linux_dsm_epyc7002/drivers/usb/host/isp1362.h

970 lines
30 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* ISP1362 HCD (Host Controller Driver) for USB.
*
* COPYRIGHT (C) by L. Wassmann <LW@KARO-electronics.de>
*/
/* ------------------------------------------------------------------------- */
#define MAX_ROOT_PORTS 2
#define USE_32BIT 0
/* These options are mutually exclusive */
#define USE_PLATFORM_DELAY 0
#define USE_NDELAY 0
#define DUMMY_DELAY_ACCESS do {} while (0)
/* ------------------------------------------------------------------------- */
#define USB_RESET_WIDTH 50
#define MAX_XFER_SIZE 1023
/* Buffer sizes */
#define ISP1362_BUF_SIZE 4096
#define ISP1362_ISTL_BUFSIZE 512
#define ISP1362_INTL_BLKSIZE 64
#define ISP1362_INTL_BUFFERS 16
#define ISP1362_ATL_BLKSIZE 64
#define ISP1362_REG_WRITE_OFFSET 0x80
#define REG_WIDTH_16 0x000
#define REG_WIDTH_32 0x100
#define REG_WIDTH_MASK 0x100
#define REG_NO_MASK 0x0ff
#ifdef ISP1362_DEBUG
typedef const unsigned int isp1362_reg_t;
#define REG_ACCESS_R 0x200
#define REG_ACCESS_W 0x400
#define REG_ACCESS_RW 0x600
#define REG_ACCESS_MASK 0x600
#define ISP1362_REG_NO(r) ((r) & REG_NO_MASK)
#define ISP1362_REG(name, addr, width, rw) \
static isp1362_reg_t ISP1362_REG_##name = ((addr) | (width) | (rw))
#define REG_ACCESS_TEST(r) BUG_ON(((r) & ISP1362_REG_WRITE_OFFSET) && !((r) & REG_ACCESS_W))
#define REG_WIDTH_TEST(r, w) BUG_ON(((r) & REG_WIDTH_MASK) != (w))
#else
typedef const unsigned char isp1362_reg_t;
#define ISP1362_REG_NO(r) (r)
#define ISP1362_REG(name, addr, width, rw) \
static isp1362_reg_t ISP1362_REG_##name = addr
#define REG_ACCESS_TEST(r) do {} while (0)
#define REG_WIDTH_TEST(r, w) do {} while (0)
#endif
/* OHCI compatible registers */
/*
* Note: Some of the ISP1362 'OHCI' registers implement only
* a subset of the bits defined in the OHCI spec.
*
* Bitmasks for the individual bits of these registers are defined in "ohci.h"
*/
ISP1362_REG(HCREVISION, 0x00, REG_WIDTH_32, REG_ACCESS_R);
ISP1362_REG(HCCONTROL, 0x01, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCCMDSTAT, 0x02, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCINTSTAT, 0x03, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCINTENB, 0x04, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCINTDIS, 0x05, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCFMINTVL, 0x0d, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCFMREM, 0x0e, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCFMNUM, 0x0f, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCLSTHRESH, 0x11, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCRHDESCA, 0x12, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCRHDESCB, 0x13, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCRHSTATUS, 0x14, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCRHPORT1, 0x15, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCRHPORT2, 0x16, REG_WIDTH_32, REG_ACCESS_RW);
/* Philips ISP1362 specific registers */
ISP1362_REG(HCHWCFG, 0x20, REG_WIDTH_16, REG_ACCESS_RW);
#define HCHWCFG_DISABLE_SUSPEND (1 << 15)
#define HCHWCFG_GLOBAL_PWRDOWN (1 << 14)
#define HCHWCFG_PULLDOWN_DS2 (1 << 13)
#define HCHWCFG_PULLDOWN_DS1 (1 << 12)
#define HCHWCFG_CLKNOTSTOP (1 << 11)
#define HCHWCFG_ANALOG_OC (1 << 10)
#define HCHWCFG_ONEINT (1 << 9)
#define HCHWCFG_DACK_MODE (1 << 8)
#define HCHWCFG_ONEDMA (1 << 7)
#define HCHWCFG_DACK_POL (1 << 6)
#define HCHWCFG_DREQ_POL (1 << 5)
#define HCHWCFG_DBWIDTH_MASK (0x03 << 3)
#define HCHWCFG_DBWIDTH(n) (((n) << 3) & HCHWCFG_DBWIDTH_MASK)
#define HCHWCFG_INT_POL (1 << 2)
#define HCHWCFG_INT_TRIGGER (1 << 1)
#define HCHWCFG_INT_ENABLE (1 << 0)
ISP1362_REG(HCDMACFG, 0x21, REG_WIDTH_16, REG_ACCESS_RW);
#define HCDMACFG_CTR_ENABLE (1 << 7)
#define HCDMACFG_BURST_LEN_MASK (0x03 << 5)
#define HCDMACFG_BURST_LEN(n) (((n) << 5) & HCDMACFG_BURST_LEN_MASK)
