linux_dsm_epyc7002/arch/mips/kernel/smp.c

699 lines
16 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2000, 2001 Kanoj Sarcar
* Copyright (C) 2000, 2001 Ralf Baechle
* Copyright (C) 2000, 2001 Silicon Graphics, Inc.
* Copyright (C) 2000, 2001, 2003 Broadcom Corporation
*/
#include <linux/cache.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/export.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
Remove fs.h from mm.h Remove fs.h from mm.h. For this, 1) Uninline vma_wants_writenotify(). It's pretty huge anyway. 2) Add back fs.h or less bloated headers (err.h) to files that need it. As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files rebuilt down to 3444 (-12.3%). Cross-compile tested without regressions on my two usual configs and (sigh): alpha arm-mx1ads mips-bigsur powerpc-ebony alpha-allnoconfig arm-neponset mips-capcella powerpc-g5 alpha-defconfig arm-netwinder mips-cobalt powerpc-holly alpha-up arm-netx mips-db1000 powerpc-iseries arm arm-ns9xxx mips-db1100 powerpc-linkstation arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200 arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2 arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads arm-ep93xx i386-up mips-pb1100 powerpc-pasemi arm-footbridge ia64 mips-pb1500 powerpc-pmac32 arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64 arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800 arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3 arm-h7202 ia64-gensparse mips-qemu powerpc-pseries arm-hackkit ia64-sim mips-rbhma4200 powerpc-up arm-integrator ia64-sn2 mips-rbhma4500 s390 arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig arm-iop33x ia64-zx1 mips-sead s390-up arm-ixp2000 m68k mips-tb0219 sparc arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig arm-jornada720 m68k-atari mips-workpad sparc-up arm-kafa m68k-bvme6000 mips-wrppmc sparc64 arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig arm-ks8695 m68k-mac parisc sparc64-defconfig arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64 arm-lpd7a400 m68k-q40 parisc-up x86_64 arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig arm-lusl7200 mips powerpc-celleb x86_64-up arm-mainstone mips-atlas powerpc-chrp32 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-30 05:36:13 +07:00
#include <linux/err.h>
#include <linux/ftrace.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/atomic.h>
#include <asm/cpu.h>
#include <asm/processor.h>
#include <asm/idle.h>
#include <asm/r4k-timer.h>
#include <asm/mips-cpc.h>
#include <asm/mmu_context.h>
#include <asm/time.h>
#include <asm/setup.h>
#include <asm/maar.h>
MIPS: SMP: Fix build error. CC arch/mips/kernel/smp.o arch/mips/kernel/smp.c: In function ‘start_secondary’: arch/mips/kernel/smp.c:149:2: error: passing argument 2 of ‘cpumask_set_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] cpumask_set_cpu(cpu, &cpu_callin_map); ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:272:91: note: expected ‘struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) ^ arch/mips/kernel/smp.c: In function ‘smp_prepare_boot_cpu’: arch/mips/kernel/smp.c:211:2: error: passing argument 2 of ‘cpumask_set_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] cpumask_set_cpu(0, &cpu_callin_map); ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:272:91: note: expected ‘struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) ^ arch/mips/kernel/smp.c: In function ‘__cpu_up’: arch/mips/kernel/smp.c:221:10: error: passing argument 2 of ‘cpumask_test_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] while (!cpumask_test_cpu(cpu, &cpu_callin_map)) ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:294:90: note: expected ‘const struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) ^ cc1: all warnings being treated as errors make[2]: *** [arch/mips/kernel/smp.o] Error 1 make[1]: *** [arch/mips/kernel] Error 2 make: *** [arch/mips] Error 2 Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-05-12 11:43:04 +07:00
cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
EXPORT_SYMBOL(__cpu_number_map);
int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
EXPORT_SYMBOL(__cpu_logical_map);
/* Number of TCs (or siblings in Intel speak) per CPU core */
int smp_num_siblings = 1;
EXPORT_SYMBOL(smp_num_siblings);
/* representing the TCs (or siblings in Intel speak) of each logical CPU */
cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_sibling_map);
/* representing the core map of multi-core chips of each logical CPU */
cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_core_map);
/*
* A logcal cpu mask containing only one VPE per core to
* reduce the number of IPIs on large MT systems.
