2017-10-28 03:25:36 +07:00
|
|
|
/*
|
|
|
|
* Utility functions for x86 operand and address decoding
|
|
|
|
*
|
|
|
|
* Copyright (C) Intel Corporation 2017
|
|
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
2017-10-28 03:25:37 +07:00
|
|
|
#include <linux/ratelimit.h>
|
2017-10-28 03:25:41 +07:00
|
|
|
#include <linux/mmu_context.h>
|
|
|
|
#include <asm/desc_defs.h>
|
|
|
|
#include <asm/desc.h>
|
2017-10-28 03:25:36 +07:00
|
|
|
#include <asm/inat.h>
|
|
|
|
#include <asm/insn.h>
|
|
|
|
#include <asm/insn-eval.h>
|
2017-10-28 03:25:41 +07:00
|
|
|
#include <asm/ldt.h>
|
x86/insn-eval: Add utility functions to get segment selector
When computing a linear address and segmentation is used, we need to know
the base address of the segment involved in the computation. In most of
the cases, the segment base address will be zero as in USER_DS/USER32_DS.
However, it may be possible that a user space program defines its own
segments via a local descriptor table. In such a case, the segment base
address may not be zero. Thus, the segment base address is needed to
calculate correctly the linear address.
If running in protected mode, the segment selector to be used when
computing a linear address is determined by either any of segment override
prefixes in the instruction or inferred from the registers involved in the
computation of the effective address; in that order. Also, there are cases
when the segment override prefixes shall be ignored (i.e., code segments
are always selected by the CS segment register; string instructions always
use the ES segment register when using rDI register as operand). In long
mode, segment registers are ignored, except for FS and GS. In these two
cases, base addresses are obtained from the respective MSRs.
For clarity, this process can be split into four steps (and an equal
number of functions): determine if segment prefixes overrides can be used;
parse the segment override prefixes, and use them if found; if not found
or cannot be used, use the default segment registers associated with the
operand registers. Once the segment register to use has been identified,
read its value to obtain the segment selector.
The method to obtain the segment selector depends on several factors. In
32-bit builds, segment selectors are saved into a pt_regs structure
when switching to kernel mode. The same is also true for virtual-8086
mode. In 64-bit builds, segmentation is mostly ignored, except when
running a program in 32-bit legacy mode. In this case, CS and SS can be
obtained from pt_regs. DS, ES, FS and GS can be read directly from
the respective segment registers.
In order to identify the segment registers, a new set of #defines is
introduced. It also includes two special identifiers. One of them
indicates when the default segment register associated with instruction
operands shall be used. Another one indicates that the contents of the
segment register shall be ignored; this identifier is used when in long
mode.
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: ricardo.neri@intel.com
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Adam Buchbinder <adam.buchbinder@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Garnier <thgarnie@google.com>
Link: https://lkml.kernel.org/r/1509135945-13762-14-git-send-email-ricardo.neri-calderon@linux.intel.com
2017-10-28 03:25:40 +07:00
|
|
|
#include <asm/vm86.h>
|
2017-10-28 03:25:36 +07:00
|
|
|
|
2017-10-28 03:25:37 +07:00
|
|
|
#undef pr_fmt
|
|
|
|
#define pr_fmt(fmt) "insn: " fmt
|
|
|
|
|
2017-10-28 03:25:36 +07:00
|
|
|
enum reg_type {
|
|
|
|
REG_TYPE_RM = 0,
|
|
|
|
REG_TYPE_INDEX,
|
|
|
|
REG_TYPE_BASE,
|
|
|
|
};
|
|
|
|
|
2017-10-28 03:25:39 +07:00
|
|
|
/**
|
|
|
|
* is_string_insn() - Determine if instruction is a string instruction
|
|
|
|
* @insn: Instruction containing the opcode to inspect
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* true if the instruction, determined by the opcode, is any of the
|
|
|
|
* string instructions as defined in the Intel Software Development manual.
|
|
|
|
* False otherwise.
|
|
|
|
*/
|
|
|
|
static bool is_string_insn(struct insn *insn)
|
|
|
|
{
|
|
|
|
insn_get_opcode(insn);
|
|
|
|
|
|
|
|
/* All string instructions have a 1-byte opcode. */
|
|
|
|
if (insn->opcode.nbytes != 1)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
switch (insn->opcode.bytes[0]) {
|
|
|
|
case 0x6c ... 0x6f: /* INS, OUTS */
|
|
|
|
case 0xa4 ... 0xa7: /* MOVS, CMPS */
|
|
|
|
case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
x86/insn-eval: Add utility functions to get segment selector
When computing a linear address and segmentation is used, we need to know
the base address of the segment involved in the computation. In most of
the cases, the segment base address will be zero as in USER_DS/USER32_DS.
