linux_dsm_epyc7002/drivers/net/wireless/brcm80211/brcmsmac/dma.c

1443 lines
39 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <brcmu_utils.h>
#include <aiutils.h>
#include "types.h"
#include "dma.h"
#include "soc.h"
/*
* dma register field offset calculation
*/
#define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
#define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
#define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
/*
* DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
* a contiguous 8kB physical address.
*/
#define D64RINGALIGN_BITS 13
#define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
#define D64RINGALIGN (1 << D64RINGALIGN_BITS)
#define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
/* transmit channel control */
#define D64_XC_XE 0x00000001 /* transmit enable */
#define D64_XC_SE 0x00000002 /* transmit suspend request */
#define D64_XC_LE 0x00000004 /* loopback enable */
#define D64_XC_FL 0x00000010 /* flush request */
#define D64_XC_PD 0x00000800 /* parity check disable */
#define D64_XC_AE 0x00030000 /* address extension bits */
#define D64_XC_AE_SHIFT 16
/* transmit descriptor table pointer */
#define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
/* transmit channel status */
#define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
#define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
#define D64_XS0_XS_SHIFT 28
#define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
#define D64_XS0_XS_ACTIVE 0x10000000 /* active */
#define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
#define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
#define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
#define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
#define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
#define D64_XS1_XE_SHIFT 28
#define D64_XS1_XE_NOERR 0x00000000 /* no error */
#define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
#define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
#define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
#define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
#define D64_XS1_XE_COREE 0x50000000 /* core error */
/* receive channel control */
/* receive enable */
#define D64_RC_RE 0x00000001
/* receive frame offset */
#define D64_RC_RO_MASK 0x000000fe
#define D64_RC_RO_SHIFT 1
/* direct fifo receive (pio) mode */
#define D64_RC_FM 0x00000100
/* separate rx header descriptor enable */
#define D64_RC_SH 0x00000200
/* overflow continue */
#define D64_RC_OC 0x00000400
/* parity check disable */
#define D64_RC_PD 0x00000800
/* address extension bits */
#define D64_RC_AE 0x00030000
#define D64_RC_AE_SHIFT 16
/* flags for dma controller */
/* partity enable */
#define DMA_CTRL_PEN (1 << 0)
/* rx overflow continue */
#define DMA_CTRL_ROC (1 << 1)
/* allow rx scatter to multiple descriptors */
#define DMA_CTRL_RXMULTI (1 << 2)
/* Unframed Rx/Tx data */
#define DMA_CTRL_UNFRAMED (1 << 3)
/* receive descriptor table pointer */
#define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
/* receive channel status */
#define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
#define D64_RS0_RS_MASK 0xf0000000 /* receive state */
#define D64_RS0_RS_SHIFT 28
#define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
#define D64_RS0_RS_ACTIVE 0x10000000 /* active */
#define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
#define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
#define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
#define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
#define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
#define D64_RS1_RE_SHIFT 28
#define D64_RS1_RE_NOERR 0x00000000 /* no error */
#define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
#define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
#define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
#define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
#define D64_RS1_RE_COREE 0x50000000 /* core error */
/* fifoaddr */
#define D64_FA_OFF_MASK 0xffff /* offset */
#define D64_FA_SEL_MASK 0xf0000 /* select */
#define D64_FA_SEL_SHIFT 16
#define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
#define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
#define D64_FA_SEL_RDD 0x40000 /* receive dma data */
#define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
#define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
#define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
#define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
#define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
#define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
#define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
/* descriptor control flags 1 */
#define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
#define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
#define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
#define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
#define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
/* descriptor control flags 2 */
/* buffer byte count. real data len must <= 16KB */
#define D64_CTRL2_BC_MASK 0x00007fff
/* address extension bits */
#define D64_CTRL2_AE 0x00030000
#define D64_CTRL2_AE_SHIFT 16
/* parity bit */
#define D64_CTRL2_PARITY 0x00040000
/* control flags in the range [27:20] are core-specific and not defined here */
#define D64_CTRL_CORE_MASK 0x0ff00000
#define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
#define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
#define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
#define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
/*
* packet headroom necessary to accommodate the largest header
* in the system, (i.e TXOFF). By doing, we avoid the need to
* allocate an extra buffer for the header when bridging to WL.
* There is a compile time check in wlc.c which ensure that this
* value is at least as big as TXOFF. This value is used in
* dma_rxfill().