*/
cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_foreign_map);
/* representing cpus for which sibling maps can be computed */
static cpumask_t cpu_sibling_setup_map;
/* representing cpus for which core maps can be computed */
static cpumask_t cpu_core_setup_map;
cpumask_t cpu_coherent_mask;
#ifdef CONFIG_GENERIC_IRQ_IPI
static struct irq_desc *call_desc;
static struct irq_desc *sched_desc;
#endif
static inline void set_cpu_sibling_map(int cpu)
{
int i;
cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
if (smp_num_siblings > 1) {
for_each_cpu(i, &cpu_sibling_setup_map) {
if (cpu_data[cpu].package == cpu_data[i].package &&
cpu_data[cpu].core == cpu_data[i].core) {
cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
}
}
} else
cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
}
static inline void set_cpu_core_map(int cpu)
{
int i;
cpumask_set_cpu(cpu, &cpu_core_setup_map);
for_each_cpu(i, &cpu_core_setup_map) {
if (cpu_data[cpu].package == cpu_data[i].package) {
cpumask_set_cpu(i, &cpu_core_map[cpu]);
cpumask_set_cpu(cpu, &cpu_core_map[i]);
}
}
}
/*
* Calculate a new cpu_foreign_map mask whenever a
* new cpu appears or disappears.
*/
void calculate_cpu_foreign_map(void)
{
int i, k, core_present;
cpumask_t temp_foreign_map;
/* Re-calculate the mask */
cpumask_clear(&temp_foreign_map);
for_each_online_cpu(i) {
core_present = 0;
for_each_cpu(k, &temp_foreign_map)
if (cpu_data[i].package == cpu_data[k].package &&
cpu_data[i].core == cpu_data[k].core)
core_present = 1;
if (!core_present)
cpumask_set_cpu(i, &temp_foreign_map);
}
for_each_online_cpu(i)
cpumask_andnot(&cpu_foreign_map[i],
&temp_foreign_map, &cpu_sibling_map[i]);
}
struct plat_smp_ops *mp_ops;
EXPORT_SYMBOL(mp_ops);
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 20:38:59 +07:00
void register_smp_ops(struct plat_smp_ops *ops)
{
if (mp_ops)
printk(KERN_WARNING "Overriding previously set SMP ops\n");
mp_ops = ops;
}
#ifdef CONFIG_GENERIC_IRQ_IPI
void mips_smp_send_ipi_single(int cpu, unsigned int action)
{
mips_smp_send_ipi_mask(cpumask_of(cpu), action);
}
void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
{
unsigned long flags;
unsigned int core;
int cpu;
local_irq_save(flags);
switch (action) {
case SMP_CALL_FUNCTION:
__ipi_send_mask(call_desc, mask);
break;
case SMP_RESCHEDULE_YOURSELF:
__ipi_send_mask(sched_desc, mask);
break;
default:
BUG();
}
if (mips_cpc_present()) {
for_each_cpu(cpu, mask) {
core = cpu_data[cpu].core;
if (core == current_cpu_data.core)
continue;
while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
mips_cm_lock_other(core, 0);
mips_cpc_lock_other(core);
write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
mips_cpc_unlock_other();
mips_cm_unlock_other();
}
}
}
local_irq_restore(flags);
}
static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
{
scheduler_ipi();
return IRQ_HANDLED;
}
static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
{
generic_smp_call_function_interrupt();
return IRQ_HANDLED;
}
static struct irqaction irq_resched = {
.handler = ipi_resched_interrupt,
.flags = IRQF_PERCPU,
.name = "IPI resched"
};
static struct irqaction irq_call = {
.handler = ipi_call_interrupt,
.flags = IRQF_PERCPU,
.name = "IPI call"
};
static void smp_ipi_init_one(unsigned int virq,
struct irqaction *action)
{
int ret;
irq_set_handler(virq, handle_percpu_irq);
ret = setup_irq(virq, action);
BUG_ON(ret);
}
static unsigned int call_virq, sched_virq;
int mips_smp_ipi_allocate(const struct cpumask *mask)
{
int virq;
struct irq_domain *ipidomain;
struct device_node *node;
node = of_irq_find_parent(of_root);
ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
/*
* Some platforms have half DT setup. So if we found irq node but
* didn't find an ipidomain, try to search for one that is not in the
* DT.