However, it may be possible that a user space program defines its own
segments via a local descriptor table. In such a case, the segment base
address may not be zero. Thus, the segment base address is needed to
calculate correctly the linear address.
If running in protected mode, the segment selector to be used when
computing a linear address is determined by either any of segment override
prefixes in the instruction or inferred from the registers involved in the
computation of the effective address; in that order. Also, there are cases
when the segment override prefixes shall be ignored (i.e., code segments
are always selected by the CS segment register; string instructions always
use the ES segment register when using rDI register as operand). In long
mode, segment registers are ignored, except for FS and GS. In these two
cases, base addresses are obtained from the respective MSRs.
For clarity, this process can be split into four steps (and an equal
number of functions): determine if segment prefixes overrides can be used;
parse the segment override prefixes, and use them if found; if not found
or cannot be used, use the default segment registers associated with the
operand registers. Once the segment register to use has been identified,
read its value to obtain the segment selector.
The method to obtain the segment selector depends on several factors. In
32-bit builds, segment selectors are saved into a pt_regs structure
when switching to kernel mode. The same is also true for virtual-8086
mode. In 64-bit builds, segmentation is mostly ignored, except when
running a program in 32-bit legacy mode. In this case, CS and SS can be
obtained from pt_regs. DS, ES, FS and GS can be read directly from
the respective segment registers.
In order to identify the segment registers, a new set of #defines is
introduced. It also includes two special identifiers. One of them
indicates when the default segment register associated with instruction
operands shall be used. Another one indicates that the contents of the
segment register shall be ignored; this identifier is used when in long
mode.
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: ricardo.neri@intel.com
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Adam Buchbinder <adam.buchbinder@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Garnier <thgarnie@google.com>
Link: https://lkml.kernel.org/r/1509135945-13762-14-git-send-email-ricardo.neri-calderon@linux.intel.com
2017-10-28 03:25:40 +07:00
|
|
|
/**
|
|
|
|
* get_seg_reg_override_idx() - obtain segment register override index
|
|
|
|
* @insn: Valid instruction with segment override prefixes
|
|
|
|
*
|
|
|
|
* Inspect the instruction prefixes in @insn and find segment overrides, if any.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* A constant identifying the segment register to use, among CS, SS, DS,
|
|
|
|
* ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
|
|
|
|
* prefixes were found.
|
|
|
|
*
|
|
|
|
* -EINVAL in case of error.
|
|
|
|
*/
|
|
|
|
static int get_seg_reg_override_idx(struct insn *insn)
|
|
|
|
{
|
|
|
|
int idx = INAT_SEG_REG_DEFAULT;
|
|
|
|
int num_overrides = 0, i;
|
|
|
|
|
|
|
|
insn_get_prefixes(insn);
|
|
|
|
|
|
|
|
/* Look for any segment override prefixes. */
|
|
|
|
for (i = 0; i < insn->prefixes.nbytes; i++) {
|
|
|
|
insn_attr_t attr;
|
|
|
|
|
|
|
|
attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
|
|
|
|
switch (attr) {
|
|
|
|
case INAT_MAKE_PREFIX(INAT_PFX_CS):
|
|
|
|
idx = INAT_SEG_REG_CS;
|
|
|
|
num_overrides++;
|
|
|
|
break;
|
|
|
|
case INAT_MAKE_PREFIX(INAT_PFX_SS):
|
|
|
|
idx = INAT_SEG_REG_SS;
|
|
|
|
num_overrides++;
|
|
|
|
break;
|
|
|
|
case INAT_MAKE_PREFIX(INAT_PFX_DS):
|
|
|
|
idx = INAT_SEG_REG_DS;
|
|
|
|
num_overrides++;
|
|
|
|
break;
|
|
|
|
case INAT_MAKE_PREFIX(INAT_PFX_ES):
|
|
|
|
idx = INAT_SEG_REG_ES;
|
|
|
|
num_overrides++;
|
|
|
|
break;
|
|
|
|
case INAT_MAKE_PREFIX(INAT_PFX_FS):
|
|
|
|
idx = INAT_SEG_REG_FS;
|
|
|
|
num_overrides++;
|
|
|
|
break;
|
|
|
|
case INAT_MAKE_PREFIX(INAT_PFX_GS):
|
|
|
|
idx = INAT_SEG_REG_GS;
|
|
|
|
num_overrides++;
|
|
|
|
break;
|
|
|
|
/* No default action needed. */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* More than one segment override prefix leads to undefined behavior. */
|
|
|
|
if (num_overrides > 1)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* check_seg_overrides() - check if segment override prefixes are allowed
|
|
|
|
* @insn: Valid instruction with segment override prefixes
|
|
|
|
* @regoff: Operand offset, in pt_regs, for which the check is performed
|
|
|
|
*
|
|
|
|
* For a particular register used in register-indirect addressing, determine if
|
|
|
|
* segment override prefixes can be used. Specifically, no overrides are allowed
|
|
|
|
* for rDI if used with a string instruction.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* True if segment override prefixes can be used with the register indicated
|
|
|
|
* in @regoff. False if otherwise.