*/
#define BCMEXTRAHDROOM 172
/* debug/trace */
#ifdef BCMDBG
#define DMA_ERROR(fmt, ...) \
do { \
if (*di->msg_level & 1) \
pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#define DMA_TRACE(fmt, ...) \
do { \
if (*di->msg_level & 2) \
pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#else
#define DMA_ERROR(fmt, ...) \
no_printk(fmt, ##__VA_ARGS__)
#define DMA_TRACE(fmt, ...) \
no_printk(fmt, ##__VA_ARGS__)
#endif /* BCMDBG */
#define DMA_NONE(fmt, ...) \
no_printk(fmt, ##__VA_ARGS__)
#define MAXNAMEL 8 /* 8 char names */
/* macros to convert between byte offsets and indexes */
#define B2I(bytes, type) ((bytes) / sizeof(type))
#define I2B(index, type) ((index) * sizeof(type))
#define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
#define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
#define PCI64ADDR_HIGH 0x80000000 /* address[63] */
#define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
/*
* DMA Descriptor
* Descriptors are only read by the hardware, never written back.
*/
struct dma64desc {
__le32 ctrl1; /* misc control bits & bufcount */
__le32 ctrl2; /* buffer count and address extension */
__le32 addrlow; /* memory address of the date buffer, bits 31:0 */
__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
};
/* dma engine software state */
struct dma_info {
struct dma_pub dma; /* exported structure */
uint *msg_level; /* message level pointer */
char name[MAXNAMEL]; /* callers name for diag msgs */
struct bcma_device *d11core;
struct device *dmadev;
bool dma64; /* this dma engine is operating in 64-bit mode */
bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
/* 64-bit dma tx engine registers */
uint d64txregbase;
/* 64-bit dma rx engine registers */
uint d64rxregbase;
/* pointer to dma64 tx descriptor ring */
struct dma64desc *txd64;
/* pointer to dma64 rx descriptor ring */
struct dma64desc *rxd64;
u16 dmadesc_align; /* alignment requirement for dma descriptors */
u16 ntxd; /* # tx descriptors tunable */
u16 txin; /* index of next descriptor to reclaim */
u16 txout; /* index of next descriptor to post */
/* pointer to parallel array of pointers to packets */
struct sk_buff **txp;
/* Aligned physical address of descriptor ring */
dma_addr_t txdpa;
/* Original physical address of descriptor ring */
dma_addr_t txdpaorig;
u16 txdalign; /* #bytes added to alloc'd mem to align txd */
u32 txdalloc; /* #bytes allocated for the ring */
u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
* is not just an index, it needs all 13 bits to be
* an offset from the addr register.
*/
u16 nrxd; /* # rx descriptors tunable */
u16 rxin; /* index of next descriptor to reclaim */
u16 rxout; /* index of next descriptor to post */
/* pointer to parallel array of pointers to packets */
struct sk_buff **rxp;
/* Aligned physical address of descriptor ring */
dma_addr_t rxdpa;
/* Original physical address of descriptor ring */
dma_addr_t rxdpaorig;
u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
u32 rxdalloc; /* #bytes allocated for the ring */
u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
/* tunables */
unsigned int rxbufsize; /* rx buffer size in bytes, not including
* the extra headroom
*/
uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
* stack, e.g. some rx pkt buffers will be
* bridged to tx side without byte copying.
* The extra headroom needs to be large enough
* to fit txheader needs. Some dongle driver may
* not need it.