*/
if (node && !ipidomain)
ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
MIPS: Don't BUG_ON when no IPI domain is found Commit fbde2d7d8290 ("MIPS: Add generic SMP IPI support") introduced code that BUG_ON's in the case of a kernel that supports IPI domains but does not have one at runtime. This case is possible on Malta where for IPIs we may use either the GIC (which has an IPI IRQ domain implementation) or core-local software interrupts between VPEs (which do not currently have an IPI IRQ domain implementation). We can not know which will be used until runtime when we know whether a GIC is actually present, and if we run on a system with multiple VPEs and no GIC then the BUG_ON is hit. Commit 19fb5818ed60 ("IPS: Fix broken malta qemu") worked around this for the single-core single-VPE case typically seen using QEMU, but does not catch the multi-VPE case. This patch removes the insufficient CPU presence check that was added and works around the bug differently, effectively reverting that commit. A simple way to reproduce this bug is by using QEMU, which partially implements the MT ASE but does not implement the GIC as of version 2.5. Using "-cpu 34Kf -smp 2" will present a system with 2 VPEs in one core & no GIC, hitting the BUG_ON. Given that we're post-merge-window on the way to v4.6, avoid this by just returning from mips_smp_ipi_init when no IPI IRQ domain is found. Ideally at some point all IPI implementations would be converted to the same IPI IRQ domain interface & we'd be able to restore the check. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: Qais Yousef <qsyousef@gmail.com> Fixes: fbde2d7d8290 ("MIPS: Add generic SMP IPI support") Fixes: 19fb5818ed60 ("IPS: Fix broken malta qemu") Reverts: 19fb5818ed60 ("IPS: Fix broken malta qemu") Cc: Qais Yousef <qsyousef@gmail.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Alex Smith <alex.smith@imgtec.com> Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/13007/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-04-04 16:04:52 +07:00
/*
* There are systems which only use IPI domains some of the time,
* depending upon configuration we don't know until runtime. An
* example is Malta where we may compile in support for GIC & the
* MT ASE, but run on a system which has multiple VPEs in a single
* core and doesn't include a GIC. Until all IPI implementations
* have been converted to use IPI domains the best we can do here
* is to return & hope some other code sets up the IPIs.
*/
if (!ipidomain)
return 0;
virq = irq_reserve_ipi(ipidomain, mask);
BUG_ON(!virq);
if (!call_virq)
call_virq = virq;
virq = irq_reserve_ipi(ipidomain, mask);
BUG_ON(!virq);
if (!sched_virq)
sched_virq = virq;
if (irq_domain_is_ipi_per_cpu(ipidomain)) {
int cpu;
for_each_cpu(cpu, mask) {
smp_ipi_init_one(call_virq + cpu, &irq_call);
smp_ipi_init_one(sched_virq + cpu, &irq_resched);
}
} else {
smp_ipi_init_one(call_virq, &irq_call);
smp_ipi_init_one(sched_virq, &irq_resched);
}
return 0;
}
int mips_smp_ipi_free(const struct cpumask *mask)
{
struct irq_domain *ipidomain;
struct device_node *node;
node = of_irq_find_parent(of_root);
ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
/*
* Some platforms have half DT setup. So if we found irq node but
* didn't find an ipidomain, try to search for one that is not in the
* DT.
*/
if (node && !ipidomain)
ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
BUG_ON(!ipidomain);
if (irq_domain_is_ipi_per_cpu(ipidomain)) {
int cpu;
for_each_cpu(cpu, mask) {
remove_irq(call_virq + cpu, &irq_call);
remove_irq(sched_virq + cpu, &irq_resched);
}
}
irq_destroy_ipi(call_virq, mask);
irq_destroy_ipi(sched_virq, mask);
return 0;
}
static int __init mips_smp_ipi_init(void)
{
mips_smp_ipi_allocate(cpu_possible_mask);
call_desc = irq_to_desc(call_virq);
sched_desc = irq_to_desc(sched_virq);
return 0;
}
early_initcall(mips_smp_ipi_init);
#endif
/*
* First C code run on the secondary CPUs after being started up by
* the master.