|
|
|
|
*/
|
|
|
|
static bool check_seg_overrides(struct insn *insn, int regoff)
|
|
|
|
{
|
|
|
|
if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* resolve_default_seg() - resolve default segment register index for an operand
|
|
|
|
* @insn: Instruction with opcode and address size. Must be valid.
|
|
|
|
* @regs: Register values as seen when entering kernel mode
|
|
|
|
* @off: Operand offset, in pt_regs, for which resolution is needed
|
|
|
|
*
|
|
|
|
* Resolve the default segment register index associated with the instruction
|
|
|
|
* operand register indicated by @off. Such index is resolved based on defaults
|
|
|
|
* described in the Intel Software Development Manual.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* If in protected mode, a constant identifying the segment register to use,
|
|
|
|
* among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
|
|
|
|
*
|
|
|
|
* -EINVAL in case of error.
|
|
|
|
*/
|
|
|
|
static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
|
|
|
|
{
|
|
|
|
if (user_64bit_mode(regs))
|
|
|
|
return INAT_SEG_REG_IGNORE;
|
|
|
|
/*
|
|
|
|
* Resolve the default segment register as described in Section 3.7.4
|
|
|
|
* of the Intel Software Development Manual Vol. 1:
|
|
|
|
*
|
|
|
|
* + DS for all references involving r[ABCD]X, and rSI.
|
|
|
|
* + If used in a string instruction, ES for rDI. Otherwise, DS.
|
|
|
|
* + AX, CX and DX are not valid register operands in 16-bit address
|
|
|
|
* encodings but are valid for 32-bit and 64-bit encodings.
|
|
|
|
* + -EDOM is reserved to identify for cases in which no register
|
|
|
|
* is used (i.e., displacement-only addressing). Use DS.
|
|
|
|
* + SS for rSP or rBP.
|
|
|
|
* + CS for rIP.
|
|
|
|
*/
|
|
|
|
|
|
|
|
switch (off) {
|
|
|
|
case offsetof(struct pt_regs, ax):
|
|
|
|
case offsetof(struct pt_regs, cx):
|
|
|
|
case offsetof(struct pt_regs, dx):
|
|
|
|
/* Need insn to verify address size. */
|
|
|
|
if (insn->addr_bytes == 2)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
case -EDOM:
|
|
|
|
case offsetof(struct pt_regs, bx):
|
|
|
|
case offsetof(struct pt_regs, si):
|
|
|
|
return INAT_SEG_REG_DS;
|
|
|
|
|
|
|
|
case offsetof(struct pt_regs, di):
|
|
|
|
if (is_string_insn(insn))
|
|
|
|
return INAT_SEG_REG_ES;
|
|
|
|
return INAT_SEG_REG_DS;
|
|
|
|
|
|
|
|
case offsetof(struct pt_regs, bp):
|
|
|
|
case offsetof(struct pt_regs, sp):
|
|
|
|
return INAT_SEG_REG_SS;
|
|
|
|
|
|
|
|
case offsetof(struct pt_regs, ip):
|
|
|
|
return INAT_SEG_REG_CS;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* resolve_seg_reg() - obtain segment register index
|
|
|
|
* @insn: Instruction with operands
|
|
|
|
* @regs: Register values as seen when entering kernel mode
|
|
|
|
* @regoff: Operand offset, in pt_regs, used to deterimine segment register
|
|
|
|
*
|
|
|
|
* Determine the segment register associated with the operands and, if
|
|
|
|
* applicable, prefixes and the instruction pointed by @insn.
|
|
|
|
*
|
|
|
|
* The segment register associated to an operand used in register-indirect
|
|
|
|
* addressing depends on:
|
|
|
|
*
|
|
|
|
* a) Whether running in long mode (in such a case segments are ignored, except
|
|
|
|
* if FS or GS are used).
|
|
|
|
*
|
|
|
|
* b) Whether segment override prefixes can be used. Certain instructions and
|
|
|
|
* registers do not allow override prefixes.
|
|
|
|
*
|
|
|
|
* c) Whether segment overrides prefixes are found in the instruction prefixes.
|
|
|
|
*
|
|
|
|
* d) If there are not segment override prefixes or they cannot be used, the
|
|
|
|
* default segment register associated with the operand register is used.