*/
uint nrxpost; /* # rx buffers to keep posted */
unsigned int rxoffset; /* rxcontrol offset */
/* add to get dma address of descriptor ring, low 32 bits */
uint ddoffsetlow;
/* high 32 bits */
uint ddoffsethigh;
/* add to get dma address of data buffer, low 32 bits */
uint dataoffsetlow;
/* high 32 bits */
uint dataoffsethigh;
/* descriptor base need to be aligned or not */
bool aligndesc_4k;
};
/*
* default dma message level (if input msg_level
* pointer is null in dma_attach())
*/
static uint dma_msg_level;
/* Check for odd number of 1's */
static u32 parity32(__le32 data)
{
/* no swap needed for counting 1's */
u32 par_data = *(u32 *)&data;
par_data ^= par_data >> 16;
par_data ^= par_data >> 8;
par_data ^= par_data >> 4;
par_data ^= par_data >> 2;
par_data ^= par_data >> 1;
return par_data & 1;
}
static bool dma64_dd_parity(struct dma64desc *dd)
{
return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
}
/* descriptor bumping functions */
static uint xxd(uint x, uint n)
{
return x & (n - 1); /* faster than %, but n must be power of 2 */
}
static uint txd(struct dma_info *di, uint x)
{
return xxd(x, di->ntxd);
}
static uint rxd(struct dma_info *di, uint x)
{
return xxd(x, di->nrxd);
}
static uint nexttxd(struct dma_info *di, uint i)
{
return txd(di, i + 1);
}
static uint prevtxd(struct dma_info *di, uint i)
{
return txd(di, i - 1);
}
static uint nextrxd(struct dma_info *di, uint i)
{
return txd(di, i + 1);
}
static uint ntxdactive(struct dma_info *di, uint h, uint t)
{
return txd(di, t-h);
}
static uint nrxdactive(struct dma_info *di, uint h, uint t)
{
return rxd(di, t-h);
}
static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
{
uint dmactrlflags;
if (di == NULL) {
DMA_ERROR("NULL dma handle\n");
return 0;
}
dmactrlflags = di->dma.dmactrlflags;
dmactrlflags &= ~mask;
dmactrlflags |= flags;
/* If trying to enable parity, check if parity is actually supported */
if (dmactrlflags & DMA_CTRL_PEN) {
u32 control;
control = bcma_read32(di->d11core, DMA64TXREGOFFS(di, control));
bcma_write32(di->d11core, DMA64TXREGOFFS(di, control),
control | D64_XC_PD);
if (bcma_read32(di->d11core, DMA64TXREGOFFS(di, control)) &
D64_XC_PD)
/* We *can* disable it so it is supported,
* restore control register
*/
bcma_write32(di->d11core, DMA64TXREGOFFS(di, control),
control);
else
/* Not supported, don't allow it to be enabled */
dmactrlflags &= ~DMA_CTRL_PEN;
}
di->dma.dmactrlflags = dmactrlflags;
return dmactrlflags;
}
static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
{
u32 w;
bcma_set32(di->d11core, ctrl_offset, D64_XC_AE);
w = bcma_read32(di->d11core, ctrl_offset);
bcma_mask32(di->d11core, ctrl_offset, ~D64_XC_AE);
return (w & D64_XC_AE) == D64_XC_AE;
}
/*
* return true if this dma engine supports DmaExtendedAddrChanges,
* otherwise false
*/
static bool _dma_isaddrext(struct dma_info *di)
{
/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
/* not all tx or rx channel are available */
if (di->d64txregbase != 0) {
if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
DMA_ERROR("%s: DMA64 tx doesn't have AE set\n",
di->name);
return true;
} else if (di->d64rxregbase != 0) {
if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
DMA_ERROR("%s: DMA64 rx doesn't have AE set\n",
di->name);
return true;
}
return false;
}
static bool _dma_descriptor_align(struct dma_info *di)
{
u32 addrl;
/* Check to see if the descriptors need to be aligned on 4K/8K or not */
if (di->d64txregbase != 0) {
bcma_write32(di->d11core, DMA64TXREGOFFS(di, addrlow), 0xff0);
addrl = bcma_read32(di->d11core, DMA64TXREGOFFS(di, addrlow));
if (addrl != 0)
return false;
} else if (di->d64rxregbase != 0) {
bcma_write32(di->d11core, DMA64RXREGOFFS(di, addrlow), 0xff0);
addrl = bcma_read32(di->d11core, DMA64RXREGOFFS(di, addrlow));
if (addrl != 0)
return false;
}
return true;
}
/*
* Descriptor table must start at the DMA hardware dictated alignment, so
* allocated memory must be large enough to support this requirement.
