*/
static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
{
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pe;
int pe_num = IODA_INVALID_PE;
/* Check if PE is determined by M64 */
if (phb->pick_m64_pe)
pe_num = phb->pick_m64_pe(bus, all);
/* The PE number isn't pinned by M64 */
if (pe_num == IODA_INVALID_PE)
pe_num = pnv_ioda_alloc_pe(phb);
if (pe_num == IODA_INVALID_PE) {
pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
__func__, pci_domain_nr(bus), bus->number);
return;
}
pe = &phb->ioda.pe_array[pe_num];
pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
pe->pbus = bus;
pe->pdev = NULL;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = bus->busn_res.start << 8;
pe->dma_weight = 0;
if (all)
pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
bus->busn_res.start, bus->busn_res.end, pe_num);
else
pe_info(pe, "Secondary bus %d associated with PE#%d\n",
bus->busn_res.start, pe_num);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pe->pbus = NULL;
return;
}
/* Associate it with all child devices */
pnv_ioda_setup_same_PE(bus, pe);
/* Put PE to the list */
list_add_tail(&pe->list, &phb->ioda.pe_list);
/* Account for one DMA PE if at least one DMA capable device exist
* below the bridge
*/
if (pe->dma_weight != 0) {
phb->ioda.dma_weight += pe->dma_weight;
phb->ioda.dma_pe_count++;
}
/* Link the PE */
pnv_ioda_link_pe_by_weight(phb, pe);
}
static void pnv_ioda_setup_PEs(struct pci_bus *bus)
{
struct pci_dev *dev;
pnv_ioda_setup_bus_PE(bus, false);
list_for_each_entry(dev, &bus->devices, bus_list) {
if (dev->subordinate) {
if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
pnv_ioda_setup_bus_PE(dev->subordinate, true);
else
pnv_ioda_setup_PEs(dev->subordinate);
}
}
}
/*
* Configure PEs so that the downstream PCI buses and devices
* could have their associated PE#. Unfortunately, we didn't
* figure out the way to identify the PLX bridge yet. So we
* simply put the PCI bus and the subordinate behind the root
* port to PE# here. The game rule here is expected to be changed
* as soon as we can detected PLX bridge correctly.
*/
static void pnv_pci_ioda_setup_PEs(void)
{
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
/* M64 layout might affect PE allocation */
if (phb->reserve_m64_pe)
phb->reserve_m64_pe(hose->bus, NULL, true);
pnv_ioda_setup_PEs(hose->bus);
}
}
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
{
struct pci_bus *bus;
struct pci_controller *hose;
struct pnv_phb *phb;
struct pci_dn *pdn;
int i, j;
bus = pdev->bus;
hose = pci_bus_to_host(bus);
phb = hose->private_data;
pdn = pci_get_pdn(pdev);
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
for (j = 0; j < M64_PER_IOV; j++) {
if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
continue;
opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
pdn->m64_wins[i][j] = IODA_INVALID_M64;
}
return 0;
}
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
{
struct pci_bus *bus;
struct pci_controller *hose;
struct pnv_phb *phb;
struct pci_dn *pdn;
unsigned int win;
struct resource *res;
int i, j;
int64_t rc;
int total_vfs;
resource_size_t size, start;
int pe_num;
int vf_groups;
int vf_per_group;
bus = pdev->bus;
hose = pci_bus_to_host(bus);
phb = hose->private_data;
pdn = pci_get_pdn(pdev);
total_vfs = pci_sriov_get_totalvfs(pdev);
/* Initialize the m64_wins to IODA_INVALID_M64 */
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
for (j = 0; j < M64_PER_IOV; j++)
pdn->m64_wins[i][j] = IODA_INVALID_M64;
if (pdn->m64_per_iov == M64_PER_IOV) {
vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
} else {
vf_groups = 1;
vf_per_group = 1;
}
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
if (!pnv_pci_is_mem_pref_64(res->flags))
continue;
for (j = 0; j < vf_groups; j++) {
do {
win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
phb->ioda.m64_bar_idx + 1, 0);
if (win >= phb->ioda.m64_bar_idx + 1)
goto m64_failed;
} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
pdn->m64_wins[i][j] = win;
if (pdn->m64_per_iov == M64_PER_IOV) {
size = pci_iov_resource_size(pdev,
PCI_IOV_RESOURCES + i);
size = size * vf_per_group;
start = res->start + size * j;
} else {
size = resource_size(res);
start = res->start;
}
/* Map the M64 here */
if (pdn->m64_per_iov == M64_PER_IOV) {
pe_num = pdn->offset + j;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe_num, OPAL_M64_WINDOW_TYPE,
pdn->m64_wins[i][j], 0);
}
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
pdn->m64_wins[i][j],
start,
0, /* unused */
size);
if (rc != OPAL_SUCCESS) {
dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
win, rc);
goto m64_failed;
}
if (pdn->m64_per_iov == M64_PER_IOV)
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
else
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
if (rc != OPAL_SUCCESS) {
dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
win, rc);
goto m64_failed;
}
}
}
return 0;
m64_failed:
pnv_pci_vf_release_m64(pdev);
return -EBUSY;
}
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
int num);
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
{
struct iommu_table *tbl;
int64_t rc;
powerpc/spapr: vfio: Replace iommu_table with iommu_table_group Modern IBM POWERPC systems support multiple (currently two) TCE tables per IOMMU group (a.k.a. PE). This adds a iommu_table_group container for TCE tables. Right now just one table is supported. This defines iommu_table_group struct which stores pointers to iommu_group and iommu_table(s). This replaces iommu_table with iommu_table_group where iommu_table was used to identify a group: - iommu_register_group(); - iommudata of generic iommu_group; This removes @data from iommu_table as it_table_group provides same access to pnv_ioda_pe. For IODA, instead of embedding iommu_table, the new iommu_table_group keeps pointers to those. The iommu_table structs are allocated dynamically. For P5IOC2, both iommu_table_group and iommu_table are embedded into PE struct. As there is no EEH and SRIOV support for P5IOC2, iommu_free_table() should not be called on iommu_table struct pointers so we can keep it embedded in pnv_phb::p5ioc2. For pSeries, this replaces multiple calls of kzalloc_node() with a new iommu_pseries_alloc_group() helper and stores the table group struct pointer into the pci_dn struct. For release, a iommu_table_free_group() helper is added. This moves iommu_table struct allocation from SR-IOV code to the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized. This change is here because those lines had to be changed anyway. This should cause no behavioural change. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:08 +07:00
tbl = pe->table_group.tables[0];
rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
if (rc)
pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
pnv_pci_ioda2_set_bypass(pe, false);
if (pe->table_group.group) {
iommu_group_put(pe->table_group.group);
BUG_ON(pe->table_group.group);
}
pnv_pci_ioda2_table_free_pages(tbl);
iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
}
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
struct pci_bus *bus;
struct pci_controller *hose;
struct pnv_phb *phb;
struct pnv_ioda_pe *pe, *pe_n;
struct pci_dn *pdn;
u16 vf_index;
int64_t rc;
bus = pdev->bus;
hose = pci_bus_to_host(bus);
phb = hose->private_data;
pdn = pci_get_pdn(pdev);
if (!pdev->is_physfn)
return;
if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
int vf_group;
int vf_per_group;
int vf_index1;
vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
for (vf_index = vf_group * vf_per_group;
vf_index < (vf_group + 1) * vf_per_group &&
vf_index < num_vfs;
vf_index++)
for (vf_index1 = vf_group * vf_per_group;
vf_index1 < (vf_group + 1) * vf_per_group &&
vf_index1 < num_vfs;
vf_index1++){
rc = opal_pci_set_peltv(phb->opal_id,
pdn->offset + vf_index,
pdn->offset + vf_index1,
OPAL_REMOVE_PE_FROM_DOMAIN);
if (rc)
dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
__func__,
pdn->offset + vf_index1, rc);
}
}
list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
if (pe->parent_dev != pdev)
continue;
pnv_pci_ioda2_release_dma_pe(pdev, pe);
/* Remove from list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_del(&pe->list);
mutex_unlock(&phb->ioda.pe_list_mutex);
pnv_ioda_deconfigure_pe(phb, pe);
pnv_ioda_free_pe(phb, pe->pe_number);
}
}
void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
struct pci_bus *bus;
struct pci_controller *hose;
struct pnv_phb *phb;
struct pci_dn *pdn;
struct pci_sriov *iov;
u16 num_vfs;
bus = pdev->bus;
hose = pci_bus_to_host(bus);
phb = hose->private_data;
pdn = pci_get_pdn(pdev);
iov = pdev->sriov;
num_vfs = pdn->num_vfs;
/* Release VF PEs */
pnv_ioda_release_vf_PE(pdev, num_vfs);
if (phb->type == PNV_PHB_IODA2) {
if (pdn->m64_per_iov == 1)
pnv_pci_vf_resource_shift(pdev, -pdn->offset);
/* Release M64 windows */
pnv_pci_vf_release_m64(pdev);
/* Release PE numbers */
bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
pdn->offset = 0;
}
}
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe);
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
struct pci_bus *bus;
struct pci_controller *hose;
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
int pe_num;
u16 vf_index;
struct pci_dn *pdn;
int64_t rc;
bus = pdev->bus;
hose = pci_bus_to_host(bus);
phb = hose->private_data;
pdn = pci_get_pdn(pdev);
if (!pdev->is_physfn)
return;
/* Reserve PE for each VF */
for (vf_index = 0; vf_index < num_vfs; vf_index++) {
pe_num = pdn->offset + vf_index;
pe = &phb->ioda.pe_array[pe_num];
pe->pe_number = pe_num;
pe->phb = phb;
pe->flags = PNV_IODA_PE_VF;
pe->pbus = NULL;
pe->parent_dev = pdev;
pe->tce32_seg = -1;
pe->mve_number = -1;
pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
pci_iov_virtfn_devfn(pdev, vf_index);
pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
hose->global_number, pdev->bus->number,
PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
if (pe_num)
pnv_ioda_free_pe(phb, pe_num);
pe->pdev = NULL;
continue;
}
/* Put PE to the list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_add_tail(&pe->list, &phb->ioda.pe_list);
mutex_unlock(&phb->ioda.pe_list_mutex);
pnv_pci_ioda2_setup_dma_pe(phb, pe);
}
if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
int vf_group;
int vf_per_group;
int vf_index1;
vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
for (vf_index = vf_group * vf_per_group;
vf_index < (vf_group + 1) * vf_per_group &&
vf_index < num_vfs;
vf_index++) {
for (vf_index1 = vf_group * vf_per_group;
vf_index1 < (vf_group + 1) * vf_per_group &&
vf_index1 < num_vfs;
vf_index1++) {
rc = opal_pci_set_peltv(phb->opal_id,
pdn->offset + vf_index,
pdn->offset + vf_index1,
OPAL_ADD_PE_TO_DOMAIN);
if (rc)
dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
__func__,
pdn->offset + vf_index1, rc);
}
}
}
}
}
int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
struct pci_bus *bus;
struct pci_controller *hose;
struct pnv_phb *phb;
struct pci_dn *pdn;
int ret;
bus = pdev->bus;
hose = pci_bus_to_host(bus);
phb = hose->private_data;
pdn = pci_get_pdn(pdev);
if (phb->type == PNV_PHB_IODA2) {
/* Calculate available PE for required VFs */
mutex_lock(&phb->ioda.pe_alloc_mutex);
pdn->offset = bitmap_find_next_zero_area(
phb->ioda.pe_alloc, phb->ioda.total_pe,
0, num_vfs, 0);
if (pdn->offset >= phb->ioda.total_pe) {
mutex_unlock(&phb->ioda.pe_alloc_mutex);
dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
pdn->offset = 0;
return -EBUSY;
}
bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
pdn->num_vfs = num_vfs;
mutex_unlock(&phb->ioda.pe_alloc_mutex);
/* Assign M64 window accordingly */
ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
if (ret) {
dev_info(&pdev->dev, "Not enough M64 window resources\n");
goto m64_failed;
}
/*
* When using one M64 BAR to map one IOV BAR, we need to shift
* the IOV BAR according to the PE# allocated to the VFs.