|
|
|
|
*
|
|
|
|
* The function checks first if segment override prefixes can be used with the
|
|
|
|
* operand indicated by @regoff. If allowed, obtain such overridden segment
|
|
|
|
* register index. Lastly, if not prefixes were found or cannot be used, resolve
|
|
|
|
* the segment register index to use based on the defaults described in the
|
|
|
|
* Intel documentation. In long mode, all segment register indexes will be
|
|
|
|
* ignored, except if overrides were found for FS or GS. All these operations
|
|
|
|
* are done using helper functions.
|
|
|
|
*
|
|
|
|
* The operand register, @regoff, is represented as the offset from the base of
|
|
|
|
* pt_regs.
|
|
|
|
*
|
|
|
|
* As stated, the main use of this function is to determine the segment register
|
|
|
|
* index based on the instruction, its operands and prefixes. Hence, @insn
|
|
|
|
* must be valid. However, if @regoff indicates rIP, we don't need to inspect
|
|
|
|
* @insn at all as in this case CS is used in all cases. This case is checked
|
|
|
|
* before proceeding further.
|
|
|
|
*
|
|
|
|
* Please note that this function does not return the value in the segment
|
|
|
|
* register (i.e., the segment selector) but our defined index. The segment
|
|
|
|
* selector needs to be obtained using get_segment_selector() and passing the
|
|
|
|
* segment register index resolved by this function.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* An index identifying the segment register to use, among CS, SS, DS,
|
|
|
|
* ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
|
|
|
|
*
|
|
|
|
* -EINVAL in case of error.
|
|
|
|
*/
|
|
|
|
static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
|
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In the unlikely event of having to resolve the segment register
|
|
|
|
* index for rIP, do it first. Segment override prefixes should not
|
|
|
|
* be used. Hence, it is not necessary to inspect the instruction,
|
|
|
|
* which may be invalid at this point.
|
|
|
|
*/
|
|
|
|
if (regoff == offsetof(struct pt_regs, ip)) {
|
|
|
|
if (user_64bit_mode(regs))
|
|
|
|
return INAT_SEG_REG_IGNORE;
|
|
|
|
else
|
|
|
|
return INAT_SEG_REG_CS;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!insn)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (!check_seg_overrides(insn, regoff))
|
|
|
|
return resolve_default_seg(insn, regs, regoff);
|
|
|
|
|
|
|
|
idx = get_seg_reg_override_idx(insn);
|
|
|
|
if (idx < 0)
|
|
|
|
return idx;
|
|
|
|
|
|
|
|
if (idx == INAT_SEG_REG_DEFAULT)
|
|
|
|
return resolve_default_seg(insn, regs, regoff);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In long mode, segment override prefixes are ignored, except for
|
|
|
|
* overrides for FS and GS.
|
|
|
|
*/
|
|
|
|
if (user_64bit_mode(regs)) {
|
|
|
|
if (idx != INAT_SEG_REG_FS &&
|
|
|
|
idx != INAT_SEG_REG_GS)
|
|
|
|
idx = INAT_SEG_REG_IGNORE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* get_segment_selector() - obtain segment selector
|
|
|
|
* @regs: Register values as seen when entering kernel mode
|
|
|
|
* @seg_reg_idx: Segment register index to use
|
|
|
|
*
|
|
|
|
* Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
|
|
|
|
* registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
|
|
|
|
* kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
|
|
|
|
* from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
|
|
|
|
* registers. This done for only for completeness as in CONFIG_X86_64 segment
|
|
|
|
* registers are ignored.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* Value of the segment selector, including null when running in
|
|
|
|
* long mode.
|
|
|
|
*
|
|
|
|
* -EINVAL on error.