*/
static void *dma_alloc_consistent(struct dma_info *di, uint size,
u16 align_bits, uint *alloced,
dma_addr_t *pap)
{
if (align_bits) {
u16 align = (1 << align_bits);
if (!IS_ALIGNED(PAGE_SIZE, align))
size += align;
*alloced = size;
}
return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
}
static
u8 dma_align_sizetobits(uint size)
{
u8 bitpos = 0;
while (size >>= 1)
bitpos++;
return bitpos;
}
/* This function ensures that the DMA descriptor ring will not get allocated
* across Page boundary. If the allocation is done across the page boundary
* at the first time, then it is freed and the allocation is done at
* descriptor ring size aligned location. This will ensure that the ring will
* not cross page boundary
*/
static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
u16 *alignbits, uint *alloced,
dma_addr_t *descpa)
{
void *va;
u32 desc_strtaddr;
u32 alignbytes = 1 << *alignbits;
va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
if (NULL == va)
return NULL;
desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
& boundary)) {
*alignbits = dma_align_sizetobits(size);
dma_free_coherent(di->dmadev, size, va, *descpa);
va = dma_alloc_consistent(di, size, *alignbits,
alloced, descpa);
}
return va;
}
static bool dma64_alloc(struct dma_info *di, uint direction)
{
u16 size;
uint ddlen;
void *va;
uint alloced = 0;
u16 align;
u16 align_bits;
ddlen = sizeof(struct dma64desc);
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
align_bits = di->dmadesc_align;
align = (1 << align_bits);
if (direction == DMA_TX) {
va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
&alloced, &di->txdpaorig);
if (va == NULL) {
DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
di->name);
return false;
}
align = (1 << align_bits);
di->txd64 = (struct dma64desc *)
roundup((unsigned long)va, align);
di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
di->txdpa = di->txdpaorig + di->txdalign;
di->txdalloc = alloced;
} else {
va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
&alloced, &di->rxdpaorig);
if (va == NULL) {
DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
di->name);
return false;
}
align = (1 << align_bits);
di->rxd64 = (struct dma64desc *)
roundup((unsigned long)va, align);
di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
di->rxdpa = di->rxdpaorig + di->rxdalign;
di->rxdalloc = alloced;
}
return true;
}
static bool _dma_alloc(struct dma_info *di, uint direction)
{
return dma64_alloc(di, direction);
}
struct dma_pub *dma_attach(char *name, struct si_pub *sih,
struct bcma_device *d11core,
uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
uint rxbufsize, int rxextheadroom,
uint nrxpost, uint rxoffset, uint *msg_level)
{
struct dma_info *di;
uint size;
/* allocate private info structure */
di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
if (di == NULL)
return NULL;
di->msg_level = msg_level ? msg_level : &dma_msg_level;
di->dma64 =
((bcma_aread32(d11core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
/* init dma reg info */
di->d11core = d11core;
di->d64txregbase = txregbase;
di->d64rxregbase = rxregbase;
/*
* Default flags (which can be changed by the driver calling
* dma_ctrlflags before enable): For backwards compatibility
* both Rx Overflow Continue and Parity are DISABLED.
*/
_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d "
"rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
"txregbase %u rxregbase %u\n", name, "DMA64",
di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
/* make a private copy of our callers name */
strncpy(di->name, name, MAXNAMEL);
di->name[MAXNAMEL - 1] = '\0';
di->dmadev = d11core->dma_dev;
/* save tunables */
di->ntxd = (u16) ntxd;
di->nrxd = (u16) nrxd;
/* the actual dma size doesn't include the extra headroom */
di->rxextrahdrroom =
(rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
if (rxbufsize > BCMEXTRAHDROOM)
di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
else
di->rxbufsize = (u16) rxbufsize;
di->nrxpost = (u16) nrxpost;
di->rxoffset = (u8) rxoffset;
/*
* figure out the DMA physical address offset for dd and data
* PCI/PCIE: they map silicon backplace address to zero
* based memory, need offset
* Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
* swapped region for data buffer, not descriptor
*/
di->ddoffsetlow = 0;
di->dataoffsetlow = 0;
/* add offset for pcie with DMA64 bus */
di->ddoffsetlow = 0;
di->ddoffsethigh = SI_PCIE_DMA_H32;
di->dataoffsetlow = di->ddoffsetlow;
di->dataoffsethigh = di->ddoffsethigh;
/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
if ((ai_coreid(sih) == SDIOD_CORE_ID)
&& ((ai_corerev(sih) > 0) && (ai_corerev(sih) <= 2)))
di->addrext = 0;
else if ((ai_coreid(sih) == I2S_CORE_ID) &&
((ai_corerev(sih) == 0) || (ai_corerev(sih) == 1)))
di->addrext = 0;
else
di->addrext = _dma_isaddrext(di);
/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
di->aligndesc_4k = _dma_descriptor_align(di);
if (di->aligndesc_4k) {
di->dmadesc_align = D64RINGALIGN_BITS;
if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
/* for smaller dd table, HW relax alignment reqmnt */
di->dmadesc_align = D64RINGALIGN_BITS - 1;
} else {
di->dmadesc_align = 4; /* 16 byte alignment */
}
DMA_NONE("DMA descriptor align_needed %d, align %d\n",
di->aligndesc_4k, di->dmadesc_align);
/* allocate tx packet pointer vector */
if (ntxd) {
size = ntxd * sizeof(void *);
di->txp = kzalloc(size, GFP_ATOMIC);
if (di->txp == NULL)
goto fail;
}