* Otherwise, the PE# for the VF will conflict with others.
*/
if (pdn->m64_per_iov == 1) {
ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
if (ret)
goto m64_failed;
}
}
/* Setup VF PEs */
pnv_ioda_setup_vf_PE(pdev, num_vfs);
return 0;
m64_failed:
bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
pdn->offset = 0;
return ret;
}
int pcibios_sriov_disable(struct pci_dev *pdev)
{
pnv_pci_sriov_disable(pdev);
/* Release PCI data */
remove_dev_pci_data(pdev);
return 0;
}
int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
/* Allocate PCI data */
add_dev_pci_data(pdev);
pnv_pci_sriov_enable(pdev, num_vfs);
return 0;
}
#endif /* CONFIG_PCI_IOV */
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
/*
* The function can be called while the PE#
* hasn't been assigned. Do nothing for the
* case.
*/
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return;
pe = &phb->ioda.pe_array[pdn->pe_number];
WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
set_dma_offset(&pdev->dev, pe->tce_bypass_base);
powerpc/spapr: vfio: Replace iommu_table with iommu_table_group Modern IBM POWERPC systems support multiple (currently two) TCE tables per IOMMU group (a.k.a. PE). This adds a iommu_table_group container for TCE tables. Right now just one table is supported. This defines iommu_table_group struct which stores pointers to iommu_group and iommu_table(s). This replaces iommu_table with iommu_table_group where iommu_table was used to identify a group: - iommu_register_group(); - iommudata of generic iommu_group; This removes @data from iommu_table as it_table_group provides same access to pnv_ioda_pe. For IODA, instead of embedding iommu_table, the new iommu_table_group keeps pointers to those. The iommu_table structs are allocated dynamically. For P5IOC2, both iommu_table_group and iommu_table are embedded into PE struct. As there is no EEH and SRIOV support for P5IOC2, iommu_free_table() should not be called on iommu_table struct pointers so we can keep it embedded in pnv_phb::p5ioc2. For pSeries, this replaces multiple calls of kzalloc_node() with a new iommu_pseries_alloc_group() helper and stores the table group struct pointer into the pci_dn struct. For release, a iommu_table_free_group() helper is added. This moves iommu_table struct allocation from SR-IOV code to the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized. This change is here because those lines had to be changed anyway. This should cause no behavioural change. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:08 +07:00
set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
/*
* Note: iommu_add_device() will fail here as
* for physical PE: the device is already added by now;
* for virtual PE: sysfs entries are not ready yet and
* tce_iommu_bus_notifier will add the device to a group later.
*/
}
powerpc/powernv: Move dma_set_mask() from pnv_phb to pci_controller_ops Previously, dma_set_mask() on powernv was convoluted: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), ppc_md.dma_set_mask() exists, so call it. 2) On powernv, that function pointer is pnv_dma_set_mask(). In pnv_dma_set_mask(), the device is pci, so call pnv_pci_dma_set_mask(). 3) In pnv_pci_dma_set_mask(), call pnv_phb->set_dma_mask() if it exists. 4) It only exists in the ioda case, where it points to pnv_pci_ioda_dma_set_mask(), which is the final function. So the call chain is: dma_set_mask() -> pnv_dma_set_mask() -> pnv_pci_dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Both ppc_md and pnv_phb function pointers are used. Rip out the ppc_md call, pnv_dma_set_mask() and pnv_pci_dma_set_mask(). Instead: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), the device is pci, and pci_controller_ops.dma_set_mask() exists, so call pci_controller_ops.dma_set_mask() 2) In the ioda case, that points to pnv_pci_ioda_dma_set_mask(). The new call chain is dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Now only the pci_controller_ops function pointer is used. The fallback paths for p5ioc2 are the same. Previously, pnv_pci_dma_set_mask() would find no pnv_phb->set_dma_mask() function, to it would call __set_dma_mask(). Now, dma_set_mask() finds no ppc_md call or pci_controller_ops call, so it calls __set_dma_mask(). Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-04-28 12:12:07 +07:00
static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
{
powerpc/powernv: Move dma_set_mask() from pnv_phb to pci_controller_ops Previously, dma_set_mask() on powernv was convoluted: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), ppc_md.dma_set_mask() exists, so call it. 2) On powernv, that function pointer is pnv_dma_set_mask(). In pnv_dma_set_mask(), the device is pci, so call pnv_pci_dma_set_mask(). 3) In pnv_pci_dma_set_mask(), call pnv_phb->set_dma_mask() if it exists. 4) It only exists in the ioda case, where it points to pnv_pci_ioda_dma_set_mask(), which is the final function. So the call chain is: dma_set_mask() -> pnv_dma_set_mask() -> pnv_pci_dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Both ppc_md and pnv_phb function pointers are used. Rip out the ppc_md call, pnv_dma_set_mask() and pnv_pci_dma_set_mask(). Instead: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), the device is pci, and pci_controller_ops.dma_set_mask() exists, so call pci_controller_ops.dma_set_mask() 2) In the ioda case, that points to pnv_pci_ioda_dma_set_mask(). The new call chain is dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Now only the pci_controller_ops function pointer is used. The fallback paths for p5ioc2 are the same. Previously, pnv_pci_dma_set_mask() would find no pnv_phb->set_dma_mask() function, to it would call __set_dma_mask(). Now, dma_set_mask() finds no ppc_md call or pci_controller_ops call, so it calls __set_dma_mask(). Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-04-28 12:12:07 +07:00
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
uint64_t top;
bool bypass = false;
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return -ENODEV;;
pe = &phb->ioda.pe_array[pdn->pe_number];
if (pe->tce_bypass_enabled) {
top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
bypass = (dma_mask >= top);
}
if (bypass) {
dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
set_dma_ops(&pdev->dev, &dma_direct_ops);
} else {
dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
set_dma_ops(&pdev->dev, &dma_iommu_ops);
}
*pdev->dev.dma_mask = dma_mask;
return 0;
}
static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
u64 end, mask;
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return 0;
pe = &phb->ioda.pe_array[pdn->pe_number];
if (!pe->tce_bypass_enabled)
return __dma_get_required_mask(&pdev->dev);
end = pe->tce_bypass_base + memblock_end_of_DRAM();
mask = 1ULL << (fls64(end) - 1);
mask += mask - 1;
return mask;
}
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
struct pci_bus *bus)
{
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
powerpc/spapr: vfio: Replace iommu_table with iommu_table_group Modern IBM POWERPC systems support multiple (currently two) TCE tables per IOMMU group (a.k.a. PE). This adds a iommu_table_group container for TCE tables. Right now just one table is supported. This defines iommu_table_group struct which stores pointers to iommu_group and iommu_table(s). This replaces iommu_table with iommu_table_group where iommu_table was used to identify a group: - iommu_register_group(); - iommudata of generic iommu_group; This removes @data from iommu_table as it_table_group provides same access to pnv_ioda_pe. For IODA, instead of embedding iommu_table, the new iommu_table_group keeps pointers to those. The iommu_table structs are allocated dynamically. For P5IOC2, both iommu_table_group and iommu_table are embedded into PE struct. As there is no EEH and SRIOV support for P5IOC2, iommu_free_table() should not be called on iommu_table struct pointers so we can keep it embedded in pnv_phb::p5ioc2. For pSeries, this replaces multiple calls of kzalloc_node() with a new iommu_pseries_alloc_group() helper and stores the table group struct pointer into the pci_dn struct. For release, a iommu_table_free_group() helper is added. This moves iommu_table struct allocation from SR-IOV code to the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized. This change is here because those lines had to be changed anyway. This should cause no behavioural change. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:08 +07:00
set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
set_dma_offset(&dev->dev, pe->tce_bypass_base);
iommu_add_device(&dev->dev);
if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
pnv_ioda_setup_bus_dma(pe, dev->subordinate);
}
}
static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
unsigned long index, unsigned long npages, bool rm)
{
struct iommu_table_group_link *tgl = list_first_entry_or_null(
&tbl->it_group_list, struct iommu_table_group_link,
next);
struct pnv_ioda_pe *pe = container_of(tgl->table_group,
powerpc/spapr: vfio: Replace iommu_table with iommu_table_group Modern IBM POWERPC systems support multiple (currently two) TCE tables per IOMMU group (a.k.a. PE). This adds a iommu_table_group container for TCE tables. Right now just one table is supported. This defines iommu_table_group struct which stores pointers to iommu_group and iommu_table(s). This replaces iommu_table with iommu_table_group where iommu_table was used to identify a group: - iommu_register_group(); - iommudata of generic iommu_group; This removes @data from iommu_table as it_table_group provides same access to pnv_ioda_pe. For IODA, instead of embedding iommu_table, the new iommu_table_group keeps pointers to those. The iommu_table structs are allocated dynamically. For P5IOC2, both iommu_table_group and iommu_table are embedded into PE struct. As there is no EEH and SRIOV support for P5IOC2, iommu_free_table() should not be called on iommu_table struct pointers so we can keep it embedded in pnv_phb::p5ioc2. For pSeries, this replaces multiple calls of kzalloc_node() with a new iommu_pseries_alloc_group() helper and stores the table group struct pointer into the pci_dn struct. For release, a iommu_table_free_group() helper is added. This moves iommu_table struct allocation from SR-IOV code to the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized. This change is here because those lines had to be changed anyway. This should cause no behavioural change. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:08 +07:00
struct pnv_ioda_pe, table_group);
