linux_dsm_epyc7002/drivers/pci/hotplug/acpiphp_ibm.c

501 lines
14 KiB
C
Raw Normal View History

/*
* ACPI PCI Hot Plug IBM Extension
*
* Copyright (C) 2004 Vernon Mauery <vernux@us.ibm.com>
* Copyright (C) 2004 IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <vernux@us.ibm.com>
*
*/
#define pr_fmt(fmt) "acpiphp_ibm: " fmt
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sysfs.h>
#include <linux/kobject.h>
#include <linux/moduleparam.h>
PCI: introduce pci_slot Currently, /sys/bus/pci/slots/ only exposes hotplug attributes when a hotplug driver is loaded, but PCI slots have attributes such as address, speed, width, etc. that are not related to hotplug at all. Introduce pci_slot as the primary data structure and kobject model. Hotplug attributes described in hotplug_slot become a secondary structure associated with the pci_slot. This patch only creates the infrastructure that allows the separation of PCI slot attributes and hotplug attributes. In this patch, the PCI hotplug core remains the only user of this infrastructure, and thus, /sys/bus/pci/slots/ will still only become populated when a hotplug driver is loaded. A later patch in this series will add a second user of this new infrastructure and demonstrate splitting the task of exposing pci_slot attributes from hotplug_slot attributes. - Make pci_slot the primary sysfs entity. hotplug_slot becomes a subsidiary structure. o pci_create_slot() creates and registers a slot with the PCI core o pci_slot_add_hotplug() gives it hotplug capability - Change the prototype of pci_hp_register() to take the bus and slot number (on parent bus) as parameters. - Remove all the ->get_address methods since this functionality is now handled by pci_slot directly. [achiang@hp.com: rpaphp-correctly-pci_hp_register-for-empty-pci-slots] Tested-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: make headers_check happy] [akpm@linux-foundation.org: nuther build fix] [akpm@linux-foundation.org: fix typo in #include] Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Matthew Wilcox <matthew@wil.cx> Cc: Greg KH <greg@kroah.com> Cc: Kristen Carlson Accardi <kristen.c.accardi@intel.com> Cc: Len Brown <lenb@kernel.org> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-06-11 04:28:50 +07:00
#include <linux/pci.h>
#include <linux/uaccess.h>
#include "acpiphp.h"
PCI: introduce pci_slot Currently, /sys/bus/pci/slots/ only exposes hotplug attributes when a hotplug driver is loaded, but PCI slots have attributes such as address, speed, width, etc. that are not related to hotplug at all. Introduce pci_slot as the primary data structure and kobject model. Hotplug attributes described in hotplug_slot become a secondary structure associated with the pci_slot. This patch only creates the infrastructure that allows the separation of PCI slot attributes and hotplug attributes. In this patch, the PCI hotplug core remains the only user of this infrastructure, and thus, /sys/bus/pci/slots/ will still only become populated when a hotplug driver is loaded. A later patch in this series will add a second user of this new infrastructure and demonstrate splitting the task of exposing pci_slot attributes from hotplug_slot attributes. - Make pci_slot the primary sysfs entity. hotplug_slot becomes a subsidiary structure. o pci_create_slot() creates and registers a slot with the PCI core o pci_slot_add_hotplug() gives it hotplug capability - Change the prototype of pci_hp_register() to take the bus and slot number (on parent bus) as parameters. - Remove all the ->get_address methods since this functionality is now handled by pci_slot directly. [achiang@hp.com: rpaphp-correctly-pci_hp_register-for-empty-pci-slots] Tested-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: make headers_check happy] [akpm@linux-foundation.org: nuther build fix] [akpm@linux-foundation.org: fix typo in #include] Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Matthew Wilcox <matthew@wil.cx> Cc: Greg KH <greg@kroah.com> Cc: Kristen Carlson Accardi <kristen.c.accardi@intel.com> Cc: Len Brown <lenb@kernel.org> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-06-11 04:28:50 +07:00
#include "../pci.h"
#define DRIVER_VERSION "1.0.1"
#define DRIVER_AUTHOR "Irene Zubarev <zubarev@us.ibm.com>, Vernon Mauery <vernux@us.ibm.com>"
#define DRIVER_DESC "ACPI Hot Plug PCI Controller Driver IBM extension"
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRIVER_VERSION);
#define FOUND_APCI 0x61504349