/* allocate rx packet pointer vector */
if (nrxd) {
size = nrxd * sizeof(void *);
di->rxp = kzalloc(size, GFP_ATOMIC);
if (di->rxp == NULL)
goto fail;
}
/*
* allocate transmit descriptor ring, only need ntxd descriptors
* but it must be aligned
*/
if (ntxd) {
if (!_dma_alloc(di, DMA_TX))
goto fail;
}
/*
* allocate receive descriptor ring, only need nrxd descriptors
* but it must be aligned
*/
if (nrxd) {
if (!_dma_alloc(di, DMA_RX))
goto fail;
}
if ((di->ddoffsetlow != 0) && !di->addrext) {
if (di->txdpa > SI_PCI_DMA_SZ) {
DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n",
di->name, (u32)di->txdpa);
goto fail;
}
if (di->rxdpa > SI_PCI_DMA_SZ) {
DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n",
di->name, (u32)di->rxdpa);
goto fail;
}
}
DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
di->ddoffsetlow, di->ddoffsethigh,
di->dataoffsetlow, di->dataoffsethigh,
di->addrext);
return (struct dma_pub *) di;
fail:
dma_detach((struct dma_pub *)di);
return NULL;
}
static inline void
dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
{
u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
/* PCI bus with big(>1G) physical address, use address extension */
if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
ddring[outidx].ctrl1 = cpu_to_le32(*flags);
ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
} else {
/* address extension for 32-bit PCI */
u32 ae;
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
ddring[outidx].ctrl1 = cpu_to_le32(*flags);
ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
}
if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
if (dma64_dd_parity(&ddring[outidx]))
ddring[outidx].ctrl2 =
cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
}
}
/* !! may be called with core in reset */
void dma_detach(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
/* free dma descriptor rings */
if (di->txd64)
dma_free_coherent(di->dmadev, di->txdalloc,
((s8 *)di->txd64 - di->txdalign),
(di->txdpaorig));
if (di->rxd64)
dma_free_coherent(di->dmadev, di->rxdalloc,
((s8 *)di->rxd64 - di->rxdalign),
(di->rxdpaorig));
/* free packet pointer vectors */
kfree(di->txp);
kfree(di->rxp);
/* free our private info structure */
kfree(di);
}
/* initialize descriptor table base address */
static void
_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
{
if (!di->aligndesc_4k) {
if (direction == DMA_TX)
di->xmtptrbase = pa;
else
di->rcvptrbase = pa;
}
if ((di->ddoffsetlow == 0)
|| !(pa & PCI32ADDR_HIGH)) {
if (direction == DMA_TX) {
bcma_write32(di->d11core, DMA64TXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->d11core, DMA64TXREGOFFS(di, addrhigh),
di->ddoffsethigh);
} else {
bcma_write32(di->d11core, DMA64RXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->d11core, DMA64RXREGOFFS(di, addrhigh),
di->ddoffsethigh);
}
} else {
/* DMA64 32bits address extension */
u32 ae;
/* shift the high bit(s) from pa to ae */
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
if (direction == DMA_TX) {
bcma_write32(di->d11core, DMA64TXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->d11core, DMA64TXREGOFFS(di, addrhigh),
di->ddoffsethigh);
bcma_maskset32(di->d11core, DMA64TXREGOFFS(di, control),
D64_XC_AE, (ae << D64_XC_AE_SHIFT));
} else {
bcma_write32(di->d11core, DMA64RXREGOFFS(di, addrlow),
pa + di->ddoffsetlow);
bcma_write32(di->d11core, DMA64RXREGOFFS(di, addrhigh),
di->ddoffsethigh);
bcma_maskset32(di->d11core, DMA64RXREGOFFS(di, control),
D64_RC_AE, (ae << D64_RC_AE_SHIFT));
}
}
}
static void _dma_rxenable(struct dma_info *di)
{
uint dmactrlflags = di->dma.dmactrlflags;
u32 control;
DMA_TRACE("%s:\n", di->name);
control = D64_RC_RE | (bcma_read32(di->d11core,
DMA64RXREGOFFS(di, control)) &
D64_RC_AE);
if ((dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_RC_PD;
if (dmactrlflags & DMA_CTRL_ROC)
control |= D64_RC_OC;
bcma_write32(di->d11core, DMA64RXREGOFFS(di, control),
((di->rxoffset << D64_RC_RO_SHIFT) | control));
}
void dma_rxinit(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
if (di->nrxd == 0)
return;
di->rxin = di->rxout = 0;
/* clear rx descriptor ring */
memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
/* DMA engine with out alignment requirement requires table to be inited
* before enabling the engine
*/
if (!di->aligndesc_4k)
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
_dma_rxenable(di);
if (di->aligndesc_4k)
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
}
static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
{
uint i, curr;
struct sk_buff *rxp;
dma_addr_t pa;
i = di->rxin;
/* return if no packets posted */
if (i == di->rxout)
return NULL;
curr =
B2I(((bcma_read32(di->d11core,
DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
/* ignore curr if forceall */
if (!forceall && (i == curr))
return NULL;
/* get the packet pointer that corresponds to the rx descriptor */
rxp = di->rxp[i];
di->rxp[i] = NULL;
pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
/* clear this packet from the descriptor ring */
dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
di->rxin = nextrxd(di, i);
return rxp;
}
static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
{
if (di->nrxd == 0)
return NULL;
return dma64_getnextrxp(di, forceall);
}
/*
* !! rx entry routine
* returns the number packages in the next frame, or 0 if there are no more
* if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
* supported with pkts chain
* otherwise, it's treated as giant pkt and will be tossed.