*/
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 20:38:59 +07:00
asmlinkage void start_secondary(void)
{
unsigned int cpu;
cpu_probe();
per_cpu_trap_init(false);
mips_clockevent_init();
mp_ops->init_secondary();
cpu_report();
maar_init();
/*
* XXX parity protection should be folded in here when it's converted
* to an option instead of something based on .cputype
*/
calibrate_delay();
preempt_disable();
cpu = smp_processor_id();
cpu_data[cpu].udelay_val = loops_per_jiffy;
cpumask_set_cpu(cpu, &cpu_coherent_mask);
notify_cpu_starting(cpu);
cpumask_set_cpu(cpu, &cpu_callin_map);
synchronise_count_slave(cpu);
set_cpu_online(cpu, true);
set_cpu_sibling_map(cpu);
set_cpu_core_map(cpu);
calculate_cpu_foreign_map();
/*
* irq will be enabled in ->smp_finish(), enabling it too early
* is dangerous.
*/
WARN_ON_ONCE(!irqs_disabled());
mp_ops->smp_finish();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}
static void stop_this_cpu(void *dummy)
{
/*
MIPS: SMP: Drop stop_this_cpu() cpu_foreign_map hack Commit cccf34e9411c ("MIPS: c-r4k: Fix cache flushing for MT cores") added the cpu_foreign_map cpumask containing a single VPE from each online core, and recalculated it when secondary CPUs are brought up. stop_this_cpu() was also updated to recalculate cpu_foreign_map, but with an additional hack before marking the CPU as offline to copy cpu_online_mask into cpu_foreign_map and perform an SMP memory barrier. This appears to have been intended to prevent cache management IPIs being missed when the VPE representing the core in cpu_foreign_map is taken offline while other VPEs remain online. Unfortunately there is nothing in this hack to prevent r4k_on_each_cpu() from reading the old cpu_foreign_map, and smp_call_function_many() from reading that new cpu_online_mask with the core's representative VPE marked offline. It then wouldn't send an IPI to any online VPEs of that core. stop_this_cpu() is only actually called in panic and system shutdown / halt / reboot situations, in which case all CPUs are going down and we don't really need to care about cache management, so drop this hack. Note that the __cpu_disable() case for CPU hotplug is handled in the previous commit, and no synchronisation is needed there due to the use of stop_machine() which prevents hotplug from taking place while any CPU has disabled preemption (as r4k_on_each_cpu() does). Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/13796/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-07-13 20:12:46 +07:00
* Remove this CPU:
*/
set_cpu_online(smp_processor_id(), false);
calculate_cpu_foreign_map();
local_irq_disable();
while (1);
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 0);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
}
/* called from main before smp_init() */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
init_new_context(current, &init_mm);
current_thread_info()->cpu = 0;
mp_ops->prepare_cpus(max_cpus);
set_cpu_sibling_map(0);
set_cpu_core_map(0);
calculate_cpu_foreign_map();
#ifndef CONFIG_HOTPLUG_CPU
init_cpu_present(cpu_possible_mask);
#endif
cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
}
/* preload SMP state for boot cpu */
void smp_prepare_boot_cpu(void)
{
set_cpu_possible(0, true);
set_cpu_online(0, true);
cpumask_set_cpu(0, &cpu_callin_map);
}
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 20:38:59 +07:00
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
mp_ops->boot_secondary(cpu, tidle);
/*
* Trust is futile. We should really have timeouts ...