/* these are the names for the IBM ACPI pseudo-device */
#define IBM_HARDWARE_ID1 "IBM37D0"
#define IBM_HARDWARE_ID2 "IBM37D4"
#define hpslot_to_sun(A) (((struct slot *)((A)->private))->sun)
/* union apci_descriptor - allows access to the
* various device descriptors that are embedded in the
* aPCI table
*/
union apci_descriptor {
struct {
char sig[4];
u8 len;
} header;
struct {
u8 type;
u8 len;
u16 slot_id;
u8 bus_id;
u8 dev_num;
u8 slot_num;
u8 slot_attr[2];
u8 attn;
u8 status[2];
u8 sun;
u8 res[3];
} slot;
struct {
u8 type;
u8 len;
} generic;
};
/* struct notification - keeps info about the device
* that cause the ACPI notification event
*/
struct notification {
struct acpi_device *device;
u8 event;
};
static int ibm_set_attention_status(struct hotplug_slot *slot, u8 status);
static int ibm_get_attention_status(struct hotplug_slot *slot, u8 *status);
static void ibm_handle_events(acpi_handle handle, u32 event, void *context);
static int ibm_get_table_from_acpi(char **bufp);
static ssize_t ibm_read_apci_table(struct file *filp, struct kobject *kobj,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 12:57:22 +07:00
struct bin_attribute *bin_attr,
char *buffer, loff_t pos, size_t size);
static acpi_status __init ibm_find_acpi_device(acpi_handle handle,
u32 lvl, void *context, void **rv);
static int __init ibm_acpiphp_init(void);
static void __exit ibm_acpiphp_exit(void);
static acpi_handle ibm_acpi_handle;
static struct notification ibm_note;
static struct bin_attribute ibm_apci_table_attr __ro_after_init = {
.attr = {
.name = "apci_table",
.mode = S_IRUGO,
},
.read = ibm_read_apci_table,
.write = NULL,
};
static struct acpiphp_attention_info ibm_attention_info =
{
.set_attn = ibm_set_attention_status,
.get_attn = ibm_get_attention_status,
.owner = THIS_MODULE,
};
/**
* ibm_slot_from_id - workaround for bad ibm hardware
* @id: the slot number that linux refers to the slot by
*
* Description: This method returns the aCPI slot descriptor
* corresponding to the Linux slot number. This descriptor
* has info about the aPCI slot id and attention status.
* This descriptor must be freed using kfree when done.
*/
static union apci_descriptor *ibm_slot_from_id(int id)
{
int ind = 0, size;
union apci_descriptor *ret = NULL, *des;
char *table;
size = ibm_get_table_from_acpi(&table);
if (size < 0)
return NULL;
des = (union apci_descriptor *)table;
if (memcmp(des->header.sig, "aPCI", 4) != 0)
goto ibm_slot_done;
des = (union apci_descriptor *)&table[ind += des->header.len];
while (ind < size && (des->generic.type != 0x82 ||
des->slot.slot_num != id)) {
des = (union apci_descriptor *)&table[ind += des->generic.len];
}
if (ind < size && des->slot.slot_num == id)
ret = des;
ibm_slot_done:
if (ret) {
ret = kmalloc(sizeof(union apci_descriptor), GFP_KERNEL);
if (ret)
memcpy(ret, des, sizeof(union apci_descriptor));
}
kfree(table);
return ret;
}
/**
* ibm_set_attention_status - callback method to set the attention LED
* @slot: the hotplug_slot to work with
* @status: what to set the LED to (0 or 1)
*
* Description: This method is registered with the acpiphp module as a
* callback to do the device specific task of setting the LED status.
*/
static int ibm_set_attention_status(struct hotplug_slot *slot, u8 status)
{
union acpi_object args[2];
struct acpi_object_list params = { .pointer = args, .count = 2 };
acpi_status stat;
unsigned long long rc;
union apci_descriptor *ibm_slot;
int id = hpslot_to_sun(slot);
ibm_slot = ibm_slot_from_id(id);
if (!ibm_slot) {
pr_err("APLS null ACPI descriptor for slot %d\n", id);
return -ENODEV;
}
pr_debug("%s: set slot %d (%d) attention status to %d\n", __func__,
ibm_slot->slot.slot_num, ibm_slot->slot.slot_id,
(status ? 1 : 0));
args[0].type = ACPI_TYPE_INTEGER;
args[0].integer.value = ibm_slot->slot.slot_id;
args[1].type = ACPI_TYPE_INTEGER;
args[1].integer.value = (status) ? 1 : 0;
kfree(ibm_slot);
stat = acpi_evaluate_integer(ibm_acpi_handle, "APLS", &params, &rc);
if (ACPI_FAILURE(stat)) {
pr_err("APLS evaluation failed: 0x%08x\n", stat);
return -ENODEV;
} else if (!rc) {
pr_err("APLS method failed: 0x%08llx\n", rc);
return -ERANGE;
}
return 0;
}
/**
* ibm_get_attention_status - callback method to get attention LED status
* @slot: the hotplug_slot to work with
* @status: returns what the LED is set to (0 or 1)
*
* Description: This method is registered with the acpiphp module as a
* callback to do the device specific task of getting the LED status.