* The DMA scattering starts with normal DMA header, followed by first
* buffer data. After it reaches the max size of buffer, the data continues
* in next DMA descriptor buffer WITHOUT DMA header
*/
int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff_head dma_frames;
struct sk_buff *p, *next;
uint len;
uint pkt_len;
int resid = 0;
int pktcnt = 1;
skb_queue_head_init(&dma_frames);
next_frame:
p = _dma_getnextrxp(di, false);
if (p == NULL)
return 0;
len = le16_to_cpu(*(__le16 *) (p->data));
DMA_TRACE("%s: dma_rx len %d\n", di->name, len);
dma_spin_for_len(len, p);
/* set actual length */
pkt_len = min((di->rxoffset + len), di->rxbufsize);
__skb_trim(p, pkt_len);
skb_queue_tail(&dma_frames, p);
resid = len - (di->rxbufsize - di->rxoffset);
/* check for single or multi-buffer rx */
if (resid > 0) {
while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
pkt_len = min_t(uint, resid, di->rxbufsize);
__skb_trim(p, pkt_len);
skb_queue_tail(&dma_frames, p);
resid -= di->rxbufsize;
pktcnt++;
}
#ifdef BCMDBG
if (resid > 0) {
uint cur;
cur =
B2I(((bcma_read32(di->d11core,
DMA64RXREGOFFS(di, status0)) &
D64_RS0_CD_MASK) - di->rcvptrbase) &
D64_RS0_CD_MASK, struct dma64desc);
DMA_ERROR("rxin %d rxout %d, hw_curr %d\n",
di->rxin, di->rxout, cur);
}
#endif /* BCMDBG */
if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
DMA_ERROR("%s: bad frame length (%d)\n",
di->name, len);
skb_queue_walk_safe(&dma_frames, p, next) {
skb_unlink(p, &dma_frames);
brcmu_pkt_buf_free_skb(p);
}
di->dma.rxgiants++;
pktcnt = 1;
goto next_frame;
}
}
skb_queue_splice_tail(&dma_frames, skb_list);
return pktcnt;
}
static bool dma64_rxidle(struct dma_info *di)
{
DMA_TRACE("%s:\n", di->name);
if (di->nrxd == 0)
return true;
return ((bcma_read32(di->d11core,
DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
(bcma_read32(di->d11core, DMA64RXREGOFFS(di, ptr)) &
D64_RS0_CD_MASK));
}
/*
* post receive buffers
* return false is refill failed completely and ring is empty this will stall
* the rx dma and user might want to call rxfill again asap. This unlikely
* happens on memory-rich NIC, but often on memory-constrained dongle
*/
bool dma_rxfill(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff *p;
u16 rxin, rxout;
u32 flags = 0;
uint n;
uint i;
dma_addr_t pa;
uint extra_offset = 0;
bool ring_empty;
ring_empty = false;
/*
* Determine how many receive buffers we're lacking
* from the full complement, allocate, initialize,
* and post them, then update the chip rx lastdscr.