#define HCDMACFG_BURST_LEN_1 HCDMACFG_BURST_LEN(0)
#define HCDMACFG_BURST_LEN_4 HCDMACFG_BURST_LEN(1)
#define HCDMACFG_BURST_LEN_8 HCDMACFG_BURST_LEN(2)
#define HCDMACFG_DMA_ENABLE (1 << 4)
#define HCDMACFG_BUF_TYPE_MASK (0x07 << 1)
#define HCDMACFG_BUF_TYPE(n) (((n) << 1) & HCDMACFG_BUF_TYPE_MASK)
#define HCDMACFG_BUF_ISTL0 HCDMACFG_BUF_TYPE(0)
#define HCDMACFG_BUF_ISTL1 HCDMACFG_BUF_TYPE(1)
#define HCDMACFG_BUF_INTL HCDMACFG_BUF_TYPE(2)
#define HCDMACFG_BUF_ATL HCDMACFG_BUF_TYPE(3)
#define HCDMACFG_BUF_DIRECT HCDMACFG_BUF_TYPE(4)
#define HCDMACFG_DMA_RW_SELECT (1 << 0)
ISP1362_REG(HCXFERCTR, 0x22, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCuPINT, 0x24, REG_WIDTH_16, REG_ACCESS_RW);
#define HCuPINT_SOF (1 << 0)
#define HCuPINT_ISTL0 (1 << 1)
#define HCuPINT_ISTL1 (1 << 2)
#define HCuPINT_EOT (1 << 3)
#define HCuPINT_OPR (1 << 4)
#define HCuPINT_SUSP (1 << 5)
#define HCuPINT_CLKRDY (1 << 6)
#define HCuPINT_INTL (1 << 7)
#define HCuPINT_ATL (1 << 8)
#define HCuPINT_OTG (1 << 9)
ISP1362_REG(HCuPINTENB, 0x25, REG_WIDTH_16, REG_ACCESS_RW);
/* same bit definitions apply as for HCuPINT */
ISP1362_REG(HCCHIPID, 0x27, REG_WIDTH_16, REG_ACCESS_R);
#define HCCHIPID_MASK 0xff00
#define HCCHIPID_MAGIC 0x3600
ISP1362_REG(HCSCRATCH, 0x28, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCSWRES, 0x29, REG_WIDTH_16, REG_ACCESS_W);
#define HCSWRES_MAGIC 0x00f6
ISP1362_REG(HCBUFSTAT, 0x2c, REG_WIDTH_16, REG_ACCESS_RW);
#define HCBUFSTAT_ISTL0_FULL (1 << 0)
#define HCBUFSTAT_ISTL1_FULL (1 << 1)
#define HCBUFSTAT_INTL_ACTIVE (1 << 2)
#define HCBUFSTAT_ATL_ACTIVE (1 << 3)
#define HCBUFSTAT_RESET_HWPP (1 << 4)
#define HCBUFSTAT_ISTL0_ACTIVE (1 << 5)
#define HCBUFSTAT_ISTL1_ACTIVE (1 << 6)
#define HCBUFSTAT_ISTL0_DONE (1 << 8)
#define HCBUFSTAT_ISTL1_DONE (1 << 9)
#define HCBUFSTAT_PAIRED_PTDPP (1 << 10)
ISP1362_REG(HCDIRADDR, 0x32, REG_WIDTH_32, REG_ACCESS_RW);
#define HCDIRADDR_ADDR_MASK 0x0000ffff
#define HCDIRADDR_ADDR(n) (((n) << 0) & HCDIRADDR_ADDR_MASK)
#define HCDIRADDR_COUNT_MASK 0xffff0000
#define HCDIRADDR_COUNT(n) (((n) << 16) & HCDIRADDR_COUNT_MASK)
ISP1362_REG(HCDIRDATA, 0x45, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCISTLBUFSZ, 0x30, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCISTL0PORT, 0x40, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCISTL1PORT, 0x42, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCISTLRATE, 0x47, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCINTLBUFSZ, 0x33, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCINTLPORT, 0x43, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCINTLBLKSZ, 0x53, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCINTLDONE, 0x17, REG_WIDTH_32, REG_ACCESS_R);
ISP1362_REG(HCINTLSKIP, 0x18, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCINTLLAST, 0x19, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCINTLCURR, 0x1a, REG_WIDTH_16, REG_ACCESS_R);
ISP1362_REG(HCATLBUFSZ, 0x34, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCATLPORT, 0x44, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCATLBLKSZ, 0x54, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCATLDONE, 0x1b, REG_WIDTH_32, REG_ACCESS_R);
ISP1362_REG(HCATLSKIP, 0x1c, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCATLLAST, 0x1d, REG_WIDTH_32, REG_ACCESS_RW);
ISP1362_REG(HCATLCURR, 0x1e, REG_WIDTH_16, REG_ACCESS_R);
ISP1362_REG(HCATLDTC, 0x51, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(HCATLDTCTO, 0x52, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(OTGCONTROL, 0x62, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(OTGSTATUS, 0x67, REG_WIDTH_16, REG_ACCESS_R);
ISP1362_REG(OTGINT, 0x68, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(OTGINTENB, 0x69, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(OTGTIMER, 0x6A, REG_WIDTH_16, REG_ACCESS_RW);