__be64 __iomem *invalidate = rm ?
(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
pe->phb->ioda.tce_inval_reg;
unsigned long start, end, inc;
const unsigned shift = tbl->it_page_shift;
start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
npages - 1);
/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
if (tbl->it_busno) {
start <<= shift;
end <<= shift;
inc = 128ull << shift;
start |= tbl->it_busno;
end |= tbl->it_busno;
} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
/* p7ioc-style invalidation, 2 TCEs per write */
start |= (1ull << 63);
end |= (1ull << 63);
inc = 16;
} else {
/* Default (older HW) */
inc = 128;
}
end |= inc - 1; /* round up end to be different than start */
mb(); /* Ensure above stores are visible */
while (start <= end) {
if (rm)
__raw_rm_writeq(cpu_to_be64(start), invalidate);
else
__raw_writeq(cpu_to_be64(start), invalidate);
start += inc;
}
/*
* The iommu layer will do another mb() for us on build()
* and we don't care on free()
*/
}
static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
long npages, unsigned long uaddr,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
attrs);
if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
return ret;
}
powerpc/iommu/powernv: Release replaced TCE At the moment writing new TCE value to the IOMMU table fails with EBUSY if there is a valid entry already. However PAPR specification allows the guest to write new TCE value without clearing it first. Another problem this patch is addressing is the use of pool locks for external IOMMU users such as VFIO. The pool locks are to protect DMA page allocator rather than entries and since the host kernel does not control what pages are in use, there is no point in pool locks and exchange()+put_page(oldtce) is sufficient to avoid possible races. This adds an exchange() callback to iommu_table_ops which does the same thing as set() plus it returns replaced TCE and DMA direction so the caller can release the pages afterwards. The exchange() receives a physical address unlike set() which receives linear mapping address; and returns a physical address as the clear() does. This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement for a platform to have exchange() implemented in order to support VFIO. This replaces iommu_tce_build() and iommu_clear_tce() with a single iommu_tce_xchg(). This makes sure that TCE permission bits are not set in TCE passed to IOMMU API as those are to be calculated by platform code from DMA direction. This moves SetPageDirty() to the IOMMU code to make it work for both VFIO ioctl interface in in-kernel TCE acceleration (when it becomes available later). Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:15 +07:00
#ifdef CONFIG_IOMMU_API
static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
unsigned long *hpa, enum dma_data_direction *direction)
{
long ret = pnv_tce_xchg(tbl, index, hpa, direction);
if (!ret && (tbl->it_type &
(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
return ret;
}
#endif
static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
long npages)
{
pnv_tce_free(tbl, index, npages);
if (tbl->it_type & TCE_PCI_SWINV_FREE)
pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
}
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
static struct iommu_table_ops pnv_ioda1_iommu_ops = {
.set = pnv_ioda1_tce_build,
powerpc/iommu/powernv: Release replaced TCE At the moment writing new TCE value to the IOMMU table fails with EBUSY if there is a valid entry already. However PAPR specification allows the guest to write new TCE value without clearing it first. Another problem this patch is addressing is the use of pool locks for external IOMMU users such as VFIO. The pool locks are to protect DMA page allocator rather than entries and since the host kernel does not control what pages are in use, there is no point in pool locks and exchange()+put_page(oldtce) is sufficient to avoid possible races. This adds an exchange() callback to iommu_table_ops which does the same thing as set() plus it returns replaced TCE and DMA direction so the caller can release the pages afterwards. The exchange() receives a physical address unlike set() which receives linear mapping address; and returns a physical address as the clear() does. This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement for a platform to have exchange() implemented in order to support VFIO. This replaces iommu_tce_build() and iommu_clear_tce() with a single iommu_tce_xchg(). This makes sure that TCE permission bits are not set in TCE passed to IOMMU API as those are to be calculated by platform code from DMA direction. This moves SetPageDirty() to the IOMMU code to make it work for both VFIO ioctl interface in in-kernel TCE acceleration (when it becomes available later). Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:15 +07:00
#ifdef CONFIG_IOMMU_API
.exchange = pnv_ioda1_tce_xchg,
#endif
.clear = pnv_ioda1_tce_free,
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
.get = pnv_tce_get,
};
static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
{
/* 01xb - invalidate TCEs that match the specified PE# */
unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
struct pnv_phb *phb = pe->phb;
if (!phb->ioda.tce_inval_reg)
return;
mb(); /* Ensure above stores are visible */
__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
}
static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
__be64 __iomem *invalidate, unsigned shift,
unsigned long index, unsigned long npages)
{
unsigned long start, end, inc;
/* We'll invalidate DMA address in PE scope */
start = 0x2ull << 60;
start |= (pe_number & 0xFF);
end = start;
/* Figure out the start, end and step */
start |= (index << shift);
end |= ((index + npages - 1) << shift);
inc = (0x1ull << shift);
mb();
while (start <= end) {
if (rm)
__raw_rm_writeq(cpu_to_be64(start), invalidate);
else
__raw_writeq(cpu_to_be64(start), invalidate);
start += inc;
}
}
static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
unsigned long index, unsigned long npages, bool rm)
{
struct iommu_table_group_link *tgl;
list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
struct pnv_ioda_pe *pe = container_of(tgl->table_group,
struct pnv_ioda_pe, table_group);
__be64 __iomem *invalidate = rm ?
(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
pe->phb->ioda.tce_inval_reg;
pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
invalidate, tbl->it_page_shift,
index, npages);
}
}
static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
long npages, unsigned long uaddr,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
attrs);
if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
return ret;
}
powerpc/iommu/powernv: Release replaced TCE At the moment writing new TCE value to the IOMMU table fails with EBUSY if there is a valid entry already. However PAPR specification allows the guest to write new TCE value without clearing it first. Another problem this patch is addressing is the use of pool locks for external IOMMU users such as VFIO. The pool locks are to protect DMA page allocator rather than entries and since the host kernel does not control what pages are in use, there is no point in pool locks and exchange()+put_page(oldtce) is sufficient to avoid possible races. This adds an exchange() callback to iommu_table_ops which does the same thing as set() plus it returns replaced TCE and DMA direction so the caller can release the pages afterwards. The exchange() receives a physical address unlike set() which receives linear mapping address; and returns a physical address as the clear() does. This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement for a platform to have exchange() implemented in order to support VFIO. This replaces iommu_tce_build() and iommu_clear_tce() with a single iommu_tce_xchg(). This makes sure that TCE permission bits are not set in TCE passed to IOMMU API as those are to be calculated by platform code from DMA direction. This moves SetPageDirty() to the IOMMU code to make it work for both VFIO ioctl interface in in-kernel TCE acceleration (when it becomes available later). Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:15 +07:00
#ifdef CONFIG_IOMMU_API
static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
unsigned long *hpa, enum dma_data_direction *direction)
{
long ret = pnv_tce_xchg(tbl, index, hpa, direction);
if (!ret && (tbl->it_type &
(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
return ret;
}
#endif
static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
long npages)
{
pnv_tce_free(tbl, index, npages);
if (tbl->it_type & TCE_PCI_SWINV_FREE)
pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
}
static void pnv_ioda2_table_free(struct iommu_table *tbl)
{
pnv_pci_ioda2_table_free_pages(tbl);
iommu_free_table(tbl, "pnv");
}
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
static struct iommu_table_ops pnv_ioda2_iommu_ops = {
.set = pnv_ioda2_tce_build,
powerpc/iommu/powernv: Release replaced TCE At the moment writing new TCE value to the IOMMU table fails with EBUSY if there is a valid entry already. However PAPR specification allows the guest to write new TCE value without clearing it first. Another problem this patch is addressing is the use of pool locks for external IOMMU users such as VFIO. The pool locks are to protect DMA page allocator rather than entries and since the host kernel does not control what pages are in use, there is no point in pool locks and exchange()+put_page(oldtce) is sufficient to avoid possible races. This adds an exchange() callback to iommu_table_ops which does the same thing as set() plus it returns replaced TCE and DMA direction so the caller can release the pages afterwards. The exchange() receives a physical address unlike set() which receives linear mapping address; and returns a physical address as the clear() does. This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement for a platform to have exchange() implemented in order to support VFIO. This replaces iommu_tce_build() and iommu_clear_tce() with a single iommu_tce_xchg(). This makes sure that TCE permission bits are not set in TCE passed to IOMMU API as those are to be calculated by platform code from DMA direction. This moves SetPageDirty() to the IOMMU code to make it work for both VFIO ioctl interface in in-kernel TCE acceleration (when it becomes available later). Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:15 +07:00
#ifdef CONFIG_IOMMU_API
.exchange = pnv_ioda2_tce_xchg,
#endif
.clear = pnv_ioda2_tce_free,
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
.get = pnv_tce_get,
.free = pnv_ioda2_table_free,
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
};