|
|
|
|
*/
|
|
|
|
static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
unsigned short sel;
|
|
|
|
|
|
|
|
switch (seg_reg_idx) {
|
|
|
|
case INAT_SEG_REG_IGNORE:
|
|
|
|
return 0;
|
|
|
|
case INAT_SEG_REG_CS:
|
|
|
|
return (unsigned short)(regs->cs & 0xffff);
|
|
|
|
case INAT_SEG_REG_SS:
|
|
|
|
return (unsigned short)(regs->ss & 0xffff);
|
|
|
|
case INAT_SEG_REG_DS:
|
|
|
|
savesegment(ds, sel);
|
|
|
|
return sel;
|
|
|
|
case INAT_SEG_REG_ES:
|
|
|
|
savesegment(es, sel);
|
|
|
|
return sel;
|
|
|
|
case INAT_SEG_REG_FS:
|
|
|
|
savesegment(fs, sel);
|
|
|
|
return sel;
|
|
|
|
case INAT_SEG_REG_GS:
|
|
|
|
savesegment(gs, sel);
|
|
|
|
return sel;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
#else /* CONFIG_X86_32 */
|
|
|
|
struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
|
|
|
|
|
|
|
|
if (v8086_mode(regs)) {
|
|
|
|
switch (seg_reg_idx) {
|
|
|
|
case INAT_SEG_REG_CS:
|
|
|
|
return (unsigned short)(regs->cs & 0xffff);
|
|
|
|
case INAT_SEG_REG_SS:
|
|
|
|
return (unsigned short)(regs->ss & 0xffff);
|
|
|
|
case INAT_SEG_REG_DS:
|
|
|
|
return vm86regs->ds;
|
|
|
|
case INAT_SEG_REG_ES:
|
|
|
|
return vm86regs->es;
|
|
|
|
case INAT_SEG_REG_FS:
|
|
|
|
return vm86regs->fs;
|
|
|
|
case INAT_SEG_REG_GS:
|
|
|
|
return vm86regs->gs;
|
|
|
|
case INAT_SEG_REG_IGNORE:
|
|
|
|
/* fall through */
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (seg_reg_idx) {
|
|
|
|
case INAT_SEG_REG_CS:
|
|
|
|
return (unsigned short)(regs->cs & 0xffff);
|
|
|
|
case INAT_SEG_REG_SS:
|
|
|
|
return (unsigned short)(regs->ss & 0xffff);
|
|
|
|
case INAT_SEG_REG_DS:
|
|
|
|
return (unsigned short)(regs->ds & 0xffff);
|
|
|
|
case INAT_SEG_REG_ES:
|
|
|
|
return (unsigned short)(regs->es & 0xffff);
|
|
|
|
case INAT_SEG_REG_FS:
|
|
|
|
return (unsigned short)(regs->fs & 0xffff);
|
|
|
|
case INAT_SEG_REG_GS:
|
|
|
|
/*
|
|
|
|
* GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
|
|
|
|
* The macro below takes care of both cases.
|
|
|
|
*/
|
|
|
|
return get_user_gs(regs);
|
|
|
|
case INAT_SEG_REG_IGNORE:
|
|
|
|
/* fall through */
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
}
|
|
|
|
|
2017-10-28 03:25:36 +07:00
|
|
|
static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
|
|
|
|
enum reg_type type)
|
|
|
|
{
|
|
|
|
int regno = 0;
|
|
|
|
|
|
|
|
static const int regoff[] = {
|
|
|
|
offsetof(struct pt_regs, ax),
|
|
|
|
offsetof(struct pt_regs, cx),
|
|
|
|
offsetof(struct pt_regs, dx),
|
|
|
|
offsetof(struct pt_regs, bx),
|
|
|
|
offsetof(struct pt_regs, sp),
|
|
|
|
offsetof(struct pt_regs, bp),
|
|
|
|
offsetof(struct pt_regs, si),
|
|
|
|
offsetof(struct pt_regs, di),
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
offsetof(struct pt_regs, r8),
|
|
|
|
offsetof(struct pt_regs, r9),
|
|
|
|
offsetof(struct pt_regs, r10),
|
|
|
|
offsetof(struct pt_regs, r11),
|
|
|
|
offsetof(struct pt_regs, r12),
|
|
|
|
offsetof(struct pt_regs, r13),
|
|
|
|
offsetof(struct pt_regs, r14),
|
|
|
|
offsetof(struct pt_regs, r15),
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
int nr_registers = ARRAY_SIZE(regoff);
|
|
|
|
/*
|
|
|
|
* Don't possibly decode a 32-bit instructions as
|
|
|
|
* reading a 64-bit-only register.
|
|
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
|
|
|
|
nr_registers -= 8;
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case REG_TYPE_RM:
|
|
|
|
regno = X86_MODRM_RM(insn->modrm.value);
|
2017-10-28 03:25:44 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
|
|
|
|
* follows the ModRM byte.
|
|
|
|
*/
|
|
|
|
if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
|
|
|
|
return -EDOM;
|
|
|
|
|
2017-10-28 03:25:36 +07:00
|
|
|
if (X86_REX_B(insn->rex_prefix.value))
|
|
|
|
regno += 8;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case REG_TYPE_INDEX:
|
|
|
|
regno = X86_SIB_INDEX(insn->sib.value);
|
|
|
|
if (X86_REX_X(insn->rex_prefix.value))
|
|
|
|
regno += 8;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If ModRM.mod != 3 and SIB.index = 4 the scale*index
|
|
|
|
* portion of the address computation is null. This is
|
|
|
|
* true only if REX.X is 0. In such a case, the SIB index
|
|
|
|
* is used in the address computation.
|
|
|
|
*/
|
|
|
|
if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
|
|
|
|
return -EDOM;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case REG_TYPE_BASE:
|
|
|
|
regno = X86_SIB_BASE(insn->sib.value);
|
|
|
|
/*
|
|
|
|
* If ModRM.mod is 0 and SIB.base == 5, the base of the
|
|
|
|
* register-indirect addressing is 0. In this case, a
|
|
|
|
* 32-bit displacement follows the SIB byte.