ISP1362_REG(OTGALTTMR, 0x6C, REG_WIDTH_16, REG_ACCESS_RW);
/* Philips transfer descriptor, cpu-endian */
struct ptd {
u16 count;
#define PTD_COUNT_MSK (0x3ff << 0)
#define PTD_TOGGLE_MSK (1 << 10)
#define PTD_ACTIVE_MSK (1 << 11)
#define PTD_CC_MSK (0xf << 12)
u16 mps;
#define PTD_MPS_MSK (0x3ff << 0)
#define PTD_SPD_MSK (1 << 10)
#define PTD_LAST_MSK (1 << 11)
#define PTD_EP_MSK (0xf << 12)
u16 len;
#define PTD_LEN_MSK (0x3ff << 0)
#define PTD_DIR_MSK (3 << 10)
#define PTD_DIR_SETUP (0)
#define PTD_DIR_OUT (1)
#define PTD_DIR_IN (2)
u16 faddr;
#define PTD_FA_MSK (0x7f << 0)
/* PTD Byte 7: [StartingFrame (if ISO PTD) | StartingFrame[0..4], PollingRate[0..2] (if INT PTD)] */
#define PTD_SF_ISO_MSK (0xff << 8)
#define PTD_SF_INT_MSK (0x1f << 8)
#define PTD_PR_MSK (0x07 << 13)
} __attribute__ ((packed, aligned(2)));
#define PTD_HEADER_SIZE sizeof(struct ptd)
/* ------------------------------------------------------------------------- */
/* Copied from ohci.h: */
/*
* Hardware transfer status codes -- CC from PTD
*/
#define PTD_CC_NOERROR 0x00
#define PTD_CC_CRC 0x01
#define PTD_CC_BITSTUFFING 0x02
#define PTD_CC_DATATOGGLEM 0x03
#define PTD_CC_STALL 0x04
#define PTD_DEVNOTRESP 0x05
#define PTD_PIDCHECKFAIL 0x06
#define PTD_UNEXPECTEDPID 0x07
#define PTD_DATAOVERRUN 0x08
#define PTD_DATAUNDERRUN 0x09
/* 0x0A, 0x0B reserved for hardware */
#define PTD_BUFFEROVERRUN 0x0C
#define PTD_BUFFERUNDERRUN 0x0D
/* 0x0E, 0x0F reserved for HCD */
#define PTD_NOTACCESSED 0x0F
/* map OHCI TD status codes (CC) to errno values */
static const int cc_to_error[16] = {
/* No Error */ 0,
/* CRC Error */ -EILSEQ,
/* Bit Stuff */ -EPROTO,
/* Data Togg */ -EILSEQ,
/* Stall */ -EPIPE,
/* DevNotResp */ -ETIMEDOUT,
/* PIDCheck */ -EPROTO,
/* UnExpPID */ -EPROTO,
/* DataOver */ -EOVERFLOW,
/* DataUnder */ -EREMOTEIO,
/* (for hw) */ -EIO,
/* (for hw) */ -EIO,
/* BufferOver */ -ECOMM,
/* BuffUnder */ -ENOSR,
/* (for HCD) */ -EALREADY,
/* (for HCD) */ -EALREADY
};
/*
* HcControl (control) register masks
*/
#define OHCI_CTRL_HCFS (3 << 6) /* host controller functional state */
#define OHCI_CTRL_RWC (1 << 9) /* remote wakeup connected */
#define OHCI_CTRL_RWE (1 << 10) /* remote wakeup enable */
/* pre-shifted values for HCFS */
# define OHCI_USB_RESET (0 << 6)
# define OHCI_USB_RESUME (1 << 6)
# define OHCI_USB_OPER (2 << 6)
# define OHCI_USB_SUSPEND (3 << 6)
/*
* HcCommandStatus (cmdstatus) register masks
*/
#define OHCI_HCR (1 << 0) /* host controller reset */
#define OHCI_SOC (3 << 16) /* scheduling overrun count */
/*
* masks used with interrupt registers:
* HcInterruptStatus (intrstatus)
* HcInterruptEnable (intrenable)
* HcInterruptDisable (intrdisable)
*/
#define OHCI_INTR_SO (1 << 0) /* scheduling overrun */
#define OHCI_INTR_WDH (1 << 1) /* writeback of done_head */
#define OHCI_INTR_SF (1 << 2) /* start frame */
#define OHCI_INTR_RD (1 << 3) /* resume detect */
#define OHCI_INTR_UE (1 << 4) /* unrecoverable error */
#define OHCI_INTR_FNO (1 << 5) /* frame number overflow */
#define OHCI_INTR_RHSC (1 << 6) /* root hub status change */
#define OHCI_INTR_OC (1 << 30) /* ownership change */
#define OHCI_INTR_MIE (1 << 31) /* master interrupt enable */
/* roothub.portstatus [i] bits */
#define RH_PS_CCS 0x00000001 /* current connect status */
#define RH_PS_PES 0x00000002 /* port enable status*/
#define RH_PS_PSS 0x00000004 /* port suspend status */
#define RH_PS_POCI 0x00000008 /* port over current indicator */
#define RH_PS_PRS 0x00000010 /* port reset status */
#define RH_PS_PPS 0x00000100 /* port power status */
#define RH_PS_LSDA 0x00000200 /* low speed device attached */
#define RH_PS_CSC 0x00010000 /* connect status change */
#define RH_PS_PESC 0x00020000 /* port enable status change */
#define RH_PS_PSSC 0x00040000 /* port suspend status change */
