linux_dsm_epyc7002/drivers/gpu/drm/etnaviv/etnaviv_iommu_v2.c

290 lines
7.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2018 Etnaviv Project
*/
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "etnaviv_cmdbuf.h"
#include "etnaviv_gpu.h"
#include "etnaviv_mmu.h"
#include "state.xml.h"
#include "state_hi.xml.h"
#define MMUv2_PTE_PRESENT BIT(0)
#define MMUv2_PTE_EXCEPTION BIT(1)
#define MMUv2_PTE_WRITEABLE BIT(2)
#define MMUv2_MTLB_MASK 0xffc00000
#define MMUv2_MTLB_SHIFT 22
#define MMUv2_STLB_MASK 0x003ff000
#define MMUv2_STLB_SHIFT 12
#define MMUv2_MAX_STLB_ENTRIES 1024
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context {
struct etnaviv_iommu_context base;
unsigned short id;
/* M(aster) TLB aka first level pagetable */
u32 *mtlb_cpu;
dma_addr_t mtlb_dma;
/* S(lave) TLB aka second level pagetable */
u32 *stlb_cpu[MMUv2_MAX_STLB_ENTRIES];
dma_addr_t stlb_dma[MMUv2_MAX_STLB_ENTRIES];
};
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static struct etnaviv_iommuv2_context *
to_v2_context(struct etnaviv_iommu_context *context)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
return container_of(context, struct etnaviv_iommuv2_context, base);
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static void etnaviv_iommuv2_free(struct etnaviv_iommu_context *context)
{
struct etnaviv_iommuv2_context *v2_context = to_v2_context(context);
int i;
drm_mm_takedown(&context->mm);
for (i = 0; i < MMUv2_MAX_STLB_ENTRIES; i++) {
if (v2_context->stlb_cpu[i])
dma_free_wc(context->global->dev, SZ_4K,
v2_context->stlb_cpu[i],
v2_context->stlb_dma[i]);
}
dma_free_wc(context->global->dev, SZ_4K, v2_context->mtlb_cpu,
v2_context->mtlb_dma);
clear_bit(v2_context->id, context->global->v2.pta_alloc);
vfree(v2_context);
}
static int
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
etnaviv_iommuv2_ensure_stlb(struct etnaviv_iommuv2_context *v2_context,
int stlb)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
if (v2_context->stlb_cpu[stlb])
return 0;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
v2_context->stlb_cpu[stlb] =
dma_alloc_wc(v2_context->base.global->dev, SZ_4K,
&v2_context->stlb_dma[stlb],
GFP_KERNEL);
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
if (!v2_context->stlb_cpu[stlb])
return -ENOMEM;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
memset32(v2_context->stlb_cpu[stlb], MMUv2_PTE_EXCEPTION,
SZ_4K / sizeof(u32));
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
v2_context->mtlb_cpu[stlb] =
v2_context->stlb_dma[stlb] | MMUv2_PTE_PRESENT;
return 0;
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static int etnaviv_iommuv2_map(struct etnaviv_iommu_context *context,
unsigned long iova, phys_addr_t paddr,
size_t size, int prot)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context *v2_context = to_v2_context(context);
int mtlb_entry, stlb_entry, ret;
u32 entry = lower_32_bits(paddr) | MMUv2_PTE_PRESENT;
if (size != SZ_4K)
return -EINVAL;
if (IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT))
entry |= (upper_32_bits(paddr) & 0xff) << 4;
if (prot & ETNAVIV_PROT_WRITE)
entry |= MMUv2_PTE_WRITEABLE;
mtlb_entry = (iova & MMUv2_MTLB_MASK) >> MMUv2_MTLB_SHIFT;
stlb_entry = (iova & MMUv2_STLB_MASK) >> MMUv2_STLB_SHIFT;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
ret = etnaviv_iommuv2_ensure_stlb(v2_context, mtlb_entry);
if (ret)
return ret;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
v2_context->stlb_cpu[mtlb_entry][stlb_entry] = entry;
return 0;
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static size_t etnaviv_iommuv2_unmap(struct etnaviv_iommu_context *context,
unsigned long iova, size_t size)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context *etnaviv_domain = to_v2_context(context);
int mtlb_entry, stlb_entry;
if (size != SZ_4K)
return -EINVAL;
mtlb_entry = (iova & MMUv2_MTLB_MASK) >> MMUv2_MTLB_SHIFT;