*/
rxin = di->rxin;
rxout = di->rxout;
n = di->nrxpost - nrxdactive(di, rxin, rxout);
DMA_TRACE("%s: post %d\n", di->name, n);
if (di->rxbufsize > BCMEXTRAHDROOM)
extra_offset = di->rxextrahdrroom;
for (i = 0; i < n; i++) {
/*
* the di->rxbufsize doesn't include the extra headroom,
* we need to add it to the size to be allocated
*/
p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
if (p == NULL) {
DMA_ERROR("%s: out of rxbufs\n", di->name);
if (i == 0 && dma64_rxidle(di)) {
DMA_ERROR("%s: ring is empty !\n", di->name);
ring_empty = true;
}
di->dma.rxnobuf++;
break;
}
/* reserve an extra headroom, if applicable */
if (extra_offset)
skb_pull(p, extra_offset);
/* Do a cached write instead of uncached write since DMA_MAP
* will flush the cache.
*/
*(u32 *) (p->data) = 0;
pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
DMA_FROM_DEVICE);
/* save the free packet pointer */
di->rxp[rxout] = p;
/* reset flags for each descriptor */
flags = 0;
if (rxout == (di->nrxd - 1))
flags = D64_CTRL1_EOT;
dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
di->rxbufsize);
rxout = nextrxd(di, rxout);
}
di->rxout = rxout;
/* update the chip lastdscr pointer */
bcma_write32(di->d11core, DMA64RXREGOFFS(di, ptr),
di->rcvptrbase + I2B(rxout, struct dma64desc));
return ring_empty;
}
void dma_rxreclaim(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff *p;
DMA_TRACE("%s:\n", di->name);
while ((p = _dma_getnextrxp(di, true)))
brcmu_pkt_buf_free_skb(p);
}
void dma_counterreset(struct dma_pub *pub)
{
/* reset all software counters */
pub->rxgiants = 0;
pub->rxnobuf = 0;
pub->txnobuf = 0;
}
/* get the address of the var in order to change later */
unsigned long dma_getvar(struct dma_pub *pub, const char *name)
{
struct dma_info *di = (struct dma_info *)pub;
if (!strcmp(name, "&txavail"))
return (unsigned long)&(di->dma.txavail);
return 0;
}
/* 64-bit DMA functions */
void dma_txinit(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
u32 control = D64_XC_XE;
DMA_TRACE("%s:\n", di->name);
if (di->ntxd == 0)
return;
di->txin = di->txout = 0;
di->dma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */
memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
/* DMA engine with out alignment requirement requires table to be inited
* before enabling the engine
*/
if (!di->aligndesc_4k)
_dma_ddtable_init(di, DMA_TX, di->txdpa);
if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_XC_PD;
bcma_set32(di->d11core, DMA64TXREGOFFS(di, control), control);
/* DMA engine with alignment requirement requires table to be inited
* before enabling the engine
*/
if (di->aligndesc_4k)
_dma_ddtable_init(di, DMA_TX, di->txdpa);
}
void dma_txsuspend(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
if (di->ntxd == 0)
return;
bcma_set32(di->d11core, DMA64TXREGOFFS(di, control), D64_XC_SE);
}
void dma_txresume(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
DMA_TRACE("%s:\n", di->name);
if (di->ntxd == 0)
return;
bcma_mask32(di->d11core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
}
bool dma_txsuspended(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
return (di->ntxd == 0) ||
((bcma_read32(di->d11core,
DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
D64_XC_SE);
}
void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
{
struct dma_info *di = (struct dma_info *)pub;
struct sk_buff *p;
DMA_TRACE("%s: %s\n",
di->name,
range == DMA_RANGE_ALL ? "all" :
range == DMA_RANGE_TRANSMITTED ? "transmitted" :
"transferred");
if (di->txin == di->txout)
return;
while ((p = dma_getnexttxp(pub, range))) {
/* For unframed data, we don't have any packets to free */
if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
brcmu_pkt_buf_free_skb(p);
}
}
bool dma_txreset(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
u32 status;
if (di->ntxd == 0)
return true;
/* suspend tx DMA first */
bcma_write32(di->d11core, DMA64TXREGOFFS(di, control), D64_XC_SE);
SPINWAIT(((status =
(bcma_read32(di->d11core, DMA64TXREGOFFS(di, status0)) &
D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
(status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
10000);
bcma_write32(di->d11core, DMA64TXREGOFFS(di, control), 0);
SPINWAIT(((status =
(bcma_read32(di->d11core, DMA64TXREGOFFS(di, status0)) &
D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
/* wait for the last transaction to complete */
udelay(300);
return status == D64_XS0_XS_DISABLED;
}
bool dma_rxreset(struct dma_pub *pub)
{
struct dma_info *di = (struct dma_info *)pub;
u32 status;
if (di->nrxd == 0)
return true;
bcma_write32(di->d11core, DMA64RXREGOFFS(di, control), 0);
SPINWAIT(((status =
(bcma_read32(di->d11core, DMA64RXREGOFFS(di, status0)) &
D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
return status == D64_RS0_RS_DISABLED;
}
/*
* !! tx entry routine
* WARNING: call must check the return value for error.