#define RH_PS_OCIC 0x00080000 /* over current indicator change */
#define RH_PS_PRSC 0x00100000 /* port reset status change */
/* roothub.status bits */
#define RH_HS_LPS 0x00000001 /* local power status */
#define RH_HS_OCI 0x00000002 /* over current indicator */
#define RH_HS_DRWE 0x00008000 /* device remote wakeup enable */
#define RH_HS_LPSC 0x00010000 /* local power status change */
#define RH_HS_OCIC 0x00020000 /* over current indicator change */
#define RH_HS_CRWE 0x80000000 /* clear remote wakeup enable */
/* roothub.b masks */
#define RH_B_DR 0x0000ffff /* device removable flags */
#define RH_B_PPCM 0xffff0000 /* port power control mask */
/* roothub.a masks */
#define RH_A_NDP (0xff << 0) /* number of downstream ports */
#define RH_A_PSM (1 << 8) /* power switching mode */
#define RH_A_NPS (1 << 9) /* no power switching */
#define RH_A_DT (1 << 10) /* device type (mbz) */
#define RH_A_OCPM (1 << 11) /* over current protection mode */
#define RH_A_NOCP (1 << 12) /* no over current protection */
#define RH_A_POTPGT (0xff << 24) /* power on to power good time */
#define FI 0x2edf /* 12000 bits per frame (-1) */
#define FSMP(fi) (0x7fff & ((6 * ((fi) - 210)) / 7))
#define LSTHRESH 0x628 /* lowspeed bit threshold */
/* ------------------------------------------------------------------------- */
/* PTD accessor macros. */
#define PTD_GET_COUNT(p) (((p)->count & PTD_COUNT_MSK) >> 0)
#define PTD_COUNT(v) (((v) << 0) & PTD_COUNT_MSK)
#define PTD_GET_TOGGLE(p) (((p)->count & PTD_TOGGLE_MSK) >> 10)
#define PTD_TOGGLE(v) (((v) << 10) & PTD_TOGGLE_MSK)
#define PTD_GET_ACTIVE(p) (((p)->count & PTD_ACTIVE_MSK) >> 11)
#define PTD_ACTIVE(v) (((v) << 11) & PTD_ACTIVE_MSK)
#define PTD_GET_CC(p) (((p)->count & PTD_CC_MSK) >> 12)
#define PTD_CC(v) (((v) << 12) & PTD_CC_MSK)
#define PTD_GET_MPS(p) (((p)->mps & PTD_MPS_MSK) >> 0)
#define PTD_MPS(v) (((v) << 0) & PTD_MPS_MSK)
#define PTD_GET_SPD(p) (((p)->mps & PTD_SPD_MSK) >> 10)
#define PTD_SPD(v) (((v) << 10) & PTD_SPD_MSK)
#define PTD_GET_LAST(p) (((p)->mps & PTD_LAST_MSK) >> 11)
#define PTD_LAST(v) (((v) << 11) & PTD_LAST_MSK)
#define PTD_GET_EP(p) (((p)->mps & PTD_EP_MSK) >> 12)
#define PTD_EP(v) (((v) << 12) & PTD_EP_MSK)
#define PTD_GET_LEN(p) (((p)->len & PTD_LEN_MSK) >> 0)
#define PTD_LEN(v) (((v) << 0) & PTD_LEN_MSK)
#define PTD_GET_DIR(p) (((p)->len & PTD_DIR_MSK) >> 10)
#define PTD_DIR(v) (((v) << 10) & PTD_DIR_MSK)
#define PTD_GET_FA(p) (((p)->faddr & PTD_FA_MSK) >> 0)
#define PTD_FA(v) (((v) << 0) & PTD_FA_MSK)
#define PTD_GET_SF_INT(p) (((p)->faddr & PTD_SF_INT_MSK) >> 8)
#define PTD_SF_INT(v) (((v) << 8) & PTD_SF_INT_MSK)
#define PTD_GET_SF_ISO(p) (((p)->faddr & PTD_SF_ISO_MSK) >> 8)
#define PTD_SF_ISO(v) (((v) << 8) & PTD_SF_ISO_MSK)
#define PTD_GET_PR(p) (((p)->faddr & PTD_PR_MSK) >> 13)
#define PTD_PR(v) (((v) << 13) & PTD_PR_MSK)
#define LOG2_PERIODIC_SIZE 5 /* arbitrary; this matches OHCI */
#define PERIODIC_SIZE (1 << LOG2_PERIODIC_SIZE)
struct isp1362_ep {
struct usb_host_endpoint *hep;
struct usb_device *udev;
/* philips transfer descriptor */
struct ptd ptd;
u8 maxpacket;
u8 epnum;
u8 nextpid;
u16 error_count;
u16 length; /* of current packet */
s16 ptd_offset; /* buffer offset in ISP1362 where
PTD has been stored
(for access thru HCDIRDATA) */
int ptd_index;
int num_ptds;
void *data; /* to databuf */
/* queue of active EPs (the ones transmitted to the chip) */
struct list_head active;
/* periodic schedule */
u8 branch;
u16 interval;
u16 load;
u16 last_iso;
/* async schedule */
struct list_head schedule; /* list of all EPs that need processing */
struct list_head remove_list;
int num_req;
};
struct isp1362_ep_queue {
struct list_head active; /* list of PTDs currently processed by HC */
atomic_t finishing;
unsigned long buf_map;
unsigned long skip_map;