*/
MIPS: SMP: Fix build error. CC arch/mips/kernel/smp.o arch/mips/kernel/smp.c: In function ‘start_secondary’: arch/mips/kernel/smp.c:149:2: error: passing argument 2 of ‘cpumask_set_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] cpumask_set_cpu(cpu, &cpu_callin_map); ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:272:91: note: expected ‘struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) ^ arch/mips/kernel/smp.c: In function ‘smp_prepare_boot_cpu’: arch/mips/kernel/smp.c:211:2: error: passing argument 2 of ‘cpumask_set_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] cpumask_set_cpu(0, &cpu_callin_map); ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:272:91: note: expected ‘struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) ^ arch/mips/kernel/smp.c: In function ‘__cpu_up’: arch/mips/kernel/smp.c:221:10: error: passing argument 2 of ‘cpumask_test_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] while (!cpumask_test_cpu(cpu, &cpu_callin_map)) ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:294:90: note: expected ‘const struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) ^ cc1: all warnings being treated as errors make[2]: *** [arch/mips/kernel/smp.o] Error 1 make[1]: *** [arch/mips/kernel] Error 2 make: *** [arch/mips] Error 2 Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-05-12 11:43:04 +07:00
while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
udelay(100);
MIPS: SMP: Fix build error. CC arch/mips/kernel/smp.o arch/mips/kernel/smp.c: In function ‘start_secondary’: arch/mips/kernel/smp.c:149:2: error: passing argument 2 of ‘cpumask_set_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] cpumask_set_cpu(cpu, &cpu_callin_map); ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:272:91: note: expected ‘struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) ^ arch/mips/kernel/smp.c: In function ‘smp_prepare_boot_cpu’: arch/mips/kernel/smp.c:211:2: error: passing argument 2 of ‘cpumask_set_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] cpumask_set_cpu(0, &cpu_callin_map); ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:272:91: note: expected ‘struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) ^ arch/mips/kernel/smp.c: In function ‘__cpu_up’: arch/mips/kernel/smp.c:221:10: error: passing argument 2 of ‘cpumask_test_cpu’ discards ‘volatile’ qualifier from pointer target type [-Werror] while (!cpumask_test_cpu(cpu, &cpu_callin_map)) ^ In file included from ./arch/mips/include/asm/processor.h:14:0, from ./arch/mips/include/asm/thread_info.h:15, from include/linux/thread_info.h:54, from include/asm-generic/preempt.h:4, from arch/mips/include/generated/asm/preempt.h:1, from include/linux/preempt.h:18, from include/linux/interrupt.h:8, from arch/mips/kernel/smp.c:24: include/linux/cpumask.h:294:90: note: expected ‘const struct cpumask *’ but argument is of type ‘volatile struct cpumask_t *’ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) ^ cc1: all warnings being treated as errors make[2]: *** [arch/mips/kernel/smp.o] Error 1 make[1]: *** [arch/mips/kernel] Error 2 make: *** [arch/mips] Error 2 Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-05-12 11:43:04 +07:00
schedule();
}
synchronise_count_master(cpu);
return 0;
}
/* Not really SMP stuff ... */
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
static void flush_tlb_all_ipi(void *info)
{
local_flush_tlb_all();
}
void flush_tlb_all(void)
{
on_each_cpu(flush_tlb_all_ipi, NULL, 1);
}
static void flush_tlb_mm_ipi(void *mm)
{
local_flush_tlb_mm((struct mm_struct *)mm);
}
/*
* Special Variant of smp_call_function for use by TLB functions:
*
* o No return value
* o collapses to normal function call on UP kernels
* o collapses to normal function call on systems with a single shared
* primary cache.
*/
static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
{
smp_call_function(func, info, 1);
}
static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
{
preempt_disable();
smp_on_other_tlbs(func, info);
func(info);
preempt_enable();
}
/*
* The following tlb flush calls are invoked when old translations are
* being torn down, or pte attributes are changing. For single threaded
* address spaces, a new context is obtained on the current cpu, and tlb
* context on other cpus are invalidated to force a new context allocation
* at switch_mm time, should the mm ever be used on other cpus. For
* multithreaded address spaces, intercpu interrupts have to be sent.
* Another case where intercpu interrupts are required is when the target
* mm might be active on another cpu (eg debuggers doing the flushes on
* behalf of debugees, kswapd stealing pages from another process etc).
* Kanoj 07/00.