* the error(toss frames) could be fatal and cause many subsequent hard
* to debug problems
*/
int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit)
{
struct dma_info *di = (struct dma_info *)pub;
unsigned char *data;
uint len;
u16 txout;
u32 flags = 0;
dma_addr_t pa;
DMA_TRACE("%s:\n", di->name);
txout = di->txout;
/*
* obtain and initialize transmit descriptor entry.
*/
data = p->data;
len = p->len;
/* no use to transmit a zero length packet */
if (len == 0)
return 0;
/* return nonzero if out of tx descriptors */
if (nexttxd(di, txout) == di->txin)
goto outoftxd;
/* get physical address of buffer start */
pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
/* With a DMA segment list, Descriptor table is filled
* using the segment list instead of looping over
* buffers in multi-chain DMA. Therefore, EOF for SGLIST
* is when end of segment list is reached.
*/
flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
if (txout == (di->ntxd - 1))
flags |= D64_CTRL1_EOT;
dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
txout = nexttxd(di, txout);
/* save the packet */
di->txp[prevtxd(di, txout)] = p;
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit)
bcma_write32(di->d11core, DMA64TXREGOFFS(di, ptr),
di->xmtptrbase + I2B(txout, struct dma64desc));
/* tx flow control */
di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
return 0;
outoftxd:
DMA_ERROR("%s: out of txds !!!\n", di->name);
brcmu_pkt_buf_free_skb(p);
di->dma.txavail = 0;
di->dma.txnobuf++;
return -1;
}
/*
* Reclaim next completed txd (txds if using chained buffers) in the range
* specified and return associated packet.
* If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
* transmitted as noted by the hardware "CurrDescr" pointer.
* If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
* transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
* If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
* return associated packet regardless of the value of hardware pointers.
*/
struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
{
struct dma_info *di = (struct dma_info *)pub;
u16 start, end, i;
u16 active_desc;
struct sk_buff *txp;
DMA_TRACE("%s: %s\n",
di->name,
range == DMA_RANGE_ALL ? "all" :
range == DMA_RANGE_TRANSMITTED ? "transmitted" :
"transferred");
if (di->ntxd == 0)
return NULL;
txp = NULL;
start = di->txin;
if (range == DMA_RANGE_ALL)
end = di->txout;
else {
end = (u16) (B2I(((bcma_read32(di->d11core,
DMA64TXREGOFFS(di, status0)) &
D64_XS0_CD_MASK) - di->xmtptrbase) &
D64_XS0_CD_MASK, struct dma64desc));
if (range == DMA_RANGE_TRANSFERED) {
active_desc =
(u16)(bcma_read32(di->d11core,
DMA64TXREGOFFS(di, status1)) &
D64_XS1_AD_MASK);
active_desc =
(active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
active_desc = B2I(active_desc, struct dma64desc);
if (end != active_desc)
end = prevtxd(di, active_desc);
}
}
if ((start == 0) && (end > di->txout))
goto bogus;
for (i = start; i != end && !txp; i = nexttxd(di, i)) {
dma_addr_t pa;
uint size;
pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
size =
(le32_to_cpu(di->txd64[i].ctrl2) &
D64_CTRL2_BC_MASK);
di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
txp = di->txp[i];
di->txp[i] = NULL;
dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
}
di->txin = i;
/* tx flow control */
di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
return txp;
bogus:
DMA_NONE("bogus curr: start %d end %d txout %d\n",
start, end, di->txout);
return NULL;
}
/*
* Mac80211 initiated actions sometimes require packets in the DMA queue to be
* modified. The modified portion of the packet is not under control of the DMA
* engine. This function calls a caller-supplied function for each packet in
* the caller specified dma chain.
*/
void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
(void *pkt, void *arg_a), void *arg_a)
{
struct dma_info *di = (struct dma_info *) dmah;
uint i = di->txin;
uint end = di->txout;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
while (i != end) {
skb = (struct sk_buff *)di->txp[i];
if (skb != NULL) {
tx_info = (struct ieee80211_tx_info *)skb->cb;
(callback_fnc)(tx_info, arg_a);
}
i = nexttxd(di, i);
}
}