static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe, unsigned int base,
unsigned int segs)
{
struct page *tce_mem = NULL;
struct iommu_table *tbl;
unsigned int i;
int64_t rc;
void *addr;
/* XXX FIXME: Handle 64-bit only DMA devices */
/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
/* XXX FIXME: Allocate multi-level tables on PHB3 */
/* We shouldn't already have a 32-bit DMA associated */
if (WARN_ON(pe->tce32_seg >= 0))
return;
tbl = pnv_pci_table_alloc(phb->hose->node);
powerpc/spapr: vfio: Replace iommu_table with iommu_table_group Modern IBM POWERPC systems support multiple (currently two) TCE tables per IOMMU group (a.k.a. PE). This adds a iommu_table_group container for TCE tables. Right now just one table is supported. This defines iommu_table_group struct which stores pointers to iommu_group and iommu_table(s). This replaces iommu_table with iommu_table_group where iommu_table was used to identify a group: - iommu_register_group(); - iommudata of generic iommu_group; This removes @data from iommu_table as it_table_group provides same access to pnv_ioda_pe. For IODA, instead of embedding iommu_table, the new iommu_table_group keeps pointers to those. The iommu_table structs are allocated dynamically. For P5IOC2, both iommu_table_group and iommu_table are embedded into PE struct. As there is no EEH and SRIOV support for P5IOC2, iommu_free_table() should not be called on iommu_table struct pointers so we can keep it embedded in pnv_phb::p5ioc2. For pSeries, this replaces multiple calls of kzalloc_node() with a new iommu_pseries_alloc_group() helper and stores the table group struct pointer into the pci_dn struct. For release, a iommu_table_free_group() helper is added. This moves iommu_table struct allocation from SR-IOV code to the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized. This change is here because those lines had to be changed anyway. This should cause no behavioural change. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:08 +07:00
iommu_register_group(&pe->table_group, phb->hose->global_number,
pe->pe_number);
pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
/* Grab a 32-bit TCE table */
pe->tce32_seg = base;
pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
(base << 28), ((base + segs) << 28) - 1);
/* XXX Currently, we allocate one big contiguous table for the
* TCEs. We only really need one chunk per 256M of TCE space
* (ie per segment) but that's an optimization for later, it
* requires some added smarts with our get/put_tce implementation
*/
tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
get_order(TCE32_TABLE_SIZE * segs));
if (!tce_mem) {
pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
goto fail;
}
addr = page_address(tce_mem);
memset(addr, 0, TCE32_TABLE_SIZE * segs);
/* Configure HW */
for (i = 0; i < segs; i++) {
rc = opal_pci_map_pe_dma_window(phb->opal_id,
pe->pe_number,
base + i, 1,
__pa(addr) + TCE32_TABLE_SIZE * i,
TCE32_TABLE_SIZE, 0x1000);
if (rc) {
pe_err(pe, " Failed to configure 32-bit TCE table,"
" err %ld\n", rc);
goto fail;
}
}
/* Setup linux iommu table */
pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
base << 28, IOMMU_PAGE_SHIFT_4K);
/* OPAL variant of P7IOC SW invalidated TCEs */
if (phb->ioda.tce_inval_reg)
tbl->it_type |= (TCE_PCI_SWINV_CREATE |
TCE_PCI_SWINV_FREE |
TCE_PCI_SWINV_PAIR);
powerpc/iommu: Move tce_xxx callbacks from ppc_md to iommu_table This adds a iommu_table_ops struct and puts pointer to it into the iommu_table struct. This moves tce_build/tce_free/tce_get/tce_flush callbacks from ppc_md to the new struct where they really belong to. This adds the requirement for @it_ops to be initialized before calling iommu_init_table() to make sure that we do not leave any IOMMU table with iommu_table_ops uninitialized. This is not a parameter of iommu_init_table() though as there will be cases when iommu_init_table() will not be called on TCE tables, for example - VFIO. This does s/tce_build/set/, s/tce_free/clear/ and removes "tce_" redundant prefixes. This removes tce_xxx_rm handlers from ppc_md but does not add them to iommu_table_ops as this will be done later if we decide to support TCE hypercalls in real mode. This removes _vm callbacks as only virtual mode is supported by now so this also removes @rm parameter. For pSeries, this always uses tce_buildmulti_pSeriesLP/ tce_buildmulti_pSeriesLP. This changes multi callback to fall back to tce_build_pSeriesLP/tce_free_pSeriesLP if FW_FEATURE_MULTITCE is not present. The reason for this is we still have to support "multitce=off" boot parameter in disable_multitce() and we do not want to walk through all IOMMU tables in the system and replace "multi" callbacks with single ones. For powernv, this defines _ops per PHB type which are P5IOC2/IODA1/IODA2. This makes the callbacks for them public. Later patches will extend callbacks for IODA1/2. No change in behaviour is expected. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:06 +07:00
tbl->it_ops = &pnv_ioda1_iommu_ops;
pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
iommu_init_table(tbl, phb->hose->node);
if (pe->flags & PNV_IODA_PE_DEV) {
/*
* Setting table base here only for carrying iommu_group
* further down to let iommu_add_device() do the job.
* pnv_pci_ioda_dma_dev_setup will override it later anyway.
*/
set_iommu_table_base(&pe->pdev->dev, tbl);
iommu_add_device(&pe->pdev->dev);
} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
pnv_ioda_setup_bus_dma(pe, pe->pbus);
return;
fail:
/* XXX Failure: Try to fallback to 64-bit only ? */
if (pe->tce32_seg >= 0)
pe->tce32_seg = -1;
if (tce_mem)
__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
if (tbl) {
pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
iommu_free_table(tbl, "pnv");
}
}
static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
int num, struct iommu_table *tbl)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pnv_phb *phb = pe->phb;
int64_t rc;
const unsigned long size = tbl->it_indirect_levels ?
tbl->it_level_size : tbl->it_size;
const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
const __u64 win_size = tbl->it_size << tbl->it_page_shift;
pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
start_addr, start_addr + win_size - 1,
IOMMU_PAGE_SIZE(tbl));
/*
* Map TCE table through TVT. The TVE index is the PE number
* shifted by 1 bit for 32-bits DMA space.
*/
rc = opal_pci_map_pe_dma_window(phb->opal_id,
pe->pe_number,
(pe->pe_number << 1) + num,
tbl->it_indirect_levels + 1,
__pa(tbl->it_base),
size << 3,
IOMMU_PAGE_SIZE(tbl));
if (rc) {
pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
return rc;
}
pnv_pci_link_table_and_group(phb->hose->node, num,
tbl, &pe->table_group);
pnv_pci_ioda2_tce_invalidate_entire(pe);
return 0;
}
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
{
uint16_t window_id = (pe->pe_number << 1 ) + 1;
int64_t rc;
pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
if (enable) {
phys_addr_t top = memblock_end_of_DRAM();
top = roundup_pow_of_two(top);
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
pe->pe_number,
window_id,
pe->tce_bypass_base,
top);
} else {
rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
pe->pe_number,
window_id,
pe->tce_bypass_base,
0);
}
if (rc)
pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
else
pe->tce_bypass_enabled = enable;
}
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
__u32 page_shift, __u64 window_size, __u32 levels,
struct iommu_table *tbl);
static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
int num, __u32 page_shift, __u64 window_size, __u32 levels,
struct iommu_table **ptbl)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
int nid = pe->phb->hose->node;
__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
long ret;
struct iommu_table *tbl;
tbl = pnv_pci_table_alloc(nid);
if (!tbl)
return -ENOMEM;
ret = pnv_pci_ioda2_table_alloc_pages(nid,
bus_offset, page_shift, window_size,
levels, tbl);
if (ret) {
iommu_free_table(tbl, "pnv");
return ret;
}
tbl->it_ops = &pnv_ioda2_iommu_ops;
if (pe->phb->ioda.tce_inval_reg)
tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
*ptbl = tbl;
return 0;
}
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
{
struct iommu_table *tbl = NULL;
long rc;
/*
* crashkernel= specifies the kdump kernel's maximum memory at
* some offset and there is no guaranteed the result is a power
* of 2, which will cause errors later.
*/
const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
powerpc/powernv/pci-ioda: fix 32-bit TCE table init in kdump kernel When attempting to kdump with the 4.2 kernel, we see for each PCI device: pci 0003:01 : [PE# 000] Assign DMA32 space pci 0003:01 : [PE# 000] Setting up 32-bit TCE table at 0..80000000 pci 0003:01 : [PE# 000] Failed to create 32-bit TCE table, err -22 PCI: Domain 0004 has 8 available 32-bit DMA segments PCI: 4 PE# for a total weight of 70 pci 0004:01 : [PE# 002] Assign DMA32 space pci 0004:01 : [PE# 002] Setting up 32-bit TCE table at 0..80000000 pci 0004:01 : [PE# 002] Failed to create 32-bit TCE table, err -22 pci 0004:0d : [PE# 005] Assign DMA32 space pci 0004:0d : [PE# 005] Setting up 32-bit TCE table at 0..80000000 pci 0004:0d : [PE# 005] Failed to create 32-bit TCE table, err -22 pci 0004:0e : [PE# 006] Assign DMA32 space pci 0004:0e : [PE# 006] Setting up 32-bit TCE table at 0..80000000 pci 0004:0e : [PE# 006] Failed to create 32-bit TCE table, err -22 pci 0004:10 : [PE# 008] Assign DMA32 space pci 0004:10 : [PE# 008] Setting up 32-bit TCE table at 0..80000000 pci 0004:10 : [PE# 008] Failed to create 32-bit TCE table, err -22 and eventually the kdump kernel fails to boot as none of the PCI devices (including the disk controller) are successfully initialized. The EINVAL response is because the DMA window (the 2GB base window) is larger than the kdump kernel's reserved memory (crashkernel=, in this case specified to be 1024M). The check in question, if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) is a valid sanity check for pnv_pci_ioda2_table_alloc_pages(), so adjust the caller to pass in a smaller window size if our maximum memory value is smaller than the DMA window. After this change, the PCI devices successfully set up the 32-bit TCE table and kdump succeeds. The problem was seen on a Firestone machine originally. Fixes: aca6913f5551 ("powerpc/powernv/ioda2: Introduce helpers to allocate TCE pages") Cc: stable@vger.kernel.org # 4.2 Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru> [mpe: Coding style pedantry, use u64, change the indentation] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-09-02 22:39:28 +07:00
/*
* In memory constrained environments, e.g. kdump kernel, the
* DMA window can be larger than available memory, which will
* cause errors later.