*
* Because there is no direct method of getting the LED status directly
* from an ACPI call, we read the aPCI table and parse out our
* slot descriptor to read the status from that.
*/
static int ibm_get_attention_status(struct hotplug_slot *slot, u8 *status)
{
union apci_descriptor *ibm_slot;
int id = hpslot_to_sun(slot);
ibm_slot = ibm_slot_from_id(id);
if (!ibm_slot) {
pr_err("APLS null ACPI descriptor for slot %d\n", id);
return -ENODEV;
}
if (ibm_slot->slot.attn & 0xa0 || ibm_slot->slot.status[1] & 0x08)
*status = 1;
else
*status = 0;
pr_debug("%s: get slot %d (%d) attention status is %d\n", __func__,
ibm_slot->slot.slot_num, ibm_slot->slot.slot_id,
*status);
kfree(ibm_slot);
return 0;
}
/**
* ibm_handle_events - listens for ACPI events for the IBM37D0 device
* @handle: an ACPI handle to the device that caused the event
* @event: the event info (device specific)
* @context: passed context (our notification struct)
*
* Description: This method is registered as a callback with the ACPI
* subsystem it is called when this device has an event to notify the OS of.
*
* The events actually come from the device as two events that get
* synthesized into one event with data by this function. The event
* ID comes first and then the slot number that caused it. We report
* this as one event to the OS.
*
* From section 5.6.2.2 of the ACPI 2.0 spec, I understand that the OSPM will
* only re-enable the interrupt that causes this event AFTER this method
* has returned, thereby enforcing serial access for the notification struct.
*/
static void ibm_handle_events(acpi_handle handle, u32 event, void *context)
{
u8 detail = event & 0x0f;
u8 subevent = event & 0xf0;
struct notification *note = context;
pr_debug("%s: Received notification %02x\n", __func__, event);
if (subevent == 0x80) {
pr_debug("%s: generating bus event\n", __func__);
acpi_bus_generate_netlink_event(note->device->pnp.device_class,
dev_name(&note->device->dev),
note->event, detail);
} else
note->event = event;
}
/**
* ibm_get_table_from_acpi - reads the APLS buffer from ACPI
* @bufp: address to pointer to allocate for the table
*
* Description: This method reads the APLS buffer in from ACPI and
* stores the "stripped" table into a single buffer
* it allocates and passes the address back in bufp.
*
* If NULL is passed in as buffer, this method only calculates
* the size of the table and returns that without filling
* in the buffer.
*
* Returns < 0 on error or the size of the table on success.
*/
static int ibm_get_table_from_acpi(char **bufp)
{
union acpi_object *package;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
acpi_status status;
char *lbuf = NULL;
int i, size = -EIO;
status = acpi_evaluate_object(ibm_acpi_handle, "APCI", NULL, &buffer);
if (ACPI_FAILURE(status)) {
pr_err("%s: APCI evaluation failed\n", __func__);
return -ENODEV;
}
package = (union acpi_object *) buffer.pointer;
if (!(package) ||
(package->type != ACPI_TYPE_PACKAGE) ||
!(package->package.elements)) {
pr_err("%s: Invalid APCI object\n", __func__);
goto read_table_done;
}
for (size = 0, i = 0; i < package->package.count; i++) {
if (package->package.elements[i].type != ACPI_TYPE_BUFFER) {
pr_err("%s: Invalid APCI element %d\n", __func__, i);
goto read_table_done;
}
size += package->package.elements[i].buffer.length;
}
if (bufp == NULL)
goto read_table_done;
lbuf = kzalloc(size, GFP_KERNEL);
pr_debug("%s: element count: %i, ASL table size: %i, &table = 0x%p\n",
__func__, package->package.count, size, lbuf);
if (lbuf) {
*bufp = lbuf;
} else {
size = -ENOMEM;
goto read_table_done;
}
size = 0;
for (i = 0; i < package->package.count; i++) {
memcpy(&lbuf[size],
package->package.elements[i].buffer.pointer,
package->package.elements[i].buffer.length);
size += package->package.elements[i].buffer.length;
}
read_table_done:
kfree(buffer.pointer);
return size;
}
/**
* ibm_read_apci_table - callback for the sysfs apci_table file
* @filp: the open sysfs file
* @kobj: the kobject this binary attribute is a part of
* @bin_attr: struct bin_attribute for this file
* @buffer: the kernel space buffer to fill
* @pos: the offset into the file
* @size: the number of bytes requested
*
* Description: Gets registered with sysfs as the reader callback
* to be executed when /sys/bus/pci/slots/apci_table gets read.