int free_ptd;
u16 buf_start;
u16 buf_size;
u16 blk_size; /* PTD buffer block size for ATL and INTL */
u8 buf_count;
u8 buf_avail;
char name[16];
/* for statistical tracking */
u8 stat_maxptds; /* Max # of ptds seen simultaneously in fifo */
u8 ptd_count; /* number of ptds submitted to this queue */
};
struct isp1362_hcd {
spinlock_t lock;
void __iomem *addr_reg;
void __iomem *data_reg;
struct isp1362_platform_data *board;
struct dentry *debug_file;
unsigned long stat1, stat2, stat4, stat8, stat16;
/* HC registers */
u32 intenb; /* "OHCI" interrupts */
u16 irqenb; /* uP interrupts */
/* Root hub registers */
u32 rhdesca;
u32 rhdescb;
u32 rhstatus;
u32 rhport[MAX_ROOT_PORTS];
unsigned long next_statechange;
/* HC control reg shadow copy */
u32 hc_control;
/* async schedule: control, bulk */
struct list_head async;
/* periodic schedule: int */
u16 load[PERIODIC_SIZE];
struct list_head periodic;
u16 fmindex;
/* periodic schedule: isochronous */
struct list_head isoc;
unsigned int istl_flip:1;
unsigned int irq_active:1;
/* Schedules for the current frame */
struct isp1362_ep_queue atl_queue;
struct isp1362_ep_queue intl_queue;
struct isp1362_ep_queue istl_queue[2];
/* list of PTDs retrieved from HC */
struct list_head remove_list;
enum {
ISP1362_INT_SOF,
ISP1362_INT_ISTL0,
ISP1362_INT_ISTL1,
ISP1362_INT_EOT,
ISP1362_INT_OPR,
ISP1362_INT_SUSP,
ISP1362_INT_CLKRDY,
ISP1362_INT_INTL,
ISP1362_INT_ATL,
ISP1362_INT_OTG,
NUM_ISP1362_IRQS
} IRQ_NAMES;
unsigned int irq_stat[NUM_ISP1362_IRQS];
int req_serial;
};
static inline const char *ISP1362_INT_NAME(int n)
{
switch (n) {
case ISP1362_INT_SOF: return "SOF";
case ISP1362_INT_ISTL0: return "ISTL0";
case ISP1362_INT_ISTL1: return "ISTL1";
case ISP1362_INT_EOT: return "EOT";
case ISP1362_INT_OPR: return "OPR";
case ISP1362_INT_SUSP: return "SUSP";
case ISP1362_INT_CLKRDY: return "CLKRDY";
case ISP1362_INT_INTL: return "INTL";
case ISP1362_INT_ATL: return "ATL";
case ISP1362_INT_OTG: return "OTG";
default: return "unknown";
}
}
static inline void ALIGNSTAT(struct isp1362_hcd *isp1362_hcd, void *ptr)
{
unsigned long p = (unsigned long)ptr;
if (!(p & 0xf))
isp1362_hcd->stat16++;
else if (!(p & 0x7))
isp1362_hcd->stat8++;
else if (!(p & 0x3))
isp1362_hcd->stat4++;
else if (!(p & 0x1))
isp1362_hcd->stat2++;
else
isp1362_hcd->stat1++;
}
static inline struct isp1362_hcd *hcd_to_isp1362_hcd(struct usb_hcd *hcd)
{
return (struct isp1362_hcd *) (hcd->hcd_priv);
}
static inline struct usb_hcd *isp1362_hcd_to_hcd(struct isp1362_hcd *isp1362_hcd)
{
return container_of((void *)isp1362_hcd, struct usb_hcd, hcd_priv);
}
#define frame_before(f1, f2) ((s16)((u16)f1 - (u16)f2) < 0)
/*
* ISP1362 HW Interface
*/
#define DBG(level, fmt...) \
do { \
if (dbg_level > level) \
pr_debug(fmt); \
} while (0)
#ifdef VERBOSE
# define VDBG(fmt...) DBG(3, fmt)
#else
# define VDBG(fmt...) do {} while (0)
#endif
#ifdef REGISTERS
# define RDBG(fmt...) DBG(1, fmt)
#else
# define RDBG(fmt...) do {} while (0)
#endif
#ifdef URB_TRACE
#define URB_DBG(fmt...) DBG(0, fmt)
#else
#define URB_DBG(fmt...) do {} while (0)
#endif
#if USE_PLATFORM_DELAY
#if USE_NDELAY
#error USE_PLATFORM_DELAY and USE_NDELAY defined simultaneously.
#endif
#define isp1362_delay(h, d) (h)->board->delay(isp1362_hcd_to_hcd(h)->self.controller, d)
#elif USE_NDELAY
#define isp1362_delay(h, d) ndelay(d)
#else
#define isp1362_delay(h, d) do {} while (0)
#endif
#define get_urb(ep) ({ \
BUG_ON(list_empty(&ep->hep->urb_list)); \
container_of(ep->hep->urb_list.next, struct urb, urb_list); \
})
/* basic access functions for ISP1362 chip registers */
/* NOTE: The contents of the address pointer register cannot be read back! The driver must ensure,
* that all register accesses are performed with interrupts disabled, since the interrupt
* handler has no way of restoring the previous state.