*/
const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
powerpc/powernv/pci-ioda: fix 32-bit TCE table init in kdump kernel When attempting to kdump with the 4.2 kernel, we see for each PCI device: pci 0003:01 : [PE# 000] Assign DMA32 space pci 0003:01 : [PE# 000] Setting up 32-bit TCE table at 0..80000000 pci 0003:01 : [PE# 000] Failed to create 32-bit TCE table, err -22 PCI: Domain 0004 has 8 available 32-bit DMA segments PCI: 4 PE# for a total weight of 70 pci 0004:01 : [PE# 002] Assign DMA32 space pci 0004:01 : [PE# 002] Setting up 32-bit TCE table at 0..80000000 pci 0004:01 : [PE# 002] Failed to create 32-bit TCE table, err -22 pci 0004:0d : [PE# 005] Assign DMA32 space pci 0004:0d : [PE# 005] Setting up 32-bit TCE table at 0..80000000 pci 0004:0d : [PE# 005] Failed to create 32-bit TCE table, err -22 pci 0004:0e : [PE# 006] Assign DMA32 space pci 0004:0e : [PE# 006] Setting up 32-bit TCE table at 0..80000000 pci 0004:0e : [PE# 006] Failed to create 32-bit TCE table, err -22 pci 0004:10 : [PE# 008] Assign DMA32 space pci 0004:10 : [PE# 008] Setting up 32-bit TCE table at 0..80000000 pci 0004:10 : [PE# 008] Failed to create 32-bit TCE table, err -22 and eventually the kdump kernel fails to boot as none of the PCI devices (including the disk controller) are successfully initialized. The EINVAL response is because the DMA window (the 2GB base window) is larger than the kdump kernel's reserved memory (crashkernel=, in this case specified to be 1024M). The check in question, if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) is a valid sanity check for pnv_pci_ioda2_table_alloc_pages(), so adjust the caller to pass in a smaller window size if our maximum memory value is smaller than the DMA window. After this change, the PCI devices successfully set up the 32-bit TCE table and kdump succeeds. The problem was seen on a Firestone machine originally. Fixes: aca6913f5551 ("powerpc/powernv/ioda2: Introduce helpers to allocate TCE pages") Cc: stable@vger.kernel.org # 4.2 Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru> [mpe: Coding style pedantry, use u64, change the indentation] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-09-02 22:39:28 +07:00
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
IOMMU_PAGE_SHIFT_4K,
powerpc/powernv/pci-ioda: fix 32-bit TCE table init in kdump kernel When attempting to kdump with the 4.2 kernel, we see for each PCI device: pci 0003:01 : [PE# 000] Assign DMA32 space pci 0003:01 : [PE# 000] Setting up 32-bit TCE table at 0..80000000 pci 0003:01 : [PE# 000] Failed to create 32-bit TCE table, err -22 PCI: Domain 0004 has 8 available 32-bit DMA segments PCI: 4 PE# for a total weight of 70 pci 0004:01 : [PE# 002] Assign DMA32 space pci 0004:01 : [PE# 002] Setting up 32-bit TCE table at 0..80000000 pci 0004:01 : [PE# 002] Failed to create 32-bit TCE table, err -22 pci 0004:0d : [PE# 005] Assign DMA32 space pci 0004:0d : [PE# 005] Setting up 32-bit TCE table at 0..80000000 pci 0004:0d : [PE# 005] Failed to create 32-bit TCE table, err -22 pci 0004:0e : [PE# 006] Assign DMA32 space pci 0004:0e : [PE# 006] Setting up 32-bit TCE table at 0..80000000 pci 0004:0e : [PE# 006] Failed to create 32-bit TCE table, err -22 pci 0004:10 : [PE# 008] Assign DMA32 space pci 0004:10 : [PE# 008] Setting up 32-bit TCE table at 0..80000000 pci 0004:10 : [PE# 008] Failed to create 32-bit TCE table, err -22 and eventually the kdump kernel fails to boot as none of the PCI devices (including the disk controller) are successfully initialized. The EINVAL response is because the DMA window (the 2GB base window) is larger than the kdump kernel's reserved memory (crashkernel=, in this case specified to be 1024M). The check in question, if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) is a valid sanity check for pnv_pci_ioda2_table_alloc_pages(), so adjust the caller to pass in a smaller window size if our maximum memory value is smaller than the DMA window. After this change, the PCI devices successfully set up the 32-bit TCE table and kdump succeeds. The problem was seen on a Firestone machine originally. Fixes: aca6913f5551 ("powerpc/powernv/ioda2: Introduce helpers to allocate TCE pages") Cc: stable@vger.kernel.org # 4.2 Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru> [mpe: Coding style pedantry, use u64, change the indentation] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-09-02 22:39:28 +07:00
window_size,
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
if (rc) {
pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
rc);
return rc;
}
iommu_init_table(tbl, pe->phb->hose->node);
rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
if (rc) {
pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
rc);
pnv_ioda2_table_free(tbl);
return rc;
}
if (!pnv_iommu_bypass_disabled)
pnv_pci_ioda2_set_bypass(pe, true);
/* OPAL variant of PHB3 invalidated TCEs */
if (pe->phb->ioda.tce_inval_reg)
tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
/*
* Setting table base here only for carrying iommu_group
* further down to let iommu_add_device() do the job.
* pnv_pci_ioda_dma_dev_setup will override it later anyway.
*/
if (pe->flags & PNV_IODA_PE_DEV)
set_iommu_table_base(&pe->pdev->dev, tbl);
return 0;
}
#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
int num)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
struct pnv_phb *phb = pe->phb;
long ret;
pe_info(pe, "Removing DMA window #%d\n", num);
ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
(pe->pe_number << 1) + num,
0/* levels */, 0/* table address */,
0/* table size */, 0/* page size */);
if (ret)
pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
else
pnv_pci_ioda2_tce_invalidate_entire(pe);
pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
return ret;
}
#endif
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
#ifdef CONFIG_IOMMU_API
static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
__u64 window_size, __u32 levels)
{
unsigned long bytes = 0;
const unsigned window_shift = ilog2(window_size);
unsigned entries_shift = window_shift - page_shift;
unsigned table_shift = entries_shift + 3;
unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
unsigned long direct_table_size;
if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
(window_size > memory_hotplug_max()) ||
!is_power_of_2(window_size))
return 0;
/* Calculate a direct table size from window_size and levels */
entries_shift = (entries_shift + levels - 1) / levels;
table_shift = entries_shift + 3;
table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
direct_table_size = 1UL << table_shift;
for ( ; levels; --levels) {
bytes += _ALIGN_UP(tce_table_size, direct_table_size);
tce_table_size /= direct_table_size;
tce_table_size <<= 3;
tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
}
return bytes;
}
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
{
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
struct iommu_table *tbl = pe->table_group.tables[0];
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
pnv_pci_ioda2_set_bypass(pe, false);
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
pnv_pci_ioda2_unset_window(&pe->table_group, 0);
pnv_ioda2_table_free(tbl);
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
}
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
{
struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
table_group);
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
pnv_pci_ioda2_setup_default_config(pe);
}
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
.get_table_size = pnv_pci_ioda2_get_table_size,
.create_table = pnv_pci_ioda2_create_table,
.set_window = pnv_pci_ioda2_set_window,
.unset_window = pnv_pci_ioda2_unset_window,
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
.take_ownership = pnv_ioda2_take_ownership,
.release_ownership = pnv_ioda2_release_ownership,
};
#endif
static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
{
const __be64 *swinvp;
/* OPAL variant of PHB3 invalidated TCEs */
swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
if (!swinvp)
return;
phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
}
static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
unsigned levels, unsigned long limit,
unsigned long *current_offset, unsigned long *total_allocated)
{
struct page *tce_mem = NULL;
__be64 *addr, *tmp;
unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
unsigned long allocated = 1UL << (order + PAGE_SHIFT);
unsigned entries = 1UL << (shift - 3);
long i;
tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
if (!tce_mem) {
pr_err("Failed to allocate a TCE memory, order=%d\n", order);
return NULL;
}
addr = page_address(tce_mem);
memset(addr, 0, allocated);
*total_allocated += allocated;
--levels;
if (!levels) {
*current_offset += allocated;
return addr;
}
for (i = 0; i < entries; ++i) {
tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
levels, limit, current_offset, total_allocated);
if (!tmp)
break;
addr[i] = cpu_to_be64(__pa(tmp) |
TCE_PCI_READ | TCE_PCI_WRITE);
if (*current_offset >= limit)
break;
}
return addr;
}
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
unsigned long size, unsigned level);
static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
__u32 page_shift, __u64 window_size, __u32 levels,
struct iommu_table *tbl)
{
void *addr;
unsigned long offset = 0, level_shift, total_allocated = 0;
const unsigned window_shift = ilog2(window_size);
unsigned entries_shift = window_shift - page_shift;
unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
const unsigned long tce_table_size = 1UL << table_shift;
if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
return -EINVAL;
if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
return -EINVAL;
/* Adjust direct table size from window_size and levels */
entries_shift = (entries_shift + levels - 1) / levels;
level_shift = entries_shift + 3;
level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
/* Allocate TCE table */
addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
levels, tce_table_size, &offset, &total_allocated);
/* addr==NULL means that the first level allocation failed */
if (!addr)
return -ENOMEM;
/*
* First level was allocated but some lower level failed as
* we did not allocate as much as we wanted,
* release partially allocated table.