|
|
|
|
*/
|
|
|
|
if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
|
|
|
|
return -EDOM;
|
|
|
|
|
|
|
|
if (X86_REX_B(insn->rex_prefix.value))
|
|
|
|
regno += 8;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2017-10-28 03:25:37 +07:00
|
|
|
pr_err_ratelimited("invalid register type: %d\n", type);
|
|
|
|
return -EINVAL;
|
2017-10-28 03:25:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
if (regno >= nr_registers) {
|
|
|
|
WARN_ONCE(1, "decoded an instruction with an invalid register");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
return regoff[regno];
|
|
|
|
}
|
|
|
|
|
2017-10-28 03:25:41 +07:00
|
|
|
/**
|
|
|
|
* get_desc() - Obtain pointer to a segment descriptor
|
|
|
|
* @sel: Segment selector
|
|
|
|
*
|
|
|
|
* Given a segment selector, obtain a pointer to the segment descriptor.
|
|
|
|
* Both global and local descriptor tables are supported.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* Pointer to segment descriptor on success.
|
|
|
|
*
|
|
|
|
* NULL on error.
|
|
|
|
*/
|
|
|
|
static struct desc_struct *get_desc(unsigned short sel)
|
|
|
|
{
|
|
|
|
struct desc_ptr gdt_desc = {0, 0};
|
|
|
|
unsigned long desc_base;
|
|
|
|
|
|
|
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
|
|
|
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
|
|
|
|
struct desc_struct *desc = NULL;
|
|
|
|
struct ldt_struct *ldt;
|
|
|
|
|
|
|
|
/* Bits [15:3] contain the index of the desired entry. */
|
|
|
|
sel >>= 3;
|
|
|
|
|
|
|
|
mutex_lock(¤t->active_mm->context.lock);
|
|
|
|
ldt = current->active_mm->context.ldt;
|
|
|
|
if (ldt && sel < ldt->nr_entries)
|
|
|
|
desc = &ldt->entries[sel];
|
|
|
|
|
|
|
|
mutex_unlock(¤t->active_mm->context.lock);
|
|
|
|
|
|
|
|
return desc;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
native_store_gdt(&gdt_desc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Segment descriptors have a size of 8 bytes. Thus, the index is
|
|
|
|
* multiplied by 8 to obtain the memory offset of the desired descriptor
|
|
|
|
* from the base of the GDT. As bits [15:3] of the segment selector
|
|
|
|
* contain the index, it can be regarded as multiplied by 8 already.
|
|
|
|
* All that remains is to clear bits [2:0].
|
|
|
|
*/
|
|
|
|
desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
|
|
|
|
|
|
|
|
if (desc_base > gdt_desc.size)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return (struct desc_struct *)(gdt_desc.address + desc_base);
|
|
|
|
}
|
|
|
|
|
2017-10-28 03:25:42 +07:00
|
|
|
/**
|
|
|
|
* insn_get_seg_base() - Obtain base address of segment descriptor.
|
|
|
|
* @regs: Register values as seen when entering kernel mode
|
|
|
|
* @seg_reg_idx: Index of the segment register pointing to seg descriptor
|
|
|
|
*
|
|
|
|
* Obtain the base address of the segment as indicated by the segment descriptor
|
|
|
|
* pointed by the segment selector. The segment selector is obtained from the
|
|
|
|
* input segment register index @seg_reg_idx.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* In protected mode, base address of the segment. Zero in long mode,
|
|
|
|
* except when FS or GS are used. In virtual-8086 mode, the segment
|
|
|
|
* selector shifted 4 bits to the right.
|
|
|
|
*
|
|
|
|
* -1L in case of error.
|
|
|
|
*/
|
|
|
|
unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
|
|
|
|
{
|
|
|
|
struct desc_struct *desc;
|
|
|
|
short sel;
|
|
|
|
|
|
|
|
sel = get_segment_selector(regs, seg_reg_idx);
|
|
|
|
if (sel < 0)
|
|
|
|
return -1L;
|
|
|
|
|
|
|
|
if (v8086_mode(regs))
|
|
|
|
/*
|
|
|
|
* Base is simply the segment selector shifted 4
|
|
|
|
* bits to the right.
|
|
|
|
*/
|
|
|
|
return (unsigned long)(sel << 4);
|
|
|
|
|
|
|
|
if (user_64bit_mode(regs)) {
|
|
|
|
/*
|
|
|
|
* Only FS or GS will have a base address, the rest of
|
|
|
|
* the segments' bases are forced to 0.