*/
static void isp1362_write_addr(struct isp1362_hcd *isp1362_hcd, isp1362_reg_t reg)
{
REG_ACCESS_TEST(reg);
DUMMY_DELAY_ACCESS;
writew(ISP1362_REG_NO(reg), isp1362_hcd->addr_reg);
DUMMY_DELAY_ACCESS;
isp1362_delay(isp1362_hcd, 1);
}
static void isp1362_write_data16(struct isp1362_hcd *isp1362_hcd, u16 val)
{
DUMMY_DELAY_ACCESS;
writew(val, isp1362_hcd->data_reg);
}
static u16 isp1362_read_data16(struct isp1362_hcd *isp1362_hcd)
{
u16 val;
DUMMY_DELAY_ACCESS;
val = readw(isp1362_hcd->data_reg);
return val;
}
static void isp1362_write_data32(struct isp1362_hcd *isp1362_hcd, u32 val)
{
#if USE_32BIT
DUMMY_DELAY_ACCESS;
writel(val, isp1362_hcd->data_reg);
#else
DUMMY_DELAY_ACCESS;
writew((u16)val, isp1362_hcd->data_reg);
DUMMY_DELAY_ACCESS;
writew(val >> 16, isp1362_hcd->data_reg);
#endif
}
static u32 isp1362_read_data32(struct isp1362_hcd *isp1362_hcd)
{
u32 val;
#if USE_32BIT
DUMMY_DELAY_ACCESS;
val = readl(isp1362_hcd->data_reg);
#else
DUMMY_DELAY_ACCESS;
val = (u32)readw(isp1362_hcd->data_reg);
DUMMY_DELAY_ACCESS;
val |= (u32)readw(isp1362_hcd->data_reg) << 16;
#endif
return val;
}
/* use readsw/writesw to access the fifo whenever possible */
/* assume HCDIRDATA or XFERCTR & addr_reg have been set up */
static void isp1362_read_fifo(struct isp1362_hcd *isp1362_hcd, void *buf, u16 len)
{
u8 *dp = buf;
u16 data;
if (!len)
return;
RDBG("%s: Reading %d byte from fifo to mem @ %p\n", __func__, len, buf);
#if USE_32BIT
if (len >= 4) {
RDBG("%s: Using readsl for %d dwords\n", __func__, len >> 2);
readsl(isp1362_hcd->data_reg, dp, len >> 2);
dp += len & ~3;
len &= 3;
}
#endif
if (len >= 2) {
RDBG("%s: Using readsw for %d words\n", __func__, len >> 1);
insw((unsigned long)isp1362_hcd->data_reg, dp, len >> 1);
dp += len & ~1;
len &= 1;
}
BUG_ON(len & ~1);
if (len > 0) {
data = isp1362_read_data16(isp1362_hcd);
RDBG("%s: Reading trailing byte %02x to mem @ %08x\n", __func__,
(u8)data, (u32)dp);
*dp = (u8)data;
}
}
static void isp1362_write_fifo(struct isp1362_hcd *isp1362_hcd, void *buf, u16 len)
{
u8 *dp = buf;
u16 data;
if (!len)
return;
if ((unsigned long)dp & 0x1) {
/* not aligned */
for (; len > 1; len -= 2) {
data = *dp++;
data |= *dp++ << 8;
isp1362_write_data16(isp1362_hcd, data);
}
if (len)
isp1362_write_data16(isp1362_hcd, *dp);
return;
}
RDBG("%s: Writing %d byte to fifo from memory @%p\n", __func__, len, buf);
#if USE_32BIT
if (len >= 4) {
RDBG("%s: Using writesl for %d dwords\n", __func__, len >> 2);
writesl(isp1362_hcd->data_reg, dp, len >> 2);
dp += len & ~3;
len &= 3;
}
#endif
if (len >= 2) {
RDBG("%s: Using writesw for %d words\n", __func__, len >> 1);
outsw((unsigned long)isp1362_hcd->data_reg, dp, len >> 1);
dp += len & ~1;
len &= 1;
}
BUG_ON(len & ~1);
if (len > 0) {
/* finally write any trailing byte; we don't need to care
* about the high byte of the last word written
*/
data = (u16)*dp;
RDBG("%s: Sending trailing byte %02x from mem @ %08x\n", __func__,
data, (u32)dp);
isp1362_write_data16(isp1362_hcd, data);
}
}
#define isp1362_read_reg16(d, r) ({ \
u16 __v; \
REG_WIDTH_TEST(ISP1362_REG_##r, REG_WIDTH_16); \
isp1362_write_addr(d, ISP1362_REG_##r); \
__v = isp1362_read_data16(d); \
RDBG("%s: Read %04x from %s[%02x]\n", __func__, __v, #r, \
ISP1362_REG_NO(ISP1362_REG_##r)); \
__v; \
})
#define isp1362_read_reg32(d, r) ({ \
u32 __v; \
REG_WIDTH_TEST(ISP1362_REG_##r, REG_WIDTH_32); \