*/
if (offset < tce_table_size) {
pnv_pci_ioda2_table_do_free_pages(addr,
1ULL << (level_shift - 3), levels - 1);
return -ENOMEM;
}
/* Setup linux iommu table */
pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
page_shift);
tbl->it_level_size = 1ULL << (level_shift - 3);
tbl->it_indirect_levels = levels - 1;
tbl->it_allocated_size = total_allocated;
pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
window_size, tce_table_size, bus_offset);
return 0;
}
static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
unsigned long size, unsigned level)
{
const unsigned long addr_ul = (unsigned long) addr &
~(TCE_PCI_READ | TCE_PCI_WRITE);
if (level) {
long i;
u64 *tmp = (u64 *) addr_ul;
for (i = 0; i < size; ++i) {
unsigned long hpa = be64_to_cpu(tmp[i]);
if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
continue;
pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
level - 1);
}
}
free_pages(addr_ul, get_order(size << 3));
}
static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
{
const unsigned long size = tbl->it_indirect_levels ?
tbl->it_level_size : tbl->it_size;
if (!tbl->it_size)
return;
pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
tbl->it_indirect_levels);
}
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
int64_t rc;
/* We shouldn't already have a 32-bit DMA associated */
if (WARN_ON(pe->tce32_seg >= 0))
return;
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control This adds tce_iommu_take_ownership() and tce_iommu_release_ownership which call in a loop iommu_take_ownership()/iommu_release_ownership() for every table on the group. As there is just one now, no change in behaviour is expected. At the moment the iommu_table struct has a set_bypass() which enables/ disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code which calls this callback when external IOMMU users such as VFIO are about to get over a PHB. The set_bypass() callback is not really an iommu_table function but IOMMU/PE function. This introduces a iommu_table_group_ops struct and adds take_ownership()/release_ownership() callbacks to it which are called when an external user takes/releases control over the IOMMU. This replaces set_bypass() with ownership callbacks as it is not necessarily just bypass enabling, it can be something else/more so let's give it more generic name. The callbacks is implemented for IODA2 only. Other platforms (P5IOC2, IODA1) will use the old iommu_take_ownership/iommu_release_ownership API. The following patches will replace iommu_take_ownership/ iommu_release_ownership calls in IODA2 with full IOMMU table release/ create. As we here and touching bypass control, this removes pnv_pci_ioda2_setup_bypass_pe() as it does not do much more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base initialization to pnv_pci_ioda2_setup_dma_pe. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:10 +07:00
/* TVE #1 is selected by PCI address bit 59 */
pe->tce_bypass_base = 1ull << 59;
powerpc/spapr: vfio: Replace iommu_table with iommu_table_group Modern IBM POWERPC systems support multiple (currently two) TCE tables per IOMMU group (a.k.a. PE). This adds a iommu_table_group container for TCE tables. Right now just one table is supported. This defines iommu_table_group struct which stores pointers to iommu_group and iommu_table(s). This replaces iommu_table with iommu_table_group where iommu_table was used to identify a group: - iommu_register_group(); - iommudata of generic iommu_group; This removes @data from iommu_table as it_table_group provides same access to pnv_ioda_pe. For IODA, instead of embedding iommu_table, the new iommu_table_group keeps pointers to those. The iommu_table structs are allocated dynamically. For P5IOC2, both iommu_table_group and iommu_table are embedded into PE struct. As there is no EEH and SRIOV support for P5IOC2, iommu_free_table() should not be called on iommu_table struct pointers so we can keep it embedded in pnv_phb::p5ioc2. For pSeries, this replaces multiple calls of kzalloc_node() with a new iommu_pseries_alloc_group() helper and stores the table group struct pointer into the pci_dn struct. For release, a iommu_table_free_group() helper is added. This moves iommu_table struct allocation from SR-IOV code to the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized. This change is here because those lines had to be changed anyway. This should cause no behavioural change. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:08 +07:00
iommu_register_group(&pe->table_group, phb->hose->global_number,
pe->pe_number);
/* The PE will reserve all possible 32-bits space */
pe->tce32_seg = 0;
pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
phb->ioda.m32_pci_base);
/* Setup linux iommu table */
pe->table_group.tce32_start = 0;
pe->table_group.tce32_size = phb->ioda.m32_pci_base;
pe->table_group.max_dynamic_windows_supported =
IOMMU_TABLE_GROUP_MAX_TABLES;
pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
#ifdef CONFIG_IOMMU_API
pe->table_group.ops = &pnv_pci_ioda2_ops;
#endif
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
rc = pnv_pci_ioda2_setup_default_config(pe);
if (rc) {
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
if (pe->tce32_seg >= 0)
pe->tce32_seg = -1;
return;
}
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
if (pe->flags & PNV_IODA_PE_DEV)
iommu_add_device(&pe->pdev->dev);
vfio: powerpc/spapr: powerpc/powernv/ioda2: Use DMA windows API in ownership control Before the IOMMU user (VFIO) would take control over the IOMMU table belonging to a specific IOMMU group. This approach did not allow sharing tables between IOMMU groups attached to the same container. This introduces a new IOMMU ownership flavour when the user can not just control the existing IOMMU table but remove/create tables on demand. If an IOMMU implements take/release_ownership() callbacks, this lets the user have full control over the IOMMU group. When the ownership is taken, the platform code removes all the windows so the caller must create them. Before returning the ownership back to the platform code, VFIO unprograms and removes all the tables it created. This changes IODA2's onwership handler to remove the existing table rather than manipulating with the existing one. From now on, iommu_take_ownership() and iommu_release_ownership() are only called from the vfio_iommu_spapr_tce driver. Old-style ownership is still supported allowing VFIO to run on older P5IOC2 and IODA IO controllers. No change in userspace-visible behaviour is expected. Since it recreates TCE tables on each ownership change, related kernel traces will appear more often. This adds a pnv_pci_ioda2_setup_default_config() which is called when PE is being configured at boot time and when the ownership is passed from VFIO to the platform code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> [aw: for the vfio related changes] Acked-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-05 13:35:23 +07:00
else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
pnv_ioda_setup_bus_dma(pe, pe->pbus);
}
static void pnv_ioda_setup_dma(struct pnv_phb *phb)
{
struct pci_controller *hose = phb->hose;
unsigned int residual, remaining, segs, tw, base;
struct pnv_ioda_pe *pe;
/* If we have more PE# than segments available, hand out one
* per PE until we run out and let the rest fail. If not,
* then we assign at least one segment per PE, plus more based
* on the amount of devices under that PE
*/
if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
residual = 0;
else
residual = phb->ioda.tce32_count -
phb->ioda.dma_pe_count;
pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
hose->global_number, phb->ioda.tce32_count);
pr_info("PCI: %d PE# for a total weight of %d\n",
phb->ioda.dma_pe_count, phb->ioda.dma_weight);
pnv_pci_ioda_setup_opal_tce_kill(phb);
/* Walk our PE list and configure their DMA segments, hand them
* out one base segment plus any residual segments based on
* weight
*/
remaining = phb->ioda.tce32_count;
tw = phb->ioda.dma_weight;
base = 0;
list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
if (!pe->dma_weight)
continue;
if (!remaining) {
pe_warn(pe, "No DMA32 resources available\n");
continue;
}
segs = 1;
if (residual) {
segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
if (segs > remaining)
segs = remaining;
}
/*
* For IODA2 compliant PHB3, we needn't care about the weight.
* The all available 32-bits DMA space will be assigned to
* the specific PE.
*/
if (phb->type == PNV_PHB_IODA1) {
pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
pe->dma_weight, segs);
pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
} else {
pe_info(pe, "Assign DMA32 space\n");
segs = 0;
pnv_pci_ioda2_setup_dma_pe(phb, pe);
}
remaining -= segs;
base += segs;
}
}
#ifdef CONFIG_PCI_MSI
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
struct irq_chip *chip = irq_data_get_irq_chip(d);
struct pnv_phb *phb = container_of(chip, struct pnv_phb,
ioda.irq_chip);
int64_t rc;
rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
WARN_ON_ONCE(rc);
icp_native_eoi(d);
}
static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
{
struct irq_data *idata;
struct irq_chip *ichip;
if (phb->type != PNV_PHB_IODA2)
return;
if (!phb->ioda.irq_chip_init) {
/*
* First time we setup an MSI IRQ, we need to setup the
* corresponding IRQ chip to route correctly.
*/
idata = irq_get_irq_data(virq);
ichip = irq_data_get_irq_chip(idata);
phb->ioda.irq_chip_init = 1;
phb->ioda.irq_chip = *ichip;
phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
}
irq_set_chip(virq, &phb->ioda.irq_chip);
}
#ifdef CONFIG_CXL_BASE
cxl: Fix device_node reference counting When unbinding and rebinding the driver on a system with a card in PHB0, this error condition is reached after a few attempts: ERROR: Bad of_node_put() on /pciex@3fffe40000000 CPU: 0 PID: 3040 Comm: bash Not tainted 3.18.0-rc3-12545-g3627ffe #152 Call Trace: [c000000721acb5c0] [c00000000086ef94] .dump_stack+0x84/0xb0 (unreliable) [c000000721acb640] [c00000000073a0a8] .of_node_release+0xd8/0xe0 [c000000721acb6d0] [c00000000044bc44] .kobject_release+0x74/0xe0 [c000000721acb760] [c0000000007394fc] .of_node_put+0x1c/0x30 [c000000721acb7d0] [c000000000545cd8] .cxl_probe+0x1a98/0x1d50 [c000000721acb900] [c0000000004845a0] .local_pci_probe+0x40/0xc0 [c000000721acb980] [c000000000484998] .pci_device_probe+0x128/0x170 [c000000721acba30] [c00000000052400c] .driver_probe_device+0xac/0x2a0 [c000000721acbad0] [c000000000522468] .bind_store+0x108/0x160 [c000000721acbb70] [c000000000521448] .drv_attr_store+0x38/0x60 [c000000721acbbe0] [c000000000293840] .sysfs_kf_write+0x60/0xa0 [c000000721acbc50] [c000000000292500] .kernfs_fop_write+0x140/0x1d0 [c000000721acbcf0] [c000000000208648] .vfs_write+0xd8/0x260 [c000000721acbd90] [c000000000208b18] .SyS_write+0x58/0x100 [c000000721acbe30] [c000000000009258] syscall_exit+0x0/0x98 We are missing a call to of_node_get(). pnv_pci_to_phb_node() should call of_node_get() otherwise np's reference count isn't incremented and it might go away. Rename pnv_pci_to_phb_node() to pnv_pci_get_phb_node() so it's clear it calls of_node_get(). Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com> Acked-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-01-29 09:16:04 +07:00
struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