|
|
|
|
*/
|
|
|
|
unsigned long base;
|
|
|
|
|
|
|
|
if (seg_reg_idx == INAT_SEG_REG_FS)
|
|
|
|
rdmsrl(MSR_FS_BASE, base);
|
|
|
|
else if (seg_reg_idx == INAT_SEG_REG_GS)
|
|
|
|
/*
|
|
|
|
* swapgs was called at the kernel entry point. Thus,
|
|
|
|
* MSR_KERNEL_GS_BASE will have the user-space GS base.
|
|
|
|
*/
|
|
|
|
rdmsrl(MSR_KERNEL_GS_BASE, base);
|
|
|
|
else
|
|
|
|
base = 0;
|
|
|
|
return base;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* In protected mode the segment selector cannot be null. */
|
|
|
|
if (!sel)
|
|
|
|
return -1L;
|
|
|
|
|
|
|
|
desc = get_desc(sel);
|
|
|
|
if (!desc)
|
|
|
|
return -1L;
|
|
|
|
|
|
|
|
return get_desc_base(desc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* get_seg_limit() - Obtain the limit of a segment descriptor
|
|
|
|
* @regs: Register values as seen when entering kernel mode
|
|
|
|
* @seg_reg_idx: Index of the segment register pointing to seg descriptor
|
|
|
|
*
|
|
|
|
* Obtain the limit of the segment as indicated by the segment descriptor
|
|
|
|
* pointed by the segment selector. The segment selector is obtained from the
|
|
|
|
* input segment register index @seg_reg_idx.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* In protected mode, the limit of the segment descriptor in bytes.
|
|
|
|
* In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
|
|
|
|
* limit is returned as -1L to imply a limit-less segment.
|
|
|
|
*
|
|
|
|
* Zero is returned on error.
|
|
|
|
*/
|
|
|
|
static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
|
|
|
|
{
|
|
|
|
struct desc_struct *desc;
|
|
|
|
unsigned long limit;
|
|
|
|
short sel;
|
|
|
|
|
|
|
|
sel = get_segment_selector(regs, seg_reg_idx);
|
|
|
|
if (sel < 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (user_64bit_mode(regs) || v8086_mode(regs))
|
|
|
|
return -1L;
|
|
|
|
|
|
|
|
if (!sel)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
desc = get_desc(sel);
|
|
|
|
if (!desc)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the granularity bit is set, the limit is given in multiples
|
|
|
|
* of 4096. This also means that the 12 least significant bits are
|
|
|
|
* not tested when checking the segment limits. In practice,
|
|
|
|
* this means that the segment ends in (limit << 12) + 0xfff.
|
|
|
|
*/
|
|
|
|
limit = get_desc_limit(desc);
|
|
|
|
if (desc->g)
|
|
|
|
limit = (limit << 12) + 0xfff;
|
|
|
|
|
|
|
|
return limit;
|
|
|
|
}
|
|
|
|
|
2017-10-28 03:25:43 +07:00
|
|
|
/**
|
|
|
|
* insn_get_code_seg_params() - Obtain code segment parameters
|
|
|
|
* @regs: Structure with register values as seen when entering kernel mode
|
|
|
|
*
|
|
|
|
* Obtain address and operand sizes of the code segment. It is obtained from the
|
|
|
|
* selector contained in the CS register in regs. In protected mode, the default
|
|
|
|
* address is determined by inspecting the L and D bits of the segment
|
|
|
|
* descriptor. In virtual-8086 mode, the default is always two bytes for both
|
|
|
|
* address and operand sizes.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* A signed 8-bit value containing the default parameters on success.
|
|
|
|
*
|
|
|
|
* -EINVAL on error.
|
|
|
|
*/
|
|
|
|
char insn_get_code_seg_params(struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct desc_struct *desc;
|
|
|
|
short sel;
|
|
|
|
|
|
|
|
if (v8086_mode(regs))
|
|
|
|
/* Address and operand size are both 16-bit. */
|
|
|
|
return INSN_CODE_SEG_PARAMS(2, 2);
|
|
|
|
|
|
|
|
sel = get_segment_selector(regs, INAT_SEG_REG_CS);
|
|
|
|
if (sel < 0)
|
|
|
|
return sel;
|
|
|
|
|
|
|
|
desc = get_desc(sel);
|
|
|
|
if (!desc)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The most significant byte of the Type field of the segment descriptor
|
|
|
|
* determines whether a segment contains data or code. If this is a data
|
|
|
|
* segment, return error.
|
|
|
|
*/
|
|
|
|
if (!(desc->type & BIT(3)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
switch ((desc->l << 1) | desc->d) {
|
|
|
|
case 0: /*
|
|
|
|
* Legacy mode. CS.L=0, CS.D=0. Address and operand size are
|
|
|
|
* both 16-bit.