*
* Since we don't get notified on open and close for this file,
* things get really tricky here...
* our solution is to only allow reading the table in all at once.
*/
static ssize_t ibm_read_apci_table(struct file *filp, struct kobject *kobj,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 12:57:22 +07:00
struct bin_attribute *bin_attr,
char *buffer, loff_t pos, size_t size)
{
int bytes_read = -EINVAL;
char *table = NULL;
pr_debug("%s: pos = %d, size = %zd\n", __func__, (int)pos, size);
if (pos == 0) {
bytes_read = ibm_get_table_from_acpi(&table);
if (bytes_read > 0 && bytes_read <= size)
memcpy(buffer, table, bytes_read);
kfree(table);
}
return bytes_read;
}
/**
* ibm_find_acpi_device - callback to find our ACPI device
* @handle: the ACPI handle of the device we are inspecting
* @lvl: depth into the namespace tree
* @context: a pointer to our handle to fill when we find the device
* @rv: a return value to fill if desired
*
* Description: Used as a callback when calling acpi_walk_namespace
* to find our device. When this method returns non-zero
* acpi_walk_namespace quits its search and returns our value.
*/
static acpi_status __init ibm_find_acpi_device(acpi_handle handle,
u32 lvl, void *context, void **rv)
{
acpi_handle *phandle = (acpi_handle *)context;
acpi_status status;
struct acpi_device_info *info;
int retval = 0;
status = acpi_get_object_info(handle, &info);
if (ACPI_FAILURE(status)) {
pr_err("%s: Failed to get device information status=0x%x\n",
__func__, status);
return retval;
}
if (info->current_status && (info->valid & ACPI_VALID_HID) &&
(!strcmp(info->hardware_id.string, IBM_HARDWARE_ID1) ||
!strcmp(info->hardware_id.string, IBM_HARDWARE_ID2))) {
pr_debug("found hardware: %s, handle: %p\n",
info->hardware_id.string, handle);
*phandle = handle;
/* returning non-zero causes the search to stop
* and returns this value to the caller of
* acpi_walk_namespace, but it also causes some warnings
* in the acpi debug code to print...