isp1362_write_addr(d, ISP1362_REG_##r); \
__v = isp1362_read_data32(d); \
RDBG("%s: Read %08x from %s[%02x]\n", __func__, __v, #r, \
ISP1362_REG_NO(ISP1362_REG_##r)); \
__v; \
})
#define isp1362_write_reg16(d, r, v) { \
REG_WIDTH_TEST(ISP1362_REG_##r, REG_WIDTH_16); \
isp1362_write_addr(d, (ISP1362_REG_##r) | ISP1362_REG_WRITE_OFFSET); \
isp1362_write_data16(d, (u16)(v)); \
RDBG("%s: Wrote %04x to %s[%02x]\n", __func__, (u16)(v), #r, \
ISP1362_REG_NO(ISP1362_REG_##r)); \
}
#define isp1362_write_reg32(d, r, v) { \
REG_WIDTH_TEST(ISP1362_REG_##r, REG_WIDTH_32); \
isp1362_write_addr(d, (ISP1362_REG_##r) | ISP1362_REG_WRITE_OFFSET); \
isp1362_write_data32(d, (u32)(v)); \
RDBG("%s: Wrote %08x to %s[%02x]\n", __func__, (u32)(v), #r, \
ISP1362_REG_NO(ISP1362_REG_##r)); \
}
#define isp1362_set_mask16(d, r, m) { \
u16 __v; \
__v = isp1362_read_reg16(d, r); \
if ((__v | m) != __v) \
isp1362_write_reg16(d, r, __v | m); \
}
#define isp1362_clr_mask16(d, r, m) { \
u16 __v; \
__v = isp1362_read_reg16(d, r); \
if ((__v & ~m) != __v) \
isp1362_write_reg16(d, r, __v & ~m); \
}
#define isp1362_set_mask32(d, r, m) { \
u32 __v; \
__v = isp1362_read_reg32(d, r); \
if ((__v | m) != __v) \
isp1362_write_reg32(d, r, __v | m); \
}
#define isp1362_clr_mask32(d, r, m) { \
u32 __v; \
__v = isp1362_read_reg32(d, r); \
if ((__v & ~m) != __v) \
isp1362_write_reg32(d, r, __v & ~m); \
}
#define isp1362_show_reg(d, r) { \
if ((ISP1362_REG_##r & REG_WIDTH_MASK) == REG_WIDTH_32) \
DBG(0, "%-12s[%02x]: %08x\n", #r, \
ISP1362_REG_NO(ISP1362_REG_##r), isp1362_read_reg32(d, r)); \
else \
DBG(0, "%-12s[%02x]: %04x\n", #r, \
ISP1362_REG_NO(ISP1362_REG_##r), isp1362_read_reg16(d, r)); \
}
static void __attribute__((__unused__)) isp1362_show_regs(struct isp1362_hcd *isp1362_hcd)
{
isp1362_show_reg(isp1362_hcd, HCREVISION);
isp1362_show_reg(isp1362_hcd, HCCONTROL);
isp1362_show_reg(isp1362_hcd, HCCMDSTAT);
isp1362_show_reg(isp1362_hcd, HCINTSTAT);
isp1362_show_reg(isp1362_hcd, HCINTENB);
isp1362_show_reg(isp1362_hcd, HCFMINTVL);
isp1362_show_reg(isp1362_hcd, HCFMREM);
isp1362_show_reg(isp1362_hcd, HCFMNUM);
isp1362_show_reg(isp1362_hcd, HCLSTHRESH);
isp1362_show_reg(isp1362_hcd, HCRHDESCA);
isp1362_show_reg(isp1362_hcd, HCRHDESCB);
isp1362_show_reg(isp1362_hcd, HCRHSTATUS);
isp1362_show_reg(isp1362_hcd, HCRHPORT1);
isp1362_show_reg(isp1362_hcd, HCRHPORT2);
isp1362_show_reg(isp1362_hcd, HCHWCFG);
isp1362_show_reg(isp1362_hcd, HCDMACFG);
isp1362_show_reg(isp1362_hcd, HCXFERCTR);
isp1362_show_reg(isp1362_hcd, HCuPINT);
if (in_interrupt())
DBG(0, "%-12s[%02x]: %04x\n", "HCuPINTENB",
ISP1362_REG_NO(ISP1362_REG_HCuPINTENB), isp1362_hcd->irqenb);
else
isp1362_show_reg(isp1362_hcd, HCuPINTENB);
isp1362_show_reg(isp1362_hcd, HCCHIPID);
isp1362_show_reg(isp1362_hcd, HCSCRATCH);
isp1362_show_reg(isp1362_hcd, HCBUFSTAT);
isp1362_show_reg(isp1362_hcd, HCDIRADDR);
/* Access would advance fifo
* isp1362_show_reg(isp1362_hcd, HCDIRDATA);
*/
isp1362_show_reg(isp1362_hcd, HCISTLBUFSZ);
isp1362_show_reg(isp1362_hcd, HCISTLRATE);
isp1362_show_reg(isp1362_hcd, HCINTLBUFSZ);
isp1362_show_reg(isp1362_hcd, HCINTLBLKSZ);
isp1362_show_reg(isp1362_hcd, HCINTLDONE);
isp1362_show_reg(isp1362_hcd, HCINTLSKIP);
isp1362_show_reg(isp1362_hcd, HCINTLLAST);
isp1362_show_reg(isp1362_hcd, HCINTLCURR);
isp1362_show_reg(isp1362_hcd, HCATLBUFSZ);