*/
void flush_tlb_mm(struct mm_struct *mm)
{
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
} else {
unsigned int cpu;
for_each_online_cpu(cpu) {
if (cpu != smp_processor_id() && cpu_context(cpu, mm))
cpu_context(cpu, mm) = 0;
}
}
local_flush_tlb_mm(mm);
preempt_enable();
}
struct flush_tlb_data {
struct vm_area_struct *vma;
unsigned long addr1;
unsigned long addr2;
};
static void flush_tlb_range_ipi(void *info)
{
struct flush_tlb_data *fd = info;
local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
}
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
struct flush_tlb_data fd = {
.vma = vma,
.addr1 = start,
.addr2 = end,
};
smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
} else {
unsigned int cpu;
MIPS: SMP: Clear ASID without confusing has_valid_asid() The SMP flush_tlb_*() functions may clear the memory map's ASIDs for other CPUs if the mm has only a single user (the current CPU) in order to avoid SMP calls. However this makes it appear to has_valid_asid(), which is used by various cache flush functions, as if the CPUs have never run in the mm, and therefore can't have cached any of its memory. For flush_tlb_mm() this doesn't sound unreasonable. flush_tlb_range() corresponds to flush_cache_range() which does do full indexed cache flushes, but only on the icache if the specified mapping is executable, otherwise it doesn't guarantee that there are no cache contents left for the mm. flush_tlb_page() corresponds to flush_cache_page(), which will perform address based cache ops on the specified page only, and also only touches the icache if the page is executable. It does not guarantee that there are no cache contents left for the mm. For example, this affects flush_cache_range() which uses the has_valid_asid() optimisation. It is required to flush the icache when mappings are made executable (e.g. using mprotect) so they are immediately usable. If some code is changed to non executable in order to be modified then it will not be flushed from the icache during that time, but the ASID on other CPUs may still be cleared for TLB flushing. When the code is changed back to executable, flush_cache_range() will assume the code hasn't run on those other CPUs due to the zero ASID, and won't invalidate the icache on them. This is fixed by clearing the other CPUs ASIDs to 1 instead of 0 for the above two flush_tlb_*() functions when the corresponding cache flushes are likely to be incomplete (non executable range flush, or any page flush). This ASID appears valid to has_valid_asid(), but still triggers ASID regeneration due to the upper ASID version bits being 0, which is less than the minimum ASID version of 1 and so always treated as stale. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/13795/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-07-13 20:12:44 +07:00
int exec = vma->vm_flags & VM_EXEC;
for_each_online_cpu(cpu) {
MIPS: SMP: Clear ASID without confusing has_valid_asid() The SMP flush_tlb_*() functions may clear the memory map's ASIDs for other CPUs if the mm has only a single user (the current CPU) in order to avoid SMP calls. However this makes it appear to has_valid_asid(), which is used by various cache flush functions, as if the CPUs have never run in the mm, and therefore can't have cached any of its memory. For flush_tlb_mm() this doesn't sound unreasonable. flush_tlb_range() corresponds to flush_cache_range() which does do full indexed cache flushes, but only on the icache if the specified mapping is executable, otherwise it doesn't guarantee that there are no cache contents left for the mm. flush_tlb_page() corresponds to flush_cache_page(), which will perform address based cache ops on the specified page only, and also only touches the icache if the page is executable. It does not guarantee that there are no cache contents left for the mm. For example, this affects flush_cache_range() which uses the has_valid_asid() optimisation. It is required to flush the icache when mappings are made executable (e.g. using mprotect) so they are immediately usable. If some code is changed to non executable in order to be modified then it will not be flushed from the icache during that time, but the ASID on other CPUs may still be cleared for TLB flushing. When the code is changed back to executable, flush_cache_range() will assume the code hasn't run on those other CPUs due to the zero ASID, and won't invalidate the icache on them. This is fixed by clearing the other CPUs ASIDs to 1 instead of 0 for the above two flush_tlb_*() functions when the corresponding cache flushes are likely to be incomplete (non executable range flush, or any page flush). This ASID appears valid to has_valid_asid(), but still triggers ASID regeneration due to the upper ASID version bits being 0, which is less than the minimum ASID version of 1 and so always treated as stale. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/13795/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-07-13 20:12:44 +07:00
/*
* flush_cache_range() will only fully flush icache if
* the VMA is executable, otherwise we must invalidate
* ASID without it appearing to has_valid_asid() as if
* mm has been completely unused by that CPU.