cxl: Fix device_node reference counting When unbinding and rebinding the driver on a system with a card in PHB0, this error condition is reached after a few attempts: ERROR: Bad of_node_put() on /pciex@3fffe40000000 CPU: 0 PID: 3040 Comm: bash Not tainted 3.18.0-rc3-12545-g3627ffe #152 Call Trace: [c000000721acb5c0] [c00000000086ef94] .dump_stack+0x84/0xb0 (unreliable) [c000000721acb640] [c00000000073a0a8] .of_node_release+0xd8/0xe0 [c000000721acb6d0] [c00000000044bc44] .kobject_release+0x74/0xe0 [c000000721acb760] [c0000000007394fc] .of_node_put+0x1c/0x30 [c000000721acb7d0] [c000000000545cd8] .cxl_probe+0x1a98/0x1d50 [c000000721acb900] [c0000000004845a0] .local_pci_probe+0x40/0xc0 [c000000721acb980] [c000000000484998] .pci_device_probe+0x128/0x170 [c000000721acba30] [c00000000052400c] .driver_probe_device+0xac/0x2a0 [c000000721acbad0] [c000000000522468] .bind_store+0x108/0x160 [c000000721acbb70] [c000000000521448] .drv_attr_store+0x38/0x60 [c000000721acbbe0] [c000000000293840] .sysfs_kf_write+0x60/0xa0 [c000000721acbc50] [c000000000292500] .kernfs_fop_write+0x140/0x1d0 [c000000721acbcf0] [c000000000208648] .vfs_write+0xd8/0x260 [c000000721acbd90] [c000000000208b18] .SyS_write+0x58/0x100 [c000000721acbe30] [c000000000009258] syscall_exit+0x0/0x98 We are missing a call to of_node_get(). pnv_pci_to_phb_node() should call of_node_get() otherwise np's reference count isn't incremented and it might go away. Rename pnv_pci_to_phb_node() to pnv_pci_get_phb_node() so it's clear it calls of_node_get(). Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com> Acked-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-01-29 09:16:04 +07:00
return of_node_get(hose->dn);
}
cxl: Fix device_node reference counting When unbinding and rebinding the driver on a system with a card in PHB0, this error condition is reached after a few attempts: ERROR: Bad of_node_put() on /pciex@3fffe40000000 CPU: 0 PID: 3040 Comm: bash Not tainted 3.18.0-rc3-12545-g3627ffe #152 Call Trace: [c000000721acb5c0] [c00000000086ef94] .dump_stack+0x84/0xb0 (unreliable) [c000000721acb640] [c00000000073a0a8] .of_node_release+0xd8/0xe0 [c000000721acb6d0] [c00000000044bc44] .kobject_release+0x74/0xe0 [c000000721acb760] [c0000000007394fc] .of_node_put+0x1c/0x30 [c000000721acb7d0] [c000000000545cd8] .cxl_probe+0x1a98/0x1d50 [c000000721acb900] [c0000000004845a0] .local_pci_probe+0x40/0xc0 [c000000721acb980] [c000000000484998] .pci_device_probe+0x128/0x170 [c000000721acba30] [c00000000052400c] .driver_probe_device+0xac/0x2a0 [c000000721acbad0] [c000000000522468] .bind_store+0x108/0x160 [c000000721acbb70] [c000000000521448] .drv_attr_store+0x38/0x60 [c000000721acbbe0] [c000000000293840] .sysfs_kf_write+0x60/0xa0 [c000000721acbc50] [c000000000292500] .kernfs_fop_write+0x140/0x1d0 [c000000721acbcf0] [c000000000208648] .vfs_write+0xd8/0x260 [c000000721acbd90] [c000000000208b18] .SyS_write+0x58/0x100 [c000000721acbe30] [c000000000009258] syscall_exit+0x0/0x98 We are missing a call to of_node_get(). pnv_pci_to_phb_node() should call of_node_get() otherwise np's reference count isn't incremented and it might go away. Rename pnv_pci_to_phb_node() to pnv_pci_get_phb_node() so it's clear it calls of_node_get(). Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com> Acked-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-01-29 09:16:04 +07:00
EXPORT_SYMBOL(pnv_pci_get_phb_node);
int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pe;
int rc;
pe = pnv_ioda_get_pe(dev);
if (!pe)
return -ENODEV;
pe_info(pe, "Switching PHB to CXL\n");
rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
if (rc)
dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
return rc;
}
EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
/* Find PHB for cxl dev and allocate MSI hwirqs?
* Returns the absolute hardware IRQ number
*/
int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
if (hwirq < 0) {
dev_warn(&dev->dev, "Failed to find a free MSI\n");
return -ENOSPC;
}
return phb->msi_base + hwirq;
}
EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
}
EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
int i, hwirq;
for (i = 1; i < CXL_IRQ_RANGES; i++) {
if (!irqs->range[i])
continue;
pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
i, irqs->offset[i],
irqs->range[i]);
hwirq = irqs->offset[i] - phb->msi_base;
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
irqs->range[i]);
}
}
EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
struct pci_dev *dev, int num)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
int i, hwirq, try;
memset(irqs, 0, sizeof(struct cxl_irq_ranges));
/* 0 is reserved for the multiplexed PSL DSI interrupt */
for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
try = num;
while (try) {
hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
if (hwirq >= 0)
break;
try /= 2;
}
if (!try)
goto fail;
irqs->offset[i] = phb->msi_base + hwirq;
irqs->range[i] = try;
pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
i, irqs->offset[i], irqs->range[i]);
num -= try;
}
if (num)
goto fail;
return 0;
fail:
pnv_cxl_release_hwirq_ranges(irqs, dev);
return -ENOSPC;
}
EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
int pnv_cxl_get_irq_count(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
return phb->msi_bmp.irq_count;
}
EXPORT_SYMBOL(pnv_cxl_get_irq_count);
int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
unsigned int virq)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
unsigned int xive_num = hwirq - phb->msi_base;
struct pnv_ioda_pe *pe;
int rc;
if (!(pe = pnv_ioda_get_pe(dev)))
return -ENODEV;
/* Assign XIVE to PE */
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
if (rc) {
pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
"hwirq 0x%x XIVE 0x%x PE\n",
pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
return -EIO;
}
set_msi_irq_chip(phb, virq);
return 0;
}
EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
#endif
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
unsigned int hwirq, unsigned int virq,
unsigned int is_64, struct msi_msg *msg)
{
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
unsigned int xive_num = hwirq - phb->msi_base;
__be32 data;
int rc;
/* No PE assigned ? bail out ... no MSI for you ! */
if (pe == NULL)
return -ENXIO;
/* Check if we have an MVE */
if (pe->mve_number < 0)
return -ENXIO;
/* Force 32-bit MSI on some broken devices */
if (dev->no_64bit_msi)
is_64 = 0;
/* Assign XIVE to PE */
rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
if (rc) {
pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
pci_name(dev), rc, xive_num);
return -EIO;
}
if (is_64) {
__be64 addr64;
rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
&addr64, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = be64_to_cpu(addr64) >> 32;
msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
} else {
__be32 addr32;
rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
&addr32, &data);
if (rc) {
pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
pci_name(dev), rc);
return -EIO;
}
msg->address_hi = 0;
msg->address_lo = be32_to_cpu(addr32);
}
msg->data = be32_to_cpu(data);
set_msi_irq_chip(phb, virq);
pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
" address=%x_%08x data=%x PE# %d\n",
pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
msg->address_hi, msg->address_lo, data, pe->pe_number);
return 0;
}
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
unsigned int count;
const __be32 *prop = of_get_property(phb->hose->dn,
"ibm,opal-msi-ranges", NULL);
if (!prop) {
/* BML Fallback */
prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
}
if (!prop)
return;
phb->msi_base = be32_to_cpup(prop);
count = be32_to_cpup(prop + 1);
if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
phb->hose->global_number);
return;
}
phb->msi_setup = pnv_pci_ioda_msi_setup;
phb->msi32_support = 1;
pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
count, phb->msi_base);
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */
#ifdef CONFIG_PCI_IOV
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
struct pci_controller *hose;
struct pnv_phb *phb;
struct resource *res;
int i;
resource_size_t size;
struct pci_dn *pdn;
int mul, total_vfs;
if (!pdev->is_physfn || pdev->is_added)
return;
hose = pci_bus_to_host(pdev->bus);
phb = hose->private_data;
pdn = pci_get_pdn(pdev);
pdn->vfs_expanded = 0;
total_vfs = pci_sriov_get_totalvfs(pdev);
pdn->m64_per_iov = 1;
mul = phb->ioda.total_pe;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || res->parent)
continue;
if (!pnv_pci_is_mem_pref_64(res->flags)) {
dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
i, res);
continue;
}
size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
/* bigger than 64M */
if (size > (1 << 26)) {
dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
i, res);
pdn->m64_per_iov = M64_PER_IOV;
mul = roundup_pow_of_two(total_vfs);
break;
}
}
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || res->parent)
continue;
if (!pnv_pci_is_mem_pref_64(res->flags)) {
dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
i, res);
continue;
}
dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
res->end = res->start + size * mul - 1;
dev_dbg(&pdev->dev, " %pR\n", res);
dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
i, res, mul);
}
pdn->vfs_expanded = mul;
}
#endif /* CONFIG_PCI_IOV */
/*
* This function is supposed to be called on basis of PE from top
* to bottom style. So the the I/O or MMIO segment assigned to
* parent PE could be overrided by its child PEs if necessary.
*/
static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = hose->private_data;
struct pci_bus_region region;
struct resource *res;
int i, index;
int rc;
/*
* NOTE: We only care PCI bus based PE for now. For PCI
* device based PE, for example SRIOV sensitive VF should
* be figured out later.
*/
BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
pci_bus_for_each_resource(pe->pbus, res, i) {
if (!res || !res->flags ||
res->start > res->end)
continue;
if (res->flags & IORESOURCE_IO) {
region.start = res->start - phb->ioda.io_pci_base;
region.end = res->end - phb->ioda.io_pci_base;
index = region.start / phb->ioda.io_segsize;
while (index < phb->ioda.total_pe &&
region.start <= region.end) {
phb->ioda.io_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d when mapping IO "
"segment #%d to PE#%d\n",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.io_segsize;
index++;
}
} else if ((res->flags & IORESOURCE_MEM) &&
!pnv_pci_is_mem_pref_64(res->flags)) {
region.start = res->start -
hose->mem_offset[0] -
phb->ioda.m32_pci_base;
region.end = res->end -
hose->mem_offset[0] -
phb->ioda.m32_pci_base;
index = region.start / phb->ioda.m32_segsize;
while (index < phb->ioda.total_pe &&
region.start <= region.end) {
phb->ioda.m32_segmap[index] = pe->pe_number;
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
if (rc != OPAL_SUCCESS) {
pr_err("%s: OPAL error %d when mapping M32 "
"segment#%d to PE#%d",
__func__, rc, index, pe->pe_number);
break;
}
region.start += phb->ioda.m32_segsize;
index++;
}
}
}
}
static void pnv_pci_ioda_setup_seg(void)
{
struct pci_controller *tmp, *hose;
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
pnv_ioda_setup_pe_seg(hose, pe);
}
}
}
static void pnv_pci_ioda_setup_DMA(void)
{
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
pnv_ioda_setup_dma(hose->private_data);
/* Mark the PHB initialization done */
phb = hose->private_data;
phb->initialized = 1;
}
}
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
char name[16];
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
phb = hose->private_data;
sprintf(name, "PCI%04x", hose->global_number);
phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
if (!phb->dbgfs)
pr_warning("%s: Error on creating debugfs on PHB#%x\n",
__func__, hose->global_number);
}
#endif /* CONFIG_DEBUG_FS */
}
static void pnv_pci_ioda_fixup(void)
{
pnv_pci_ioda_setup_PEs();
pnv_pci_ioda_setup_seg();
pnv_pci_ioda_setup_DMA();
pnv_pci_ioda_create_dbgfs();
#ifdef CONFIG_EEH
eeh_init();
eeh_addr_cache_build();
#endif
}
/*
* Returns the alignment for I/O or memory windows for P2P
* bridges. That actually depends on how PEs are segmented.