isp1362_show_reg(isp1362_hcd, HCATLBLKSZ);
/* only valid after ATL_DONE interrupt
* isp1362_show_reg(isp1362_hcd, HCATLDONE);
*/
isp1362_show_reg(isp1362_hcd, HCATLSKIP);
isp1362_show_reg(isp1362_hcd, HCATLLAST);
isp1362_show_reg(isp1362_hcd, HCATLCURR);
isp1362_show_reg(isp1362_hcd, HCATLDTC);
isp1362_show_reg(isp1362_hcd, HCATLDTCTO);
}
static void isp1362_write_diraddr(struct isp1362_hcd *isp1362_hcd, u16 offset, u16 len)
{
len = (len + 1) & ~1;
isp1362_clr_mask16(isp1362_hcd, HCDMACFG, HCDMACFG_CTR_ENABLE);
isp1362_write_reg32(isp1362_hcd, HCDIRADDR,
HCDIRADDR_ADDR(offset) | HCDIRADDR_COUNT(len));
}
static void isp1362_read_buffer(struct isp1362_hcd *isp1362_hcd, void *buf, u16 offset, int len)
{
isp1362_write_diraddr(isp1362_hcd, offset, len);
DBG(3, "%s: Reading %d byte from buffer @%04x to memory @ %p\n",
__func__, len, offset, buf);
isp1362_write_reg16(isp1362_hcd, HCuPINT, HCuPINT_EOT);
isp1362_write_addr(isp1362_hcd, ISP1362_REG_HCDIRDATA);
isp1362_read_fifo(isp1362_hcd, buf, len);
isp1362_write_reg16(isp1362_hcd, HCuPINT, HCuPINT_EOT);
}
static void isp1362_write_buffer(struct isp1362_hcd *isp1362_hcd, void *buf, u16 offset, int len)
{
isp1362_write_diraddr(isp1362_hcd, offset, len);
DBG(3, "%s: Writing %d byte to buffer @%04x from memory @ %p\n",
__func__, len, offset, buf);
isp1362_write_reg16(isp1362_hcd, HCuPINT, HCuPINT_EOT);
isp1362_write_addr(isp1362_hcd, ISP1362_REG_HCDIRDATA | ISP1362_REG_WRITE_OFFSET);
isp1362_write_fifo(isp1362_hcd, buf, len);
isp1362_write_reg16(isp1362_hcd, HCuPINT, HCuPINT_EOT);
}
static void __attribute__((unused)) dump_data(char *buf, int len)
{
if (dbg_level > 0) {
int k;
int lf = 0;
for (k = 0; k < len; ++k) {
if (!lf)
DBG(0, "%04x:", k);
printk(" %02x", ((u8 *) buf)[k]);
lf = 1;
if (!k)
continue;
if (k % 16 == 15) {
printk("\n");
lf = 0;
continue;
}
if (k % 8 == 7)
printk(" ");
if (k % 4 == 3)
printk(" ");
}
if (lf)
printk("\n");
}
}
#if defined(PTD_TRACE)
static void dump_ptd(struct ptd *ptd)
{
DBG(0, "EP %p: CC=%x EP=%d DIR=%x CNT=%d LEN=%d MPS=%d TGL=%x ACT=%x FA=%d SPD=%x SF=%x PR=%x LST=%x\n",
container_of(ptd, struct isp1362_ep, ptd),
PTD_GET_CC(ptd), PTD_GET_EP(ptd), PTD_GET_DIR(ptd),
PTD_GET_COUNT(ptd), PTD_GET_LEN(ptd), PTD_GET_MPS(ptd),
PTD_GET_TOGGLE(ptd), PTD_GET_ACTIVE(ptd), PTD_GET_FA(ptd),
PTD_GET_SPD(ptd), PTD_GET_SF_INT(ptd), PTD_GET_PR(ptd), PTD_GET_LAST(ptd));
DBG(0, " %04x %04x %04x %04x\n", ptd->count, ptd->mps, ptd->len, ptd->faddr);
}
static void dump_ptd_out_data(struct ptd *ptd, u8 *buf)
{
if (dbg_level > 0) {
if (PTD_GET_DIR(ptd) != PTD_DIR_IN && PTD_GET_LEN(ptd)) {
DBG(0, "--out->\n");
dump_data(buf, PTD_GET_LEN(ptd));
}
}
}
static void dump_ptd_in_data(struct ptd *ptd, u8 *buf)
{
if (dbg_level > 0) {
if (PTD_GET_DIR(ptd) == PTD_DIR_IN && PTD_GET_COUNT(ptd)) {
DBG(0, "<--in--\n");
dump_data(buf, PTD_GET_COUNT(ptd));
}
DBG(0, "-----\n");
}
}
static void dump_ptd_queue(struct isp1362_ep_queue *epq)
{
struct isp1362_ep *ep;
int dbg = dbg_level;
dbg_level = 1;
list_for_each_entry(ep, &epq->active, active) {
dump_ptd(&ep->ptd);
dump_data(ep->data, ep->length);
}
dbg_level = dbg;
}
#else
#define dump_ptd(ptd) do {} while (0)
#define dump_ptd_in_data(ptd, buf) do {} while (0)
#define dump_ptd_out_data(ptd, buf) do {} while (0)
#define dump_ptd_data(ptd, buf) do {} while (0)
#define dump_ptd_queue(epq) do {} while (0)
#endif