stlb_entry = (iova & MMUv2_STLB_MASK) >> MMUv2_STLB_SHIFT;
etnaviv_domain->stlb_cpu[mtlb_entry][stlb_entry] = MMUv2_PTE_EXCEPTION;
return SZ_4K;
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static size_t etnaviv_iommuv2_dump_size(struct etnaviv_iommu_context *context)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context *v2_context = to_v2_context(context);
size_t dump_size = SZ_4K;
int i;
for (i = 0; i < MMUv2_MAX_STLB_ENTRIES; i++)
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
if (v2_context->mtlb_cpu[i] & MMUv2_PTE_PRESENT)
dump_size += SZ_4K;
return dump_size;
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static void etnaviv_iommuv2_dump(struct etnaviv_iommu_context *context, void *buf)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context *v2_context = to_v2_context(context);
int i;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
memcpy(buf, v2_context->mtlb_cpu, SZ_4K);
buf += SZ_4K;
for (i = 0; i < MMUv2_MAX_STLB_ENTRIES; i++, buf += SZ_4K)
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
if (v2_context->mtlb_cpu[i] & MMUv2_PTE_PRESENT)
memcpy(buf, v2_context->stlb_cpu[i], SZ_4K);
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static void etnaviv_iommuv2_restore_nonsec(struct etnaviv_gpu *gpu,
struct etnaviv_iommu_context *context)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context *v2_context = to_v2_context(context);
u16 prefetch;
/* If the MMU is already enabled the state is still there. */
if (gpu_read(gpu, VIVS_MMUv2_CONTROL) & VIVS_MMUv2_CONTROL_ENABLE)
return;
prefetch = etnaviv_buffer_config_mmuv2(gpu,
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
(u32)v2_context->mtlb_dma,
(u32)context->global->bad_page_dma);
etnaviv_gpu_start_fe(gpu, (u32)etnaviv_cmdbuf_get_pa(&gpu->buffer),
prefetch);
etnaviv_gpu_wait_idle(gpu, 100);
gpu_write(gpu, VIVS_MMUv2_CONTROL, VIVS_MMUv2_CONTROL_ENABLE);
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static void etnaviv_iommuv2_restore_sec(struct etnaviv_gpu *gpu,
struct etnaviv_iommu_context *context)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context *v2_context = to_v2_context(context);
u16 prefetch;
/* If the MMU is already enabled the state is still there. */
if (gpu_read(gpu, VIVS_MMUv2_SEC_CONTROL) & VIVS_MMUv2_SEC_CONTROL_ENABLE)
return;
gpu_write(gpu, VIVS_MMUv2_PTA_ADDRESS_LOW,
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
lower_32_bits(context->global->v2.pta_dma));
gpu_write(gpu, VIVS_MMUv2_PTA_ADDRESS_HIGH,
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
upper_32_bits(context->global->v2.pta_dma));
gpu_write(gpu, VIVS_MMUv2_PTA_CONTROL, VIVS_MMUv2_PTA_CONTROL_ENABLE);
gpu_write(gpu, VIVS_MMUv2_NONSEC_SAFE_ADDR_LOW,
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
lower_32_bits(context->global->bad_page_dma));
gpu_write(gpu, VIVS_MMUv2_SEC_SAFE_ADDR_LOW,
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
lower_32_bits(context->global->bad_page_dma));
gpu_write(gpu, VIVS_MMUv2_SAFE_ADDRESS_CONFIG,
VIVS_MMUv2_SAFE_ADDRESS_CONFIG_NON_SEC_SAFE_ADDR_HIGH(
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
upper_32_bits(context->global->bad_page_dma)) |
VIVS_MMUv2_SAFE_ADDRESS_CONFIG_SEC_SAFE_ADDR_HIGH(
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
upper_32_bits(context->global->bad_page_dma)));
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
context->global->v2.pta_cpu[0] = v2_context->mtlb_dma |
VIVS_MMUv2_CONFIGURATION_MODE_MODE4_K;
/* trigger a PTA load through the FE */
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
prefetch = etnaviv_buffer_config_pta(gpu, v2_context->id);
etnaviv_gpu_start_fe(gpu, (u32)etnaviv_cmdbuf_get_pa(&gpu->buffer),
prefetch);
etnaviv_gpu_wait_idle(gpu, 100);
gpu_write(gpu, VIVS_MMUv2_SEC_CONTROL, VIVS_MMUv2_SEC_CONTROL_ENABLE);
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