*/
if (cpu != smp_processor_id() && cpu_context(cpu, mm))
MIPS: SMP: Clear ASID without confusing has_valid_asid() The SMP flush_tlb_*() functions may clear the memory map's ASIDs for other CPUs if the mm has only a single user (the current CPU) in order to avoid SMP calls. However this makes it appear to has_valid_asid(), which is used by various cache flush functions, as if the CPUs have never run in the mm, and therefore can't have cached any of its memory. For flush_tlb_mm() this doesn't sound unreasonable. flush_tlb_range() corresponds to flush_cache_range() which does do full indexed cache flushes, but only on the icache if the specified mapping is executable, otherwise it doesn't guarantee that there are no cache contents left for the mm. flush_tlb_page() corresponds to flush_cache_page(), which will perform address based cache ops on the specified page only, and also only touches the icache if the page is executable. It does not guarantee that there are no cache contents left for the mm. For example, this affects flush_cache_range() which uses the has_valid_asid() optimisation. It is required to flush the icache when mappings are made executable (e.g. using mprotect) so they are immediately usable. If some code is changed to non executable in order to be modified then it will not be flushed from the icache during that time, but the ASID on other CPUs may still be cleared for TLB flushing. When the code is changed back to executable, flush_cache_range() will assume the code hasn't run on those other CPUs due to the zero ASID, and won't invalidate the icache on them. This is fixed by clearing the other CPUs ASIDs to 1 instead of 0 for the above two flush_tlb_*() functions when the corresponding cache flushes are likely to be incomplete (non executable range flush, or any page flush). This ASID appears valid to has_valid_asid(), but still triggers ASID regeneration due to the upper ASID version bits being 0, which is less than the minimum ASID version of 1 and so always treated as stale. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/13795/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-07-13 20:12:44 +07:00
cpu_context(cpu, mm) = !exec;
}
}
local_flush_tlb_range(vma, start, end);
preempt_enable();
}
static void flush_tlb_kernel_range_ipi(void *info)
{
struct flush_tlb_data *fd = info;
local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
}
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
struct flush_tlb_data fd = {
.addr1 = start,
.addr2 = end,
};
on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
}
static void flush_tlb_page_ipi(void *info)
{
struct flush_tlb_data *fd = info;
local_flush_tlb_page(fd->vma, fd->addr1);
}
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
preempt_disable();
if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
struct flush_tlb_data fd = {
.vma = vma,
.addr1 = page,
};
smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
} else {
unsigned int cpu;
for_each_online_cpu(cpu) {
MIPS: SMP: Clear ASID without confusing has_valid_asid() The SMP flush_tlb_*() functions may clear the memory map's ASIDs for other CPUs if the mm has only a single user (the current CPU) in order to avoid SMP calls. However this makes it appear to has_valid_asid(), which is used by various cache flush functions, as if the CPUs have never run in the mm, and therefore can't have cached any of its memory. For flush_tlb_mm() this doesn't sound unreasonable. flush_tlb_range() corresponds to flush_cache_range() which does do full indexed cache flushes, but only on the icache if the specified mapping is executable, otherwise it doesn't guarantee that there are no cache contents left for the mm. flush_tlb_page() corresponds to flush_cache_page(), which will perform address based cache ops on the specified page only, and also only touches the icache if the page is executable. It does not guarantee that there are no cache contents left for the mm. For example, this affects flush_cache_range() which uses the has_valid_asid() optimisation. It is required to flush the icache when mappings are made executable (e.g. using mprotect) so they are immediately usable. If some code is changed to non executable in order to be modified then it will not be flushed from the icache during that time, but the ASID on other CPUs may still be cleared for TLB flushing. When the code is changed back to executable, flush_cache_range() will assume the code hasn't run on those other CPUs due to the zero ASID, and won't invalidate the icache on them. This is fixed by clearing the other CPUs ASIDs to 1 instead of 0 for the above two flush_tlb_*() functions when the corresponding cache flushes are likely to be incomplete (non executable range flush, or any page flush). This ASID appears valid to has_valid_asid(), but still triggers ASID regeneration due to the upper ASID version bits being 0, which is less than the minimum ASID version of 1 and so always treated as stale. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/13795/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-07-13 20:12:44 +07:00
/*
* flush_cache_page() only does partial flushes, so
* invalidate ASID without it appearing to
* has_valid_asid() as if mm has been completely unused
* by that CPU.