* For now, we return I/O or M32 segment size for PE sensitive
* P2P bridges. Otherwise, the default values (4KiB for I/O,
* 1MiB for memory) will be returned.
*
* The current PCI bus might be put into one PE, which was
* create against the parent PCI bridge. For that case, we
* needn't enlarge the alignment so that we can save some
* resources.
*/
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
unsigned long type)
{
struct pci_dev *bridge;
struct pci_controller *hose = pci_bus_to_host(bus);
struct pnv_phb *phb = hose->private_data;
int num_pci_bridges = 0;
bridge = bus->self;
while (bridge) {
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
num_pci_bridges++;
if (num_pci_bridges >= 2)
return 1;
}
bridge = bridge->bus->self;
}
/* We fail back to M32 if M64 isn't supported */
if (phb->ioda.m64_segsize &&
pnv_pci_is_mem_pref_64(type))
return phb->ioda.m64_segsize;
if (type & IORESOURCE_MEM)
return phb->ioda.m32_segsize;
return phb->ioda.io_segsize;
}
#ifdef CONFIG_PCI_IOV
static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
int resno)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
resource_size_t align, iov_align;
iov_align = resource_size(&pdev->resource[resno]);
if (iov_align)
return iov_align;
align = pci_iov_resource_size(pdev, resno);
if (pdn->vfs_expanded)
return pdn->vfs_expanded * align;
return align;
}
#endif /* CONFIG_PCI_IOV */
/* Prevent enabling devices for which we couldn't properly
* assign a PE
*/
static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn;
/* The function is probably called while the PEs have
* not be created yet. For example, resource reassignment
* during PCI probe period. We just skip the check if
* PEs isn't ready.
*/
if (!phb->initialized)
return true;
pdn = pci_get_pdn(dev);
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return false;
return true;
}
static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
u32 devfn)
{
return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
}
static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
OPAL_ASSERT_RESET);
}
static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
.dma_dev_setup = pnv_pci_dma_dev_setup,
#ifdef CONFIG_PCI_MSI
.setup_msi_irqs = pnv_setup_msi_irqs,
.teardown_msi_irqs = pnv_teardown_msi_irqs,
#endif
.enable_device_hook = pnv_pci_enable_device_hook,
.window_alignment = pnv_pci_window_alignment,
.reset_secondary_bus = pnv_pci_reset_secondary_bus,
powerpc/powernv: Move dma_set_mask() from pnv_phb to pci_controller_ops Previously, dma_set_mask() on powernv was convoluted: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), ppc_md.dma_set_mask() exists, so call it. 2) On powernv, that function pointer is pnv_dma_set_mask(). In pnv_dma_set_mask(), the device is pci, so call pnv_pci_dma_set_mask(). 3) In pnv_pci_dma_set_mask(), call pnv_phb->set_dma_mask() if it exists. 4) It only exists in the ioda case, where it points to pnv_pci_ioda_dma_set_mask(), which is the final function. So the call chain is: dma_set_mask() -> pnv_dma_set_mask() -> pnv_pci_dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Both ppc_md and pnv_phb function pointers are used. Rip out the ppc_md call, pnv_dma_set_mask() and pnv_pci_dma_set_mask(). Instead: 0) Call dma_set_mask() (a/p/kernel/dma.c) 1) In dma_set_mask(), the device is pci, and pci_controller_ops.dma_set_mask() exists, so call pci_controller_ops.dma_set_mask() 2) In the ioda case, that points to pnv_pci_ioda_dma_set_mask(). The new call chain is dma_set_mask() -> pnv_pci_ioda_dma_set_mask() Now only the pci_controller_ops function pointer is used. The fallback paths for p5ioc2 are the same. Previously, pnv_pci_dma_set_mask() would find no pnv_phb->set_dma_mask() function, to it would call __set_dma_mask(). Now, dma_set_mask() finds no ppc_md call or pci_controller_ops call, so it calls __set_dma_mask(). Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-04-28 12:12:07 +07:00
.dma_set_mask = pnv_pci_ioda_dma_set_mask,
.dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
.shutdown = pnv_pci_ioda_shutdown,
};
static void __init pnv_pci_init_ioda_phb(struct device_node *np,
u64 hub_id, int ioda_type)
{
struct pci_controller *hose;
struct pnv_phb *phb;
unsigned long size, m32map_off, pemap_off, iomap_off = 0;
const __be64 *prop64;
const __be32 *prop32;
int len;
u64 phb_id;
void *aux;
long rc;
pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-phbid\" property !\n");
return;
}
phb_id = be64_to_cpup(prop64);
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
/* Allocate PCI controller */
phb->hose = hose = pcibios_alloc_controller(np);
if (!phb->hose) {
pr_err(" Can't allocate PCI controller for %s\n",
np->full_name);
memblock_free(__pa(phb), sizeof(struct pnv_phb));
return;
}
spin_lock_init(&phb->lock);
prop32 = of_get_property(np, "bus-range", &len);
if (prop32 && len == 8) {
hose->first_busno = be32_to_cpu(prop32[0]);
hose->last_busno = be32_to_cpu(prop32[1]);
} else {
pr_warn(" Broken <bus-range> on %s\n", np->full_name);
hose->first_busno = 0;
hose->last_busno = 0xff;
}
hose->private_data = phb;
phb->hub_id = hub_id;
phb->opal_id = phb_id;
phb->type = ioda_type;
mutex_init(&phb->ioda.pe_alloc_mutex);
/* Detect specific models for error handling */
if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
phb->model = PNV_PHB_MODEL_P7IOC;
else if (of_device_is_compatible(np, "ibm,power8-pciex"))
phb->model = PNV_PHB_MODEL_PHB3;
else
phb->model = PNV_PHB_MODEL_UNKNOWN;
/* Parse 32-bit and IO ranges (if any) */
pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
/* Get registers */
phb->regs = of_iomap(np, 0);
if (phb->regs == NULL)
pr_err(" Failed to map registers !\n");
/* Initialize more IODA stuff */
phb->ioda.total_pe = 1;
prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
if (prop32)
phb->ioda.total_pe = be32_to_cpup(prop32);
prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
if (prop32)
phb->ioda.reserved_pe = be32_to_cpup(prop32);
/* Parse 64-bit MMIO range */
pnv_ioda_parse_m64_window(phb);
phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
/* FW Has already off top 64k of M32 space (MSI space) */
phb->ioda.m32_size += 0x10000;
phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
phb->ioda.io_size = hose->pci_io_size;
phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
m32map_off = size;
size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
if (phb->type == PNV_PHB_IODA1) {
iomap_off = size;
size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
}
pemap_off = size;
size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
aux = memblock_virt_alloc(size, 0);
phb->ioda.pe_alloc = aux;
phb->ioda.m32_segmap = aux + m32map_off;
if (phb->type == PNV_PHB_IODA1)
phb->ioda.io_segmap = aux + iomap_off;
phb->ioda.pe_array = aux + pemap_off;
set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
INIT_LIST_HEAD(&phb->ioda.pe_list);
mutex_init(&phb->ioda.pe_list_mutex);
/* Calculate how many 32-bit TCE segments we have */
phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
#if 0 /* We should really do that ... */
rc = opal_pci_set_phb_mem_window(opal->phb_id,
window_type,
window_num,
starting_real_address,
starting_pci_address,
segment_size);
#endif
pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
phb->ioda.total_pe, phb->ioda.reserved_pe,
phb->ioda.m32_size, phb->ioda.m32_segsize);
if (phb->ioda.m64_size)
pr_info(" M64: 0x%lx [segment=0x%lx]\n",
phb->ioda.m64_size, phb->ioda.m64_segsize);
if (phb->ioda.io_size)
pr_info(" IO: 0x%x [segment=0x%x]\n",
phb->ioda.io_size, phb->ioda.io_segsize);
phb->hose->ops = &pnv_pci_ops;
phb->get_pe_state = pnv_ioda_get_pe_state;
phb->freeze_pe = pnv_ioda_freeze_pe;
phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
/* Setup RID -> PE mapping function */
phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
/* Setup TCEs */
phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
/* Setup MSI support */
pnv_pci_init_ioda_msis(phb);
/*
* We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
* to let the PCI core do resource assignment. It's supposed
* that the PCI core will do correct I/O and MMIO alignment
* for the P2P bridge bars so that each PCI bus (excluding
* the child P2P bridges) can form individual PE.
*/
ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
hose->controller_ops = pnv_pci_ioda_controller_ops;
#ifdef CONFIG_PCI_IOV
ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
#endif
pci_add_flags(PCI_REASSIGN_ALL_RSRC);
/* Reset IODA tables to a clean state */
rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
if (rc)
pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
/* If we're running in kdump kerenl, the previous kerenl never
* shutdown PCI devices correctly. We already got IODA table
* cleaned out. So we have to issue PHB reset to stop all PCI
* transactions from previous kerenl.
*/
if (is_kdump_kernel()) {
pr_info(" Issue PHB reset ...\n");
pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
}
/* Remove M64 resource if we can't configure it successfully */
if (!phb->init_m64 || phb->init_m64(phb))
hose->mem_resources[1].flags = 0;
}
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
{
pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
}
void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
struct device_node *phbn;
const __be64 *prop64;
u64 hub_id;
pr_info("Probing IODA IO-Hub %s\n", np->full_name);
prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
if (!prop64) {
pr_err(" Missing \"ibm,opal-hubid\" property !\n");
return;
}
hub_id = be64_to_cpup(prop64);
pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
/* Count child PHBs */
for_each_child_of_node(np, phbn) {
/* Look for IODA1 PHBs */
if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
}
}