static void etnaviv_iommuv2_restore(struct etnaviv_gpu *gpu,
struct etnaviv_iommu_context *context)
{
switch (gpu->sec_mode) {
case ETNA_SEC_NONE:
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
etnaviv_iommuv2_restore_nonsec(gpu, context);
break;
case ETNA_SEC_KERNEL:
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
etnaviv_iommuv2_restore_sec(gpu, context);
break;
default:
WARN(1, "unhandled GPU security mode\n");
break;
}
}
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
const struct etnaviv_iommu_ops etnaviv_iommuv2_ops = {
.free = etnaviv_iommuv2_free,
.map = etnaviv_iommuv2_map,
.unmap = etnaviv_iommuv2_unmap,
.dump_size = etnaviv_iommuv2_dump_size,
.dump = etnaviv_iommuv2_dump,
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
.restore = etnaviv_iommuv2_restore,
};
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommu_context *
etnaviv_iommuv2_context_alloc(struct etnaviv_iommu_global *global)
{
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
struct etnaviv_iommuv2_context *v2_context;
struct etnaviv_iommu_context *context;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
v2_context = vzalloc(sizeof(*v2_context));
if (!v2_context)
return NULL;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
mutex_lock(&global->lock);
v2_context->id = find_first_zero_bit(global->v2.pta_alloc,
ETNAVIV_PTA_ENTRIES);
if (v2_context->id < ETNAVIV_PTA_ENTRIES) {
set_bit(v2_context->id, global->v2.pta_alloc);
} else {
mutex_unlock(&global->lock);
goto out_free;
}
mutex_unlock(&global->lock);
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
v2_context->mtlb_cpu = dma_alloc_wc(global->dev, SZ_4K,
&v2_context->mtlb_dma, GFP_KERNEL);
if (!v2_context->mtlb_cpu)
goto out_free_id;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
memset32(v2_context->mtlb_cpu, MMUv2_PTE_EXCEPTION,
MMUv2_MAX_STLB_ENTRIES);
context = &v2_context->base;
context->global = global;
kref_init(&context->refcount);
mutex_init(&context->lock);
INIT_LIST_HEAD(&context->mappings);
drm_mm_init(&context->mm, SZ_4K, (u64)SZ_1G * 4 - SZ_4K);
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
return context;
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
out_free_id:
clear_bit(v2_context->id, global->v2.pta_alloc);
out_free:
drm/etnaviv: rework MMU handling This reworks the MMU handling to make it possible to have multiple MMU contexts. A context is basically one instance of GPU page tables. Currently we have one set of page tables per GPU, which isn't all that clever, as it has the following two consequences: 1. All GPU clients (aka processes) are sharing the same pagetables, which means there is no isolation between clients, but only between GPU assigned memory spaces and the rest of the system. Better than nothing, but also not great. 2. Clients operating on the same set of buffers with different etnaviv GPU cores, e.g. a workload using both the 2D and 3D GPU, need to map the used buffers into the pagetable sets of each used GPU. This patch reworks all the MMU handling to introduce the abstraction of the MMU context. A context can be shared across different GPU cores, as long as they have compatible MMU implementations, which is the case for all systems with Vivante GPUs seen in the wild. As MMUv1 is not able to change pagetables on the fly, without a "stop the world" operation, which stops GPU, changes pagetables via CPU interaction, restarts GPU, the implementation introduces a shared context on MMUv1, which is returned whenever there is a request for a new context. This patch assigns a MMU context to each GPU, so on MMUv2 systems there is still one set of pagetables per GPU, but due to the shared context MMUv1 systems see a change in behavior as now a single pagetable set is used across all GPU cores. Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-07-06 00:17:24 +07:00
vfree(v2_context);
return NULL;
}