|
|
|
|
*/
|
|
|
|
return INSN_CODE_SEG_PARAMS(2, 2);
|
|
|
|
case 1: /*
|
|
|
|
* Legacy mode. CS.L=0, CS.D=1. Address and operand size are
|
|
|
|
* both 32-bit.
|
|
|
|
*/
|
|
|
|
return INSN_CODE_SEG_PARAMS(4, 4);
|
|
|
|
case 2: /*
|
|
|
|
* IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
|
|
|
|
* operand size is 32-bit.
|
|
|
|
*/
|
|
|
|
return INSN_CODE_SEG_PARAMS(4, 8);
|
|
|
|
case 3: /* Invalid setting. CS.L=1, CS.D=1 */
|
|
|
|
/* fall through */
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-10-28 03:25:38 +07:00
|
|
|
/**
|
|
|
|
* insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
|
|
|
|
* @insn: Instruction containing the ModRM byte
|
|
|
|
* @regs: Register values as seen when entering kernel mode
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
*
|
|
|
|
* The register indicated by the r/m part of the ModRM byte. The
|
|
|
|
* register is obtained as an offset from the base of pt_regs. In specific
|
|
|
|
* cases, the returned value can be -EDOM to indicate that the particular value
|
|
|
|
* of ModRM does not refer to a register and shall be ignored.
|
|
|
|
*/
|
|
|
|
int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
return get_reg_offset(insn, regs, REG_TYPE_RM);
|
|
|
|
}
|
|
|
|
|
2017-10-28 03:25:36 +07:00
|
|
|
/*
|
|
|
|
* return the address being referenced be instruction
|
|
|
|
* for rm=3 returning the content of the rm reg
|
|
|
|
* for rm!=3 calculates the address using SIB and Disp
|
|
|
|
*/
|
|
|
|
void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
int addr_offset, base_offset, indx_offset;
|
|
|
|
unsigned long linear_addr = -1L;
|
|
|
|
long eff_addr, base, indx;
|
|
|
|
insn_byte_t sib;
|
|
|
|
|
|
|
|
insn_get_modrm(insn);
|
|
|
|
insn_get_sib(insn);
|
|
|
|
sib = insn->sib.value;
|
|
|
|
|
|
|
|
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
|
|
|
|
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
|
|
|
|
if (addr_offset < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
eff_addr = regs_get_register(regs, addr_offset);
|
|
|
|
} else {
|
|
|
|
if (insn->sib.nbytes) {
|
|
|
|
/*
|
|
|
|
* Negative values in the base and index offset means
|
|
|
|
* an error when decoding the SIB byte. Except -EDOM,
|
|
|
|
* which means that the registers should not be used
|
|
|
|
* in the address computation.
|
|
|
|
*/
|
|
|
|
base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
|
|
|
|
if (base_offset == -EDOM)
|
|
|
|
base = 0;
|
|
|
|
else if (base_offset < 0)
|
|
|
|
goto out;
|
|
|
|
else
|
|
|
|
base = regs_get_register(regs, base_offset);
|
|
|
|
|
|
|
|
indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
|
|
|
|
|
|
|
|
if (indx_offset == -EDOM)
|
|
|
|
indx = 0;
|
|
|
|
else if (indx_offset < 0)
|
|
|
|
goto out;
|
|
|
|
else
|
|
|
|
indx = regs_get_register(regs, indx_offset);
|
|
|
|
|
|
|
|
eff_addr = base + indx * (1 << X86_SIB_SCALE(sib));
|
|
|
|
} else {
|
|
|
|
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
|
2017-10-28 03:25:44 +07:00
|
|
|
/*
|
|
|
|
* -EDOM means that we must ignore the address_offset.
|
|
|
|
* In such a case, in 64-bit mode the effective address
|
|
|
|
* relative to the RIP of the following instruction.
|
|
|
|
*/
|
|
|
|
if (addr_offset == -EDOM) {
|
|
|
|
if (user_64bit_mode(regs))
|
|
|
|
eff_addr = (long)regs->ip + insn->length;
|
|
|
|
else
|
|
|
|
eff_addr = 0;
|
|
|
|
} else if (addr_offset < 0) {
|
2017-10-28 03:25:36 +07:00
|
|
|
goto out;
|
2017-10-28 03:25:44 +07:00
|
|
|
} else {
|
|
|
|
eff_addr = regs_get_register(regs, addr_offset);
|
|
|
|
}
|
2017-10-28 03:25:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
eff_addr += insn->displacement.value;
|
|
|
|
}
|
|
|
|
|
|
|
|
linear_addr = (unsigned long)eff_addr;
|
|
|
|
|
|
|
|
out:
|
|
|
|
return (void __user *)linear_addr;
|
|
|
|
}
|