*/
retval = FOUND_APCI;
}
kfree(info);
return retval;
}
static int __init ibm_acpiphp_init(void)
{
int retval = 0;
acpi_status status;
struct acpi_device *device;
PCI: introduce pci_slot Currently, /sys/bus/pci/slots/ only exposes hotplug attributes when a hotplug driver is loaded, but PCI slots have attributes such as address, speed, width, etc. that are not related to hotplug at all. Introduce pci_slot as the primary data structure and kobject model. Hotplug attributes described in hotplug_slot become a secondary structure associated with the pci_slot. This patch only creates the infrastructure that allows the separation of PCI slot attributes and hotplug attributes. In this patch, the PCI hotplug core remains the only user of this infrastructure, and thus, /sys/bus/pci/slots/ will still only become populated when a hotplug driver is loaded. A later patch in this series will add a second user of this new infrastructure and demonstrate splitting the task of exposing pci_slot attributes from hotplug_slot attributes. - Make pci_slot the primary sysfs entity. hotplug_slot becomes a subsidiary structure. o pci_create_slot() creates and registers a slot with the PCI core o pci_slot_add_hotplug() gives it hotplug capability - Change the prototype of pci_hp_register() to take the bus and slot number (on parent bus) as parameters. - Remove all the ->get_address methods since this functionality is now handled by pci_slot directly. [achiang@hp.com: rpaphp-correctly-pci_hp_register-for-empty-pci-slots] Tested-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: make headers_check happy] [akpm@linux-foundation.org: nuther build fix] [akpm@linux-foundation.org: fix typo in #include] Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Matthew Wilcox <matthew@wil.cx> Cc: Greg KH <greg@kroah.com> Cc: Kristen Carlson Accardi <kristen.c.accardi@intel.com> Cc: Len Brown <lenb@kernel.org> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-06-11 04:28:50 +07:00
struct kobject *sysdir = &pci_slots_kset->kobj;
pr_debug("%s\n", __func__);
if (acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
ACPI_UINT32_MAX, ibm_find_acpi_device, NULL,
&ibm_acpi_handle, NULL) != FOUND_APCI) {
pr_err("%s: acpi_walk_namespace failed\n", __func__);
retval = -ENODEV;
goto init_return;
}
pr_debug("%s: found IBM aPCI device\n", __func__);
if (acpi_bus_get_device(ibm_acpi_handle, &device)) {
pr_err("%s: acpi_bus_get_device failed\n", __func__);
retval = -ENODEV;
goto init_return;
}
if (acpiphp_register_attention(&ibm_attention_info)) {
retval = -ENODEV;
goto init_return;
}
ibm_note.device = device;
status = acpi_install_notify_handler(ibm_acpi_handle,
ACPI_DEVICE_NOTIFY, ibm_handle_events,
&ibm_note);
if (ACPI_FAILURE(status)) {
pr_err("%s: Failed to register notification handler\n",
__func__);
retval = -EBUSY;
goto init_cleanup;
}
ibm_apci_table_attr.size = ibm_get_table_from_acpi(NULL);
retval = sysfs_create_bin_file(sysdir, &ibm_apci_table_attr);
return retval;
init_cleanup:
acpiphp_unregister_attention(&ibm_attention_info);
init_return:
return retval;
}
static void __exit ibm_acpiphp_exit(void)
{
acpi_status status;
PCI: introduce pci_slot Currently, /sys/bus/pci/slots/ only exposes hotplug attributes when a hotplug driver is loaded, but PCI slots have attributes such as address, speed, width, etc. that are not related to hotplug at all. Introduce pci_slot as the primary data structure and kobject model. Hotplug attributes described in hotplug_slot become a secondary structure associated with the pci_slot. This patch only creates the infrastructure that allows the separation of PCI slot attributes and hotplug attributes. In this patch, the PCI hotplug core remains the only user of this infrastructure, and thus, /sys/bus/pci/slots/ will still only become populated when a hotplug driver is loaded. A later patch in this series will add a second user of this new infrastructure and demonstrate splitting the task of exposing pci_slot attributes from hotplug_slot attributes. - Make pci_slot the primary sysfs entity. hotplug_slot becomes a subsidiary structure. o pci_create_slot() creates and registers a slot with the PCI core o pci_slot_add_hotplug() gives it hotplug capability - Change the prototype of pci_hp_register() to take the bus and slot number (on parent bus) as parameters. - Remove all the ->get_address methods since this functionality is now handled by pci_slot directly. [achiang@hp.com: rpaphp-correctly-pci_hp_register-for-empty-pci-slots] Tested-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: make headers_check happy] [akpm@linux-foundation.org: nuther build fix] [akpm@linux-foundation.org: fix typo in #include] Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Matthew Wilcox <matthew@wil.cx> Cc: Greg KH <greg@kroah.com> Cc: Kristen Carlson Accardi <kristen.c.accardi@intel.com> Cc: Len Brown <lenb@kernel.org> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-06-11 04:28:50 +07:00
struct kobject *sysdir = &pci_slots_kset->kobj;
pr_debug("%s\n", __func__);
if (acpiphp_unregister_attention(&ibm_attention_info))
pr_err("%s: attention info deregistration failed", __func__);
status = acpi_remove_notify_handler(
ibm_acpi_handle,
ACPI_DEVICE_NOTIFY,
ibm_handle_events);
if (ACPI_FAILURE(status))
pr_err("%s: Notification handler removal failed\n", __func__);
/* remove the /sys entries */
sysfs_remove_bin_file(sysdir, &ibm_apci_table_attr);
}
module_init(ibm_acpiphp_init);
module_exit(ibm_acpiphp_exit);