*/
if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
MIPS: SMP: Clear ASID without confusing has_valid_asid() The SMP flush_tlb_*() functions may clear the memory map's ASIDs for other CPUs if the mm has only a single user (the current CPU) in order to avoid SMP calls. However this makes it appear to has_valid_asid(), which is used by various cache flush functions, as if the CPUs have never run in the mm, and therefore can't have cached any of its memory. For flush_tlb_mm() this doesn't sound unreasonable. flush_tlb_range() corresponds to flush_cache_range() which does do full indexed cache flushes, but only on the icache if the specified mapping is executable, otherwise it doesn't guarantee that there are no cache contents left for the mm. flush_tlb_page() corresponds to flush_cache_page(), which will perform address based cache ops on the specified page only, and also only touches the icache if the page is executable. It does not guarantee that there are no cache contents left for the mm. For example, this affects flush_cache_range() which uses the has_valid_asid() optimisation. It is required to flush the icache when mappings are made executable (e.g. using mprotect) so they are immediately usable. If some code is changed to non executable in order to be modified then it will not be flushed from the icache during that time, but the ASID on other CPUs may still be cleared for TLB flushing. When the code is changed back to executable, flush_cache_range() will assume the code hasn't run on those other CPUs due to the zero ASID, and won't invalidate the icache on them. This is fixed by clearing the other CPUs ASIDs to 1 instead of 0 for the above two flush_tlb_*() functions when the corresponding cache flushes are likely to be incomplete (non executable range flush, or any page flush). This ASID appears valid to has_valid_asid(), but still triggers ASID regeneration due to the upper ASID version bits being 0, which is less than the minimum ASID version of 1 and so always treated as stale. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/13795/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-07-13 20:12:44 +07:00
cpu_context(cpu, vma->vm_mm) = 1;
}
}
local_flush_tlb_page(vma, page);
preempt_enable();
}
static void flush_tlb_one_ipi(void *info)
{
unsigned long vaddr = (unsigned long) info;
local_flush_tlb_one(vaddr);
}
void flush_tlb_one(unsigned long vaddr)
{
smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
}
EXPORT_SYMBOL(flush_tlb_page);
EXPORT_SYMBOL(flush_tlb_one);
#if defined(CONFIG_KEXEC)
void (*dump_ipi_function_ptr)(void *) = NULL;
void dump_send_ipi(void (*dump_ipi_callback)(void *))
{
int i;
int cpu = smp_processor_id();
dump_ipi_function_ptr = dump_ipi_callback;
smp_mb();
for_each_online_cpu(i)
if (i != cpu)
mp_ops->send_ipi_single(i, SMP_DUMP);
}
EXPORT_SYMBOL(dump_send_ipi);
#endif
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
void tick_broadcast(const struct cpumask *mask)
{
atomic_t *count;
struct call_single_data *csd;
int cpu;
for_each_cpu(cpu, mask) {
count = &per_cpu(tick_broadcast_count, cpu);
csd = &per_cpu(tick_broadcast_csd, cpu);
if (atomic_inc_return(count) == 1)
smp_call_function_single_async(cpu, csd);
}
}
static void tick_broadcast_callee(void *info)
{
int cpu = smp_processor_id();
tick_receive_broadcast();
atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
}
static int __init tick_broadcast_init(void)
{
struct call_single_data *csd;
int cpu;
for (cpu = 0; cpu < NR_CPUS; cpu++) {
csd = &per_cpu(tick_broadcast_csd, cpu);
csd->func = tick_broadcast_callee;
}
return 0;
}
early_initcall(tick_broadcast_init);
#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */