linux_dsm_epyc7002/drivers/gpu/drm/amd/amdgpu/amdgpu_pm.c

3172 lines
94 KiB
C
Raw Normal View History

/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Rafał Miłecki <zajec5@gmail.com>
* Alex Deucher <alexdeucher@gmail.com>
*/
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_drv.h"
#include "amdgpu_pm.h"
#include "amdgpu_dpm.h"
#include "amdgpu_display.h"
#include "amdgpu_smu.h"
#include "atom.h"
#include <linux/power_supply.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/nospec.h>
#include "hwmgr.h"
#define WIDTH_4K 3840
static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev);
static const struct cg_flag_name clocks[] = {
{AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"},
{AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"},
{AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"},
{AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"},
{AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"},
{AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"},
{AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"},
{AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"},
{AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"},
{0, NULL},
};
static const struct hwmon_temp_label {
enum PP_HWMON_TEMP channel;
const char *label;
} temp_label[] = {
{PP_TEMP_EDGE, "edge"},
{PP_TEMP_JUNCTION, "junction"},
{PP_TEMP_MEM, "mem"},
};
void amdgpu_pm_acpi_event_handler(struct amdgpu_device *adev)
{
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
if (power_supply_is_system_supplied() > 0)
adev->pm.ac_power = true;
else
adev->pm.ac_power = false;
if (adev->powerplay.pp_funcs->enable_bapm)
amdgpu_dpm_enable_bapm(adev, adev->pm.ac_power);
mutex_unlock(&adev->pm.mutex);
}
}
int amdgpu_dpm_read_sensor(struct amdgpu_device *adev, enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if (!data || !size)
return -EINVAL;
if (is_support_sw_smu(adev))
ret = smu_read_sensor(&adev->smu, sensor, data, size);
else {
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->read_sensor)
ret = adev->powerplay.pp_funcs->read_sensor((adev)->powerplay.pp_handle,
sensor, data, size);
else
ret = -EINVAL;
}
return ret;
}
/**
* DOC: power_dpm_state
*
* The power_dpm_state file is a legacy interface and is only provided for
* backwards compatibility. The amdgpu driver provides a sysfs API for adjusting
* certain power related parameters. The file power_dpm_state is used for this.
* It accepts the following arguments:
*
* - battery
*
* - balanced
*
* - performance
*
* battery
*
* On older GPUs, the vbios provided a special power state for battery
* operation. Selecting battery switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* balanced
*
* On older GPUs, the vbios provided a special power state for balanced
* operation. Selecting balanced switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* performance
*
* On older GPUs, the vbios provided a special power state for performance
* operation. Selecting performance switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
*/
static ssize_t amdgpu_get_dpm_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_pm_state_type pm;
if (is_support_sw_smu(adev) && adev->smu.ppt_funcs->get_current_power_state)
pm = amdgpu_smu_get_current_power_state(adev);
else if (adev->powerplay.pp_funcs->get_current_power_state)
pm = amdgpu_dpm_get_current_power_state(adev);
else
pm = adev->pm.dpm.user_state;
return snprintf(buf, PAGE_SIZE, "%s\n",
(pm == POWER_STATE_TYPE_BATTERY) ? "battery" :
(pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance");
}
static ssize_t amdgpu_set_dpm_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_pm_state_type state;
if (strncmp("battery", buf, strlen("battery")) == 0)
state = POWER_STATE_TYPE_BATTERY;
else if (strncmp("balanced", buf, strlen("balanced")) == 0)
state = POWER_STATE_TYPE_BALANCED;
else if (strncmp("performance", buf, strlen("performance")) == 0)
state = POWER_STATE_TYPE_PERFORMANCE;
else {
count = -EINVAL;
goto fail;
}
if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state);
} else {
mutex_lock(&adev->pm.mutex);
adev->pm.dpm.user_state = state;
mutex_unlock(&adev->pm.mutex);
/* Can't set dpm state when the card is off */
if (!(adev->flags & AMD_IS_PX) ||
(ddev->switch_power_state == DRM_SWITCH_POWER_ON))
amdgpu_pm_compute_clocks(adev);
}
fail:
return count;
}
/**
* DOC: power_dpm_force_performance_level
*
* The amdgpu driver provides a sysfs API for adjusting certain power
* related parameters. The file power_dpm_force_performance_level is
* used for this. It accepts the following arguments:
*
* - auto
*
* - low
*
* - high
*
* - manual
*
* - profile_standard
*
* - profile_min_sclk
*
* - profile_min_mclk
*
* - profile_peak
*
* auto
*
* When auto is selected, the driver will attempt to dynamically select
* the optimal power profile for current conditions in the driver.
*
* low
*
* When low is selected, the clocks are forced to the lowest power state.
*
* high
*
* When high is selected, the clocks are forced to the highest power state.
*
* manual
*
* When manual is selected, the user can manually adjust which power states
* are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk,
* and pp_dpm_pcie files and adjust the power state transition heuristics
* via the pp_power_profile_mode sysfs file.
*
* profile_standard
* profile_min_sclk
* profile_min_mclk
* profile_peak
*
* When the profiling modes are selected, clock and power gating are
* disabled and the clocks are set for different profiling cases. This
* mode is recommended for profiling specific work loads where you do
* not want clock or power gating for clock fluctuation to interfere
* with your results. profile_standard sets the clocks to a fixed clock
* level which varies from asic to asic. profile_min_sclk forces the sclk
* to the lowest level. profile_min_mclk forces the mclk to the lowest level.
* profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels.
*
*/
static ssize_t amdgpu_get_dpm_forced_performance_level(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_dpm_forced_level level = 0xff;
if (amdgpu_sriov_vf(adev))
return 0;
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return snprintf(buf, PAGE_SIZE, "off\n");
if (is_support_sw_smu(adev))
level = smu_get_performance_level(&adev->smu);
else if (adev->powerplay.pp_funcs->get_performance_level)
level = amdgpu_dpm_get_performance_level(adev);
else
level = adev->pm.dpm.forced_level;
return snprintf(buf, PAGE_SIZE, "%s\n",
(level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" :
(level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" :
(level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" :
(level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" :
"unknown");
}
static ssize_t amdgpu_set_dpm_forced_performance_level(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_dpm_forced_level level;
enum amd_dpm_forced_level current_level = 0xff;
int ret = 0;
/* Can't force performance level when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (!amdgpu_sriov_vf(adev)) {
if (is_support_sw_smu(adev))
current_level = smu_get_performance_level(&adev->smu);
else if (adev->powerplay.pp_funcs->get_performance_level)
current_level = amdgpu_dpm_get_performance_level(adev);
}
if (strncmp("low", buf, strlen("low")) == 0) {
level = AMD_DPM_FORCED_LEVEL_LOW;
} else if (strncmp("high", buf, strlen("high")) == 0) {
level = AMD_DPM_FORCED_LEVEL_HIGH;
} else if (strncmp("auto", buf, strlen("auto")) == 0) {
level = AMD_DPM_FORCED_LEVEL_AUTO;
} else if (strncmp("manual", buf, strlen("manual")) == 0) {
level = AMD_DPM_FORCED_LEVEL_MANUAL;
} else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT;
} else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD;
} else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK;
} else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK;
} else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
} else {
count = -EINVAL;
goto fail;
}
if (amdgpu_sriov_vf(adev)) {
if (amdgim_is_hwperf(adev) &&
adev->virt.ops->force_dpm_level) {
mutex_lock(&adev->pm.mutex);
adev->virt.ops->force_dpm_level(adev, level);
mutex_unlock(&adev->pm.mutex);
return count;
} else {
return -EINVAL;
}
}
if (current_level == level)
return count;
/* profile_exit setting is valid only when current mode is in profile mode */
if (!(current_level & (AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) &&
(level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)) {
pr_err("Currently not in any profile mode!\n");
return -EINVAL;
}
if (is_support_sw_smu(adev)) {
mutex_lock(&adev->pm.mutex);
if (adev->pm.dpm.thermal_active) {
count = -EINVAL;
mutex_unlock(&adev->pm.mutex);
goto fail;
}
ret = smu_force_performance_level(&adev->smu, level);
if (ret)
count = -EINVAL;
else
adev->pm.dpm.forced_level = level;
mutex_unlock(&adev->pm.mutex);
} else if (adev->powerplay.pp_funcs->force_performance_level) {
mutex_lock(&adev->pm.mutex);
if (adev->pm.dpm.thermal_active) {
count = -EINVAL;
mutex_unlock(&adev->pm.mutex);
goto fail;
}
ret = amdgpu_dpm_force_performance_level(adev, level);
if (ret)
count = -EINVAL;
else
adev->pm.dpm.forced_level = level;
mutex_unlock(&adev->pm.mutex);
}
fail:
return count;
}
static ssize_t amdgpu_get_pp_num_states(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
struct pp_states_info data;
int i, buf_len, ret;
if (is_support_sw_smu(adev)) {
ret = smu_get_power_num_states(&adev->smu, &data);
if (ret)
return ret;
} else if (adev->powerplay.pp_funcs->get_pp_num_states)
amdgpu_dpm_get_pp_num_states(adev, &data);
buf_len = snprintf(buf, PAGE_SIZE, "states: %d\n", data.nums);
for (i = 0; i < data.nums; i++)
buf_len += snprintf(buf + buf_len, PAGE_SIZE, "%d %s\n", i,
(data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" :
(data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" :
(data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" :
(data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default");
return buf_len;
}
static ssize_t amdgpu_get_pp_cur_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
struct pp_states_info data;
struct smu_context *smu = &adev->smu;
enum amd_pm_state_type pm = 0;
int i = 0, ret = 0;
if (is_support_sw_smu(adev)) {
pm = smu_get_current_power_state(smu);
ret = smu_get_power_num_states(smu, &data);
if (ret)
return ret;
} else if (adev->powerplay.pp_funcs->get_current_power_state
&& adev->powerplay.pp_funcs->get_pp_num_states) {
pm = amdgpu_dpm_get_current_power_state(adev);
amdgpu_dpm_get_pp_num_states(adev, &data);
}
for (i = 0; i < data.nums; i++) {
if (pm == data.states[i])
break;
}
if (i == data.nums)
i = -EINVAL;
return snprintf(buf, PAGE_SIZE, "%d\n", i);
}
static ssize_t amdgpu_get_pp_force_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (adev->pp_force_state_enabled)
return amdgpu_get_pp_cur_state(dev, attr, buf);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_force_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
enum amd_pm_state_type state = 0;
unsigned long idx;
int ret;
if (strlen(buf) == 1)
adev->pp_force_state_enabled = false;
else if (is_support_sw_smu(adev))
adev->pp_force_state_enabled = false;
else if (adev->powerplay.pp_funcs->dispatch_tasks &&
adev->powerplay.pp_funcs->get_pp_num_states) {
struct pp_states_info data;
ret = kstrtoul(buf, 0, &idx);
if (ret || idx >= ARRAY_SIZE(data.states)) {
count = -EINVAL;
goto fail;
}
idx = array_index_nospec(idx, ARRAY_SIZE(data.states));
amdgpu_dpm_get_pp_num_states(adev, &data);
state = data.states[idx];
/* only set user selected power states */
if (state != POWER_STATE_TYPE_INTERNAL_BOOT &&
state != POWER_STATE_TYPE_DEFAULT) {
amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_ENABLE_USER_STATE, &state);
adev->pp_force_state_enabled = true;
}
}
fail:
return count;
}
/**
* DOC: pp_table
*
* The amdgpu driver provides a sysfs API for uploading new powerplay
* tables. The file pp_table is used for this. Reading the file
* will dump the current power play table. Writing to the file
* will attempt to upload a new powerplay table and re-initialize
* powerplay using that new table.
*
*/
static ssize_t amdgpu_get_pp_table(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
char *table = NULL;
int size;
if (is_support_sw_smu(adev)) {
size = smu_sys_get_pp_table(&adev->smu, (void **)&table);
if (size < 0)
return size;
}
else if (adev->powerplay.pp_funcs->get_pp_table)
size = amdgpu_dpm_get_pp_table(adev, &table);
else
return 0;
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, table, size);
return size;
}
static ssize_t amdgpu_set_pp_table(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret = 0;
if (is_support_sw_smu(adev)) {
ret = smu_sys_set_pp_table(&adev->smu, (void *)buf, count);
if (ret)
return ret;
} else if (adev->powerplay.pp_funcs->set_pp_table)
amdgpu_dpm_set_pp_table(adev, buf, count);
return count;
}
/**
* DOC: pp_od_clk_voltage
*
* The amdgpu driver provides a sysfs API for adjusting the clocks and voltages
* in each power level within a power state. The pp_od_clk_voltage is used for
* this.
*
* < For Vega10 and previous ASICs >
*
* Reading the file will display:
*
* - a list of engine clock levels and voltages labeled OD_SCLK
*
* - a list of memory clock levels and voltages labeled OD_MCLK
*
* - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE
*
* To manually adjust these settings, first select manual using
* power_dpm_force_performance_level. Enter a new value for each
* level by writing a string that contains "s/m level clock voltage" to
* the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz
* at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at
* 810 mV. When you have edited all of the states as needed, write
* "c" (commit) to the file to commit your changes. If you want to reset to the
* default power levels, write "r" (reset) to the file to reset them.
*
*
* < For Vega20 >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
*
* - maximum memory clock labeled OD_MCLK
*
* - three <frequency, voltage> points labeled OD_VDDC_CURVE.
* They can be used to calibrate the sclk voltage curve.
*
* - a list of valid ranges for sclk, mclk, and voltage curve points
* labeled OD_RANGE
*
* To manually adjust these settings:
*
* - First select manual using power_dpm_force_performance_level
*
* - For clock frequency setting, enter a new value by writing a
* string that contains "s/m index clock" to the file. The index
* should be 0 if to set minimum clock. And 1 if to set maximum
* clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz.
* "m 1 800" will update maximum mclk to be 800Mhz.
*
* For sclk voltage curve, enter the new values by writing a
* string that contains "vc point clock voltage" to the file. The
* points are indexed by 0, 1 and 2. E.g., "vc 0 300 600" will
* update point1 with clock set as 300Mhz and voltage as
* 600mV. "vc 2 1000 1000" will update point3 with clock set
* as 1000Mhz and voltage 1000mV.
*
* - When you have edited all of the states as needed, write "c" (commit)
* to the file to commit your changes
*
* - If you want to reset to the default power levels, write "r" (reset)
* to the file to reset them
*
*/
static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
uint32_t parameter_size = 0;
long parameter[64];
char buf_cpy[128];
char *tmp_str;
char *sub_str;
const char delimiter[3] = {' ', '\n', '\0'};
uint32_t type;
if (count > 127)
return -EINVAL;
if (*buf == 's')
type = PP_OD_EDIT_SCLK_VDDC_TABLE;
else if (*buf == 'm')
type = PP_OD_EDIT_MCLK_VDDC_TABLE;
else if(*buf == 'r')
type = PP_OD_RESTORE_DEFAULT_TABLE;
else if (*buf == 'c')
type = PP_OD_COMMIT_DPM_TABLE;
else if (!strncmp(buf, "vc", 2))
type = PP_OD_EDIT_VDDC_CURVE;
else
return -EINVAL;
memcpy(buf_cpy, buf, count+1);
tmp_str = buf_cpy;
if (type == PP_OD_EDIT_VDDC_CURVE)
tmp_str++;
while (isspace(*++tmp_str));
while (tmp_str[0]) {
sub_str = strsep(&tmp_str, delimiter);
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
if (is_support_sw_smu(adev)) {
ret = smu_od_edit_dpm_table(&adev->smu, type,
parameter, parameter_size);
if (ret)
return -EINVAL;
} else {
if (adev->powerplay.pp_funcs->odn_edit_dpm_table)
ret = amdgpu_dpm_odn_edit_dpm_table(adev, type,
parameter, parameter_size);
if (ret)
return -EINVAL;
if (type == PP_OD_COMMIT_DPM_TABLE) {
if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_READJUST_POWER_STATE,
NULL);
return count;
} else {
return -EINVAL;
}
}
}
return count;
}
static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint32_t size = 0;
if (is_support_sw_smu(adev)) {
size = smu_print_clk_levels(&adev->smu, SMU_OD_SCLK, buf);
size += smu_print_clk_levels(&adev->smu, SMU_OD_MCLK, buf+size);
size += smu_print_clk_levels(&adev->smu, SMU_OD_VDDC_CURVE, buf+size);
size += smu_print_clk_levels(&adev->smu, SMU_OD_RANGE, buf+size);
return size;
} else if (adev->powerplay.pp_funcs->print_clock_levels) {
size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf);
size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf+size);
size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf+size);
size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf+size);
return size;
} else {
return snprintf(buf, PAGE_SIZE, "\n");
}
}
/**
* DOC: ppfeatures
*
* The amdgpu driver provides a sysfs API for adjusting what powerplay
* features to be enabled. The file ppfeatures is used for this. And
* this is only available for Vega10 and later dGPUs.
*
* Reading back the file will show you the followings:
* - Current ppfeature masks
* - List of the all supported powerplay features with their naming,
* bitmasks and enablement status('Y'/'N' means "enabled"/"disabled").
*
* To manually enable or disable a specific feature, just set or clear
* the corresponding bit from original ppfeature masks and input the
* new ppfeature masks.
*/
static ssize_t amdgpu_set_ppfeature_status(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint64_t featuremask;
int ret;
ret = kstrtou64(buf, 0, &featuremask);
if (ret)
return -EINVAL;
pr_debug("featuremask = 0x%llx\n", featuremask);
if (is_support_sw_smu(adev)) {
ret = smu_set_ppfeature_status(&adev->smu, featuremask);
if (ret)
return -EINVAL;
} else if (adev->powerplay.pp_funcs->set_ppfeature_status) {
ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask);
if (ret)
return -EINVAL;
}
return count;
}
static ssize_t amdgpu_get_ppfeature_status(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (is_support_sw_smu(adev)) {
return smu_get_ppfeature_status(&adev->smu, buf);
} else if (adev->powerplay.pp_funcs->get_ppfeature_status)
return amdgpu_dpm_get_ppfeature_status(adev, buf);
return snprintf(buf, PAGE_SIZE, "\n");
}
/**
* DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk
* pp_dpm_pcie
*
* The amdgpu driver provides a sysfs API for adjusting what power levels
* are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk,
* pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for
* this.
*
* pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for
* Vega10 and later ASICs.
* pp_dpm_fclk interface is only available for Vega20 and later ASICs.
*
* Reading back the files will show you the available power levels within
* the power state and the clock information for those levels.
*
* To manually adjust these states, first select manual using
* power_dpm_force_performance_level.
* Secondly,Enter a new value for each level by inputing a string that
* contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie"
* E.g., echo 4 5 6 to > pp_dpm_sclk will enable sclk levels 4, 5, and 6.
*
* NOTE: change to the dcefclk max dpm level is not supported now
*/
static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (amdgpu_sriov_vf(adev) && amdgim_is_hwperf(adev) &&
adev->virt.ops->get_pp_clk)
return adev->virt.ops->get_pp_clk(adev, PP_SCLK, buf);
if (is_support_sw_smu(adev))
return smu_print_clk_levels(&adev->smu, SMU_SCLK, buf);
else if (adev->powerplay.pp_funcs->print_clock_levels)
return amdgpu_dpm_print_clock_levels(adev, PP_SCLK, buf);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
/*
* Worst case: 32 bits individually specified, in octal at 12 characters
* per line (+1 for \n).
*/
#define AMDGPU_MASK_BUF_MAX (32 * 13)
static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask)
{
int ret;
long level;
char *sub_str = NULL;
char *tmp;
char buf_cpy[AMDGPU_MASK_BUF_MAX + 1];
const char delimiter[3] = {' ', '\n', '\0'};
size_t bytes;
*mask = 0;
bytes = min(count, sizeof(buf_cpy) - 1);
memcpy(buf_cpy, buf, bytes);
buf_cpy[bytes] = '\0';
tmp = buf_cpy;
while (tmp[0]) {
sub_str = strsep(&tmp, delimiter);
if (strlen(sub_str)) {
ret = kstrtol(sub_str, 0, &level);
if (ret)
return -EINVAL;
*mask |= 1 << level;
} else
break;
}
return 0;
}
static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
uint32_t mask = 0;
if (amdgpu_sriov_vf(adev))
return 0;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
if (is_support_sw_smu(adev))
ret = smu_force_clk_levels(&adev->smu, SMU_SCLK, mask);
else if (adev->powerplay.pp_funcs->force_clock_level)
ret = amdgpu_dpm_force_clock_level(adev, PP_SCLK, mask);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (amdgpu_sriov_vf(adev) && amdgim_is_hwperf(adev) &&
adev->virt.ops->get_pp_clk)
return adev->virt.ops->get_pp_clk(adev, PP_MCLK, buf);
if (is_support_sw_smu(adev))
return smu_print_clk_levels(&adev->smu, SMU_MCLK, buf);
else if (adev->powerplay.pp_funcs->print_clock_levels)
return amdgpu_dpm_print_clock_levels(adev, PP_MCLK, buf);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
uint32_t mask = 0;
if (amdgpu_sriov_vf(adev))
return 0;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
if (is_support_sw_smu(adev))
ret = smu_force_clk_levels(&adev->smu, SMU_MCLK, mask);
else if (adev->powerplay.pp_funcs->force_clock_level)
ret = amdgpu_dpm_force_clock_level(adev, PP_MCLK, mask);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (is_support_sw_smu(adev))
return smu_print_clk_levels(&adev->smu, SMU_SOCCLK, buf);
else if (adev->powerplay.pp_funcs->print_clock_levels)
return amdgpu_dpm_print_clock_levels(adev, PP_SOCCLK, buf);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
uint32_t mask = 0;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
if (is_support_sw_smu(adev))
ret = smu_force_clk_levels(&adev->smu, SMU_SOCCLK, mask);
else if (adev->powerplay.pp_funcs->force_clock_level)
ret = amdgpu_dpm_force_clock_level(adev, PP_SOCCLK, mask);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (is_support_sw_smu(adev))
return smu_print_clk_levels(&adev->smu, SMU_FCLK, buf);
else if (adev->powerplay.pp_funcs->print_clock_levels)
return amdgpu_dpm_print_clock_levels(adev, PP_FCLK, buf);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
uint32_t mask = 0;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
if (is_support_sw_smu(adev))
ret = smu_force_clk_levels(&adev->smu, SMU_FCLK, mask);
else if (adev->powerplay.pp_funcs->force_clock_level)
ret = amdgpu_dpm_force_clock_level(adev, PP_FCLK, mask);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (is_support_sw_smu(adev))
return smu_print_clk_levels(&adev->smu, SMU_DCEFCLK, buf);
else if (adev->powerplay.pp_funcs->print_clock_levels)
return amdgpu_dpm_print_clock_levels(adev, PP_DCEFCLK, buf);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
uint32_t mask = 0;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
if (is_support_sw_smu(adev))
ret = smu_force_clk_levels(&adev->smu, SMU_DCEFCLK, mask);
else if (adev->powerplay.pp_funcs->force_clock_level)
ret = amdgpu_dpm_force_clock_level(adev, PP_DCEFCLK, mask);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (is_support_sw_smu(adev))
return smu_print_clk_levels(&adev->smu, SMU_PCIE, buf);
else if (adev->powerplay.pp_funcs->print_clock_levels)
return amdgpu_dpm_print_clock_levels(adev, PP_PCIE, buf);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
uint32_t mask = 0;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
if (is_support_sw_smu(adev))
ret = smu_force_clk_levels(&adev->smu, SMU_PCIE, mask);
else if (adev->powerplay.pp_funcs->force_clock_level)
ret = amdgpu_dpm_force_clock_level(adev, PP_PCIE, mask);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint32_t value = 0;
if (is_support_sw_smu(adev))
value = smu_get_od_percentage(&(adev->smu), SMU_OD_SCLK);
else if (adev->powerplay.pp_funcs->get_sclk_od)
value = amdgpu_dpm_get_sclk_od(adev);
return snprintf(buf, PAGE_SIZE, "%d\n", value);
}
static ssize_t amdgpu_set_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
long int value;
ret = kstrtol(buf, 0, &value);
if (ret) {
count = -EINVAL;
goto fail;
}
if (is_support_sw_smu(adev)) {
value = smu_set_od_percentage(&(adev->smu), SMU_OD_SCLK, (uint32_t)value);
} else {
if (adev->powerplay.pp_funcs->set_sclk_od)
amdgpu_dpm_set_sclk_od(adev, (uint32_t)value);
if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL);
} else {
adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps;
amdgpu_pm_compute_clocks(adev);
}
}
fail:
return count;
}
static ssize_t amdgpu_get_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint32_t value = 0;
if (is_support_sw_smu(adev))
value = smu_get_od_percentage(&(adev->smu), SMU_OD_MCLK);
else if (adev->powerplay.pp_funcs->get_mclk_od)
value = amdgpu_dpm_get_mclk_od(adev);
return snprintf(buf, PAGE_SIZE, "%d\n", value);
}
static ssize_t amdgpu_set_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int ret;
long int value;
ret = kstrtol(buf, 0, &value);
if (ret) {
count = -EINVAL;
goto fail;
}
if (is_support_sw_smu(adev)) {
value = smu_set_od_percentage(&(adev->smu), SMU_OD_MCLK, (uint32_t)value);
} else {
if (adev->powerplay.pp_funcs->set_mclk_od)
amdgpu_dpm_set_mclk_od(adev, (uint32_t)value);
if (adev->powerplay.pp_funcs->dispatch_tasks) {
amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL);
} else {
adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps;
amdgpu_pm_compute_clocks(adev);
}
}
fail:
return count;
}
/**
* DOC: pp_power_profile_mode
*
* The amdgpu driver provides a sysfs API for adjusting the heuristics
* related to switching between power levels in a power state. The file
* pp_power_profile_mode is used for this.
*
* Reading this file outputs a list of all of the predefined power profiles
* and the relevant heuristics settings for that profile.
*
* To select a profile or create a custom profile, first select manual using
* power_dpm_force_performance_level. Writing the number of a predefined
* profile to pp_power_profile_mode will enable those heuristics. To
* create a custom set of heuristics, write a string of numbers to the file
* starting with the number of the custom profile along with a setting
* for each heuristic parameter. Due to differences across asic families
* the heuristic parameters vary from family to family.
*
*/
static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (is_support_sw_smu(adev))
return smu_get_power_profile_mode(&adev->smu, buf);
else if (adev->powerplay.pp_funcs->get_power_profile_mode)
return amdgpu_dpm_get_power_profile_mode(adev, buf);
return snprintf(buf, PAGE_SIZE, "\n");
}
static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret = 0xff;
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint32_t parameter_size = 0;
long parameter[64];
char *sub_str, buf_cpy[128];
char *tmp_str;
uint32_t i = 0;
char tmp[2];
long int profile_mode = 0;
const char delimiter[3] = {' ', '\n', '\0'};
tmp[0] = *(buf);
tmp[1] = '\0';
ret = kstrtol(tmp, 0, &profile_mode);
if (ret)
goto fail;
if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (count < 2 || count > 127)
return -EINVAL;
while (isspace(*++buf))
i++;
memcpy(buf_cpy, buf, count-i);
tmp_str = buf_cpy;
while (tmp_str[0]) {
sub_str = strsep(&tmp_str, delimiter);
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret) {
count = -EINVAL;
goto fail;
}
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
}
parameter[parameter_size] = profile_mode;
if (is_support_sw_smu(adev))
ret = smu_set_power_profile_mode(&adev->smu, parameter, parameter_size);
else if (adev->powerplay.pp_funcs->set_power_profile_mode)
ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size);
if (!ret)
return count;
fail:
return -EINVAL;
}
/**
* DOC: busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the GPU
* is as a percentage. The file gpu_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int r, value, size = sizeof(value);
/* read the IP busy sensor */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD,
(void *)&value, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", value);
}
/**
* DOC: mem_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the VRAM
* is as a percentage. The file mem_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_memory_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
int r, value, size = sizeof(value);
/* read the IP busy sensor */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD,
(void *)&value, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", value);
}
/**
* DOC: pcie_bw
*
* The amdgpu driver provides a sysfs API for estimating how much data
* has been received and sent by the GPU in the last second through PCIe.
* The file pcie_bw is used for this.
* The Perf counters count the number of received and sent messages and return
* those values, as well as the maximum payload size of a PCIe packet (mps).
* Note that it is not possible to easily and quickly obtain the size of each
* packet transmitted, so we output the max payload size (mps) to allow for
* quick estimation of the PCIe bandwidth usage
*/
static ssize_t amdgpu_get_pcie_bw(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
uint64_t count0, count1;
amdgpu_asic_get_pcie_usage(adev, &count0, &count1);
return snprintf(buf, PAGE_SIZE, "%llu %llu %i\n",
count0, count1, pcie_get_mps(adev->pdev));
}
/**
* DOC: unique_id
*
* The amdgpu driver provides a sysfs API for providing a unique ID for the GPU
* The file unique_id is used for this.
* This will provide a Unique ID that will persist from machine to machine
*
* NOTE: This will only work for GFX9 and newer. This file will be absent
* on unsupported ASICs (GFX8 and older)
*/
static ssize_t amdgpu_get_unique_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = ddev->dev_private;
if (adev->unique_id)
return snprintf(buf, PAGE_SIZE, "%016llx\n", adev->unique_id);
return 0;
}
static DEVICE_ATTR(power_dpm_state, S_IRUGO | S_IWUSR, amdgpu_get_dpm_state, amdgpu_set_dpm_state);
static DEVICE_ATTR(power_dpm_force_performance_level, S_IRUGO | S_IWUSR,
amdgpu_get_dpm_forced_performance_level,
amdgpu_set_dpm_forced_performance_level);
static DEVICE_ATTR(pp_num_states, S_IRUGO, amdgpu_get_pp_num_states, NULL);
static DEVICE_ATTR(pp_cur_state, S_IRUGO, amdgpu_get_pp_cur_state, NULL);
static DEVICE_ATTR(pp_force_state, S_IRUGO | S_IWUSR,
amdgpu_get_pp_force_state,
amdgpu_set_pp_force_state);
static DEVICE_ATTR(pp_table, S_IRUGO | S_IWUSR,
amdgpu_get_pp_table,
amdgpu_set_pp_table);
static DEVICE_ATTR(pp_dpm_sclk, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_sclk,
amdgpu_set_pp_dpm_sclk);
static DEVICE_ATTR(pp_dpm_mclk, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_mclk,
amdgpu_set_pp_dpm_mclk);
static DEVICE_ATTR(pp_dpm_socclk, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_socclk,
amdgpu_set_pp_dpm_socclk);
static DEVICE_ATTR(pp_dpm_fclk, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_fclk,
amdgpu_set_pp_dpm_fclk);
static DEVICE_ATTR(pp_dpm_dcefclk, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_dcefclk,
amdgpu_set_pp_dpm_dcefclk);
static DEVICE_ATTR(pp_dpm_pcie, S_IRUGO | S_IWUSR,
amdgpu_get_pp_dpm_pcie,
amdgpu_set_pp_dpm_pcie);
static DEVICE_ATTR(pp_sclk_od, S_IRUGO | S_IWUSR,
amdgpu_get_pp_sclk_od,
amdgpu_set_pp_sclk_od);
static DEVICE_ATTR(pp_mclk_od, S_IRUGO | S_IWUSR,
amdgpu_get_pp_mclk_od,
amdgpu_set_pp_mclk_od);
static DEVICE_ATTR(pp_power_profile_mode, S_IRUGO | S_IWUSR,
amdgpu_get_pp_power_profile_mode,
amdgpu_set_pp_power_profile_mode);
static DEVICE_ATTR(pp_od_clk_voltage, S_IRUGO | S_IWUSR,
amdgpu_get_pp_od_clk_voltage,
amdgpu_set_pp_od_clk_voltage);
static DEVICE_ATTR(gpu_busy_percent, S_IRUGO,
amdgpu_get_busy_percent, NULL);
static DEVICE_ATTR(mem_busy_percent, S_IRUGO,
amdgpu_get_memory_busy_percent, NULL);
static DEVICE_ATTR(pcie_bw, S_IRUGO, amdgpu_get_pcie_bw, NULL);
static DEVICE_ATTR(ppfeatures, S_IRUGO | S_IWUSR,
amdgpu_get_ppfeature_status,
amdgpu_set_ppfeature_status);
static DEVICE_ATTR(unique_id, S_IRUGO, amdgpu_get_unique_id, NULL);
static ssize_t amdgpu_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
struct drm_device *ddev = adev->ddev;
int channel = to_sensor_dev_attr(attr)->index;
int r, temp, size = sizeof(temp);
/* Can't get temperature when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
switch (channel) {
case PP_TEMP_JUNCTION:
/* get current junction temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP,
(void *)&temp, &size);
if (r)
return r;
break;
case PP_TEMP_EDGE:
/* get current edge temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_EDGE_TEMP,
(void *)&temp, &size);
if (r)
return r;
break;
case PP_TEMP_MEM:
/* get current memory temperature */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_TEMP,
(void *)&temp, &size);
if (r)
return r;
break;
}
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_temp;
else
temp = adev->pm.dpm.thermal.max_temp;
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_hotspot_temp;
else
temp = adev->pm.dpm.thermal.max_hotspot_crit_temp;
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_mem_temp;
else
temp = adev->pm.dpm.thermal.max_mem_crit_temp;
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int channel = to_sensor_dev_attr(attr)->index;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
return snprintf(buf, PAGE_SIZE, "%s\n", temp_label[channel].label);
}
static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int channel = to_sensor_dev_attr(attr)->index;
int temp = 0;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
switch (channel) {
case PP_TEMP_JUNCTION:
temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp;
break;
case PP_TEMP_EDGE:
temp = adev->pm.dpm.thermal.max_edge_emergency_temp;
break;
case PP_TEMP_MEM:
temp = adev->pm.dpm.thermal.max_mem_emergency_temp;
break;
}
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
if (is_support_sw_smu(adev)) {
pwm_mode = smu_get_fan_control_mode(&adev->smu);
} else {
if (!adev->powerplay.pp_funcs->get_fan_control_mode)
return -EINVAL;
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
}
return sprintf(buf, "%i\n", pwm_mode);
}
static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
int value;
/* Can't adjust fan when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (is_support_sw_smu(adev)) {
err = kstrtoint(buf, 10, &value);
if (err)
return err;
smu_set_fan_control_mode(&adev->smu, value);
} else {
if (!adev->powerplay.pp_funcs->set_fan_control_mode)
return -EINVAL;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
amdgpu_dpm_set_fan_control_mode(adev, value);
}
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", 0);
}
static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", 255);
}
static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
/* Can't adjust fan when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (is_support_sw_smu(adev))
pwm_mode = smu_get_fan_control_mode(&adev->smu);
else
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
if (pwm_mode != AMD_FAN_CTRL_MANUAL) {
pr_info("manual fan speed control should be enabled first\n");
return -EINVAL;
}
err = kstrtou32(buf, 10, &value);
if (err)
return err;
value = (value * 100) / 255;
if (is_support_sw_smu(adev)) {
err = smu_set_fan_speed_percent(&adev->smu, value);
if (err)
return err;
} else if (adev->powerplay.pp_funcs->set_fan_speed_percent) {
err = amdgpu_dpm_set_fan_speed_percent(adev, value);
if (err)
return err;
}
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
/* Can't adjust fan when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (is_support_sw_smu(adev)) {
err = smu_get_fan_speed_percent(&adev->smu, &speed);
if (err)
return err;
} else if (adev->powerplay.pp_funcs->get_fan_speed_percent) {
err = amdgpu_dpm_get_fan_speed_percent(adev, &speed);
if (err)
return err;
}
speed = (speed * 255) / 100;
return sprintf(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
/* Can't adjust fan when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (is_support_sw_smu(adev)) {
err = smu_get_current_rpm(&adev->smu, &speed);
if (err)
return err;
} else if (adev->powerplay.pp_funcs->get_fan_speed_rpm) {
err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed);
if (err)
return err;
}
return sprintf(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 min_rpm = 0;
u32 size = sizeof(min_rpm);
int r;
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM,
(void *)&min_rpm, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", min_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 max_rpm = 0;
u32 size = sizeof(max_rpm);
int r;
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM,
(void *)&max_rpm, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", max_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 rpm = 0;
/* Can't adjust fan when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
if (is_support_sw_smu(adev)) {
err = smu_get_current_rpm(&adev->smu, &rpm);
if (err)
return err;
} else if (adev->powerplay.pp_funcs->get_fan_speed_rpm) {
err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm);
if (err)
return err;
}
return sprintf(buf, "%i\n", rpm);
}
static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
if (is_support_sw_smu(adev))
pwm_mode = smu_get_fan_control_mode(&adev->smu);
else
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
if (pwm_mode != AMD_FAN_CTRL_MANUAL)
return -ENODATA;
/* Can't adjust fan when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
if (is_support_sw_smu(adev)) {
err = smu_set_fan_speed_rpm(&adev->smu, value);
if (err)
return err;
} else if (adev->powerplay.pp_funcs->set_fan_speed_rpm) {
err = amdgpu_dpm_set_fan_speed_rpm(adev, value);
if (err)
return err;
}
return count;
}
static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
if (is_support_sw_smu(adev)) {
pwm_mode = smu_get_fan_control_mode(&adev->smu);
} else {
if (!adev->powerplay.pp_funcs->get_fan_control_mode)
return -EINVAL;
pwm_mode = amdgpu_dpm_get_fan_control_mode(adev);
}
return sprintf(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1);
}
static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
int value;
u32 pwm_mode;
/* Can't adjust fan when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
if (value == 0)
pwm_mode = AMD_FAN_CTRL_AUTO;
else if (value == 1)
pwm_mode = AMD_FAN_CTRL_MANUAL;
else
return -EINVAL;
if (is_support_sw_smu(adev)) {
smu_set_fan_control_mode(&adev->smu, pwm_mode);
} else {
if (!adev->powerplay.pp_funcs->set_fan_control_mode)
return -EINVAL;
amdgpu_dpm_set_fan_control_mode(adev, pwm_mode);
}
return count;
}
static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
struct drm_device *ddev = adev->ddev;
u32 vddgfx;
int r, size = sizeof(vddgfx);
/* Can't get voltage when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
/* get the voltage */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX,
(void *)&vddgfx, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", vddgfx);
}
static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "vddgfx\n");
}
static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
struct drm_device *ddev = adev->ddev;
u32 vddnb;
int r, size = sizeof(vddnb);
/* only APUs have vddnb */
if (!(adev->flags & AMD_IS_APU))
return -EINVAL;
/* Can't get voltage when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
/* get the voltage */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB,
(void *)&vddnb, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", vddnb);
}
static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "vddnb\n");
}
static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
struct drm_device *ddev = adev->ddev;
u32 query = 0;
int r, size = sizeof(u32);
unsigned uw;
/* Can't get power when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
/* get the voltage */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER,
(void *)&query, &size);
if (r)
return r;
/* convert to microwatts */
uw = (query >> 8) * 1000000 + (query & 0xff) * 1000;
return snprintf(buf, PAGE_SIZE, "%u\n", uw);
}
static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", 0);
}
static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t limit = 0;
if (is_support_sw_smu(adev)) {
smu_get_power_limit(&adev->smu, &limit, true);
return snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000);
} else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_power_limit) {
adev->powerplay.pp_funcs->get_power_limit(adev->powerplay.pp_handle, &limit, true);
return snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000);
} else {
return snprintf(buf, PAGE_SIZE, "\n");
}
}
static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t limit = 0;
if (is_support_sw_smu(adev)) {
smu_get_power_limit(&adev->smu, &limit, false);
return snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000);
} else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_power_limit) {
adev->powerplay.pp_funcs->get_power_limit(adev->powerplay.pp_handle, &limit, false);
return snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000);
} else {
return snprintf(buf, PAGE_SIZE, "\n");
}
}
static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
value = value / 1000000; /* convert to Watt */
if (is_support_sw_smu(adev)) {
adev->smu.funcs->set_power_limit(&adev->smu, value);
} else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->set_power_limit) {
err = adev->powerplay.pp_funcs->set_power_limit(adev->powerplay.pp_handle, value);
if (err)
return err;
} else {
return -EINVAL;
}
return count;
}
static ssize_t amdgpu_hwmon_show_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
struct drm_device *ddev = adev->ddev;
uint32_t sclk;
int r, size = sizeof(sclk);
/* Can't get voltage when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
/* sanity check PP is enabled */
if (!(adev->powerplay.pp_funcs &&
adev->powerplay.pp_funcs->read_sensor))
return -EINVAL;
/* get the sclk */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK,
(void *)&sclk, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", sclk * 10 * 1000);
}
static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "sclk\n");
}
static ssize_t amdgpu_hwmon_show_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
struct drm_device *ddev = adev->ddev;
uint32_t mclk;
int r, size = sizeof(mclk);
/* Can't get voltage when the card is off */
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON))
return -EINVAL;
/* sanity check PP is enabled */
if (!(adev->powerplay.pp_funcs &&
adev->powerplay.pp_funcs->read_sensor))
return -EINVAL;
/* get the sclk */
r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK,
(void *)&mclk, &size);
if (r)
return r;
return snprintf(buf, PAGE_SIZE, "%d\n", mclk * 10 * 1000);
}
static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "mclk\n");
}
/**
* DOC: hwmon
*
* The amdgpu driver exposes the following sensor interfaces:
*
* - GPU temperature (via the on-die sensor)
*
* - GPU voltage
*
* - Northbridge voltage (APUs only)
*
* - GPU power
*
* - GPU fan
*
* - GPU gfx/compute engine clock
*
* - GPU memory clock (dGPU only)
*
* hwmon interfaces for GPU temperature:
*
* - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius
* - temp2_input and temp3_input are supported on SOC15 dGPUs only
*
* - temp[1-3]_label: temperature channel label
* - temp2_label and temp3_label are supported on SOC15 dGPUs only
*
* - temp[1-3]_crit: temperature critical max value in millidegrees Celsius
* - temp2_crit and temp3_crit are supported on SOC15 dGPUs only
*
* - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius
* - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only
*
* - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius
* - these are supported on SOC15 dGPUs only
*
* hwmon interfaces for GPU voltage:
*
* - in0_input: the voltage on the GPU in millivolts
*
* - in1_input: the voltage on the Northbridge in millivolts
*
* hwmon interfaces for GPU power:
*
* - power1_average: average power used by the GPU in microWatts
*
* - power1_cap_min: minimum cap supported in microWatts
*
* - power1_cap_max: maximum cap supported in microWatts
*
* - power1_cap: selected power cap in microWatts
*
* hwmon interfaces for GPU fan:
*
* - pwm1: pulse width modulation fan level (0-255)
*
* - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control)
*
* - pwm1_min: pulse width modulation fan control minimum level (0)
*
* - pwm1_max: pulse width modulation fan control maximum level (255)
*
* - fan1_min: an minimum value Unit: revolution/min (RPM)
*
* - fan1_max: an maxmum value Unit: revolution/max (RPM)
*
* - fan1_input: fan speed in RPM
*
* - fan[1-*]_target: Desired fan speed Unit: revolution/min (RPM)
*
* - fan[1-*]_enable: Enable or disable the sensors.1: Enable 0: Disable
*
* hwmon interfaces for GPU clocks:
*
* - freq1_input: the gfx/compute clock in hertz
*
* - freq2_input: the memory clock in hertz
*
* You can use hwmon tools like sensors to view this information on your system.
*
*/
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0);
static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0);
static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0);
static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0);
static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0);
static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0);
static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0);
static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0);
static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0);
static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_emergency.dev_attr.attr,
&sensor_dev_attr_temp2_emergency.dev_attr.attr,
&sensor_dev_attr_temp3_emergency.dev_attr.attr,
&sensor_dev_attr_temp1_label.dev_attr.attr,
&sensor_dev_attr_temp2_label.dev_attr.attr,
&sensor_dev_attr_temp3_label.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_min.dev_attr.attr,
&sensor_dev_attr_pwm1_max.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_max.dev_attr.attr,
&sensor_dev_attr_fan1_target.dev_attr.attr,
&sensor_dev_attr_fan1_enable.dev_attr.attr,
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_label.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_label.dev_attr.attr,
&sensor_dev_attr_power1_average.dev_attr.attr,
&sensor_dev_attr_power1_cap_max.dev_attr.attr,
&sensor_dev_attr_power1_cap_min.dev_attr.attr,
&sensor_dev_attr_power1_cap.dev_attr.attr,
&sensor_dev_attr_freq1_input.dev_attr.attr,
&sensor_dev_attr_freq1_label.dev_attr.attr,
&sensor_dev_attr_freq2_input.dev_attr.attr,
&sensor_dev_attr_freq2_label.dev_attr.attr,
NULL
};
static umode_t hwmon_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct amdgpu_device *adev = dev_get_drvdata(dev);
umode_t effective_mode = attr->mode;
/* Skip fan attributes if fan is not present */
if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* Skip fan attributes on APU */
if ((adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* Skip limit attributes if DPM is not enabled */
if (!adev->pm.dpm_enabled &&
(attr == &sensor_dev_attr_temp1_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
if (!is_support_sw_smu(adev)) {
/* mask fan attributes if we have no bindings for this asic to expose */
if ((!adev->powerplay.pp_funcs->get_fan_speed_percent &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */
(!adev->powerplay.pp_funcs->get_fan_control_mode &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */
effective_mode &= ~S_IRUGO;
if ((!adev->powerplay.pp_funcs->set_fan_speed_percent &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */
(!adev->powerplay.pp_funcs->set_fan_control_mode &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */
effective_mode &= ~S_IWUSR;
}
if ((adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_power1_average.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr||
attr == &sensor_dev_attr_power1_cap.dev_attr.attr))
return 0;
if (!is_support_sw_smu(adev)) {
/* hide max/min values if we can't both query and manage the fan */
if ((!adev->powerplay.pp_funcs->set_fan_speed_percent &&
!adev->powerplay.pp_funcs->get_fan_speed_percent) &&
(!adev->powerplay.pp_funcs->set_fan_speed_rpm &&
!adev->powerplay.pp_funcs->get_fan_speed_rpm) &&
(attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr))
return 0;
if ((!adev->powerplay.pp_funcs->set_fan_speed_rpm &&
!adev->powerplay.pp_funcs->get_fan_speed_rpm) &&
(attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr))
return 0;
}
/* only APUs have vddnb */
if (!(adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_in1_input.dev_attr.attr ||
attr == &sensor_dev_attr_in1_label.dev_attr.attr))
return 0;
/* no mclk on APUs */
if ((adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_freq2_input.dev_attr.attr ||
attr == &sensor_dev_attr_freq2_label.dev_attr.attr))
return 0;
/* only SOC15 dGPUs support hotspot and mem temperatures */
if (((adev->flags & AMD_IS_APU) ||
adev->asic_type < CHIP_VEGA10) &&
(attr == &sensor_dev_attr_temp2_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_input.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_input.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_label.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_label.dev_attr.attr))
return 0;
return effective_mode;
}
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
.is_visible = hwmon_attributes_visible,
};
static const struct attribute_group *hwmon_groups[] = {
&hwmon_attrgroup,
NULL
};
void amdgpu_dpm_thermal_work_handler(struct work_struct *work)
{
struct amdgpu_device *adev =
container_of(work, struct amdgpu_device,
pm.dpm.thermal.work);
/* switch to the thermal state */
enum amd_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL;
int temp, size = sizeof(temp);
if (!adev->pm.dpm_enabled)
return;
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP,
(void *)&temp, &size)) {
if (temp < adev->pm.dpm.thermal.min_temp)
/* switch back the user state */
dpm_state = adev->pm.dpm.user_state;
} else {
if (adev->pm.dpm.thermal.high_to_low)
/* switch back the user state */
dpm_state = adev->pm.dpm.user_state;
}
mutex_lock(&adev->pm.mutex);
if (dpm_state == POWER_STATE_TYPE_INTERNAL_THERMAL)
adev->pm.dpm.thermal_active = true;
else
adev->pm.dpm.thermal_active = false;
adev->pm.dpm.state = dpm_state;
mutex_unlock(&adev->pm.mutex);
amdgpu_pm_compute_clocks(adev);
}
static struct amdgpu_ps *amdgpu_dpm_pick_power_state(struct amdgpu_device *adev,
enum amd_pm_state_type dpm_state)
{
int i;
struct amdgpu_ps *ps;
u32 ui_class;
bool single_display = (adev->pm.dpm.new_active_crtc_count < 2) ?
true : false;
/* check if the vblank period is too short to adjust the mclk */
if (single_display && adev->powerplay.pp_funcs->vblank_too_short) {
if (amdgpu_dpm_vblank_too_short(adev))
single_display = false;
}
/* certain older asics have a separare 3D performance state,
* so try that first if the user selected performance
*/
if (dpm_state == POWER_STATE_TYPE_PERFORMANCE)
dpm_state = POWER_STATE_TYPE_INTERNAL_3DPERF;
/* balanced states don't exist at the moment */
if (dpm_state == POWER_STATE_TYPE_BALANCED)
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
restart_search:
/* Pick the best power state based on current conditions */
for (i = 0; i < adev->pm.dpm.num_ps; i++) {
ps = &adev->pm.dpm.ps[i];
ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK;
switch (dpm_state) {
/* user states */
case POWER_STATE_TYPE_BATTERY:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (single_display)
return ps;
} else
return ps;
}
break;
case POWER_STATE_TYPE_BALANCED:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (single_display)
return ps;
} else
return ps;
}
break;
case POWER_STATE_TYPE_PERFORMANCE:
if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) {
if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) {
if (single_display)
return ps;
} else
return ps;
}
break;
/* internal states */
case POWER_STATE_TYPE_INTERNAL_UVD:
if (adev->pm.dpm.uvd_ps)
return adev->pm.dpm.uvd_ps;
else
break;
case POWER_STATE_TYPE_INTERNAL_UVD_SD:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_HD:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_HD2:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_UVD_MVC:
if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_BOOT:
return adev->pm.dpm.boot_ps;
case POWER_STATE_TYPE_INTERNAL_THERMAL:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_ACPI:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_ULV:
if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
return ps;
break;
case POWER_STATE_TYPE_INTERNAL_3DPERF:
if (ps->class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
return ps;
break;
default:
break;
}
}
/* use a fallback state if we didn't match */
switch (dpm_state) {
case POWER_STATE_TYPE_INTERNAL_UVD_SD:
dpm_state = POWER_STATE_TYPE_INTERNAL_UVD_HD;
goto restart_search;
case POWER_STATE_TYPE_INTERNAL_UVD_HD:
case POWER_STATE_TYPE_INTERNAL_UVD_HD2:
case POWER_STATE_TYPE_INTERNAL_UVD_MVC:
if (adev->pm.dpm.uvd_ps) {
return adev->pm.dpm.uvd_ps;
} else {
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
goto restart_search;
}
case POWER_STATE_TYPE_INTERNAL_THERMAL:
dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI;
goto restart_search;
case POWER_STATE_TYPE_INTERNAL_ACPI:
dpm_state = POWER_STATE_TYPE_BATTERY;
goto restart_search;
case POWER_STATE_TYPE_BATTERY:
case POWER_STATE_TYPE_BALANCED:
case POWER_STATE_TYPE_INTERNAL_3DPERF:
dpm_state = POWER_STATE_TYPE_PERFORMANCE;
goto restart_search;
default:
break;
}
return NULL;
}
static void amdgpu_dpm_change_power_state_locked(struct amdgpu_device *adev)
{
struct amdgpu_ps *ps;
enum amd_pm_state_type dpm_state;
int ret;
bool equal = false;
/* if dpm init failed */
if (!adev->pm.dpm_enabled)
return;
if (adev->pm.dpm.user_state != adev->pm.dpm.state) {
/* add other state override checks here */
if ((!adev->pm.dpm.thermal_active) &&
(!adev->pm.dpm.uvd_active))
adev->pm.dpm.state = adev->pm.dpm.user_state;
}
dpm_state = adev->pm.dpm.state;
ps = amdgpu_dpm_pick_power_state(adev, dpm_state);
if (ps)
adev->pm.dpm.requested_ps = ps;
else
return;
if (amdgpu_dpm == 1 && adev->powerplay.pp_funcs->print_power_state) {
printk("switching from power state:\n");
amdgpu_dpm_print_power_state(adev, adev->pm.dpm.current_ps);
printk("switching to power state:\n");
amdgpu_dpm_print_power_state(adev, adev->pm.dpm.requested_ps);
}
/* update whether vce is active */
ps->vce_active = adev->pm.dpm.vce_active;
if (adev->powerplay.pp_funcs->display_configuration_changed)
amdgpu_dpm_display_configuration_changed(adev);
ret = amdgpu_dpm_pre_set_power_state(adev);
if (ret)
return;
if (adev->powerplay.pp_funcs->check_state_equal) {
if (0 != amdgpu_dpm_check_state_equal(adev, adev->pm.dpm.current_ps, adev->pm.dpm.requested_ps, &equal))
equal = false;
}
if (equal)
return;
amdgpu_dpm_set_power_state(adev);
amdgpu_dpm_post_set_power_state(adev);
adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs;
adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count;
if (adev->powerplay.pp_funcs->force_performance_level) {
if (adev->pm.dpm.thermal_active) {
enum amd_dpm_forced_level level = adev->pm.dpm.forced_level;
/* force low perf level for thermal */
amdgpu_dpm_force_performance_level(adev, AMD_DPM_FORCED_LEVEL_LOW);
/* save the user's level */
adev->pm.dpm.forced_level = level;
} else {
/* otherwise, user selected level */
amdgpu_dpm_force_performance_level(adev, adev->pm.dpm.forced_level);
}
}
}
void amdgpu_dpm_enable_uvd(struct amdgpu_device *adev, bool enable)
{
int ret = 0;
if (is_support_sw_smu(adev)) {
ret = smu_dpm_set_power_gate(&adev->smu, AMD_IP_BLOCK_TYPE_UVD, enable);
if (ret)
DRM_ERROR("[SW SMU]: dpm enable uvd failed, state = %s, ret = %d. \n",
enable ? "true" : "false", ret);
} else if (adev->powerplay.pp_funcs->set_powergating_by_smu) {
/* enable/disable UVD */
mutex_lock(&adev->pm.mutex);
amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_UVD, !enable);
mutex_unlock(&adev->pm.mutex);
}
/* enable/disable Low Memory PState for UVD (4k videos) */
if (adev->asic_type == CHIP_STONEY &&
adev->uvd.decode_image_width >= WIDTH_4K) {
struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle;
if (hwmgr && hwmgr->hwmgr_func &&
hwmgr->hwmgr_func->update_nbdpm_pstate)
hwmgr->hwmgr_func->update_nbdpm_pstate(hwmgr,
!enable,
true);
}
}
void amdgpu_dpm_enable_vce(struct amdgpu_device *adev, bool enable)
{
int ret = 0;
if (is_support_sw_smu(adev)) {
ret = smu_dpm_set_power_gate(&adev->smu, AMD_IP_BLOCK_TYPE_VCE, enable);
if (ret)
DRM_ERROR("[SW SMU]: dpm enable vce failed, state = %s, ret = %d. \n",
enable ? "true" : "false", ret);
} else if (adev->powerplay.pp_funcs->set_powergating_by_smu) {
/* enable/disable VCE */
mutex_lock(&adev->pm.mutex);
amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_VCE, !enable);
mutex_unlock(&adev->pm.mutex);
}
}
void amdgpu_pm_print_power_states(struct amdgpu_device *adev)
{
int i;
if (adev->powerplay.pp_funcs->print_power_state == NULL)
return;
for (i = 0; i < adev->pm.dpm.num_ps; i++)
amdgpu_dpm_print_power_state(adev, &adev->pm.dpm.ps[i]);
}
int amdgpu_pm_virt_sysfs_init(struct amdgpu_device *adev)
{
int ret = 0;
if (!(amdgpu_sriov_vf(adev) && amdgim_is_hwperf(adev)))
return ret;
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_sclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_sclk\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_mclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_mclk\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_power_dpm_force_performance_level);
if (ret) {
DRM_ERROR("failed to create device file for dpm state\n");
return ret;
}
return ret;
}
void amdgpu_pm_virt_sysfs_fini(struct amdgpu_device *adev)
{
if (!(amdgpu_sriov_vf(adev) && amdgim_is_hwperf(adev)))
return;
device_remove_file(adev->dev, &dev_attr_power_dpm_force_performance_level);
device_remove_file(adev->dev, &dev_attr_pp_dpm_sclk);
device_remove_file(adev->dev, &dev_attr_pp_dpm_mclk);
}
int amdgpu_pm_load_smu_firmware(struct amdgpu_device *adev, uint32_t *smu_version)
{
int r;
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->load_firmware) {
r = adev->powerplay.pp_funcs->load_firmware(adev->powerplay.pp_handle);
if (r) {
pr_err("smu firmware loading failed\n");
return r;
}
*smu_version = adev->pm.fw_version;
}
return 0;
}
int amdgpu_pm_sysfs_init(struct amdgpu_device *adev)
{
struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle;
int ret;
if (adev->pm.sysfs_initialized)
return 0;
if (adev->pm.dpm_enabled == 0)
return 0;
adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev,
DRIVER_NAME, adev,
hwmon_groups);
if (IS_ERR(adev->pm.int_hwmon_dev)) {
ret = PTR_ERR(adev->pm.int_hwmon_dev);
dev_err(adev->dev,
"Unable to register hwmon device: %d\n", ret);
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_power_dpm_state);
if (ret) {
DRM_ERROR("failed to create device file for dpm state\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_power_dpm_force_performance_level);
if (ret) {
DRM_ERROR("failed to create device file for dpm state\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_num_states);
if (ret) {
DRM_ERROR("failed to create device file pp_num_states\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_cur_state);
if (ret) {
DRM_ERROR("failed to create device file pp_cur_state\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_force_state);
if (ret) {
DRM_ERROR("failed to create device file pp_force_state\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_table);
if (ret) {
DRM_ERROR("failed to create device file pp_table\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_sclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_sclk\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_mclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_mclk\n");
return ret;
}
if (adev->asic_type >= CHIP_VEGA10) {
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_socclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_socclk\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_dcefclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_dcefclk\n");
return ret;
}
}
if (adev->asic_type >= CHIP_VEGA20) {
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_fclk);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_fclk\n");
return ret;
}
}
ret = device_create_file(adev->dev, &dev_attr_pp_dpm_pcie);
if (ret) {
DRM_ERROR("failed to create device file pp_dpm_pcie\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_sclk_od);
if (ret) {
DRM_ERROR("failed to create device file pp_sclk_od\n");
return ret;
}
ret = device_create_file(adev->dev, &dev_attr_pp_mclk_od);
if (ret) {
DRM_ERROR("failed to create device file pp_mclk_od\n");
return ret;
}
ret = device_create_file(adev->dev,
&dev_attr_pp_power_profile_mode);
if (ret) {
DRM_ERROR("failed to create device file "
"pp_power_profile_mode\n");
return ret;
}
if ((is_support_sw_smu(adev) && adev->smu.od_enabled) ||
(!is_support_sw_smu(adev) && hwmgr->od_enabled)) {
ret = device_create_file(adev->dev,
&dev_attr_pp_od_clk_voltage);
if (ret) {
DRM_ERROR("failed to create device file "
"pp_od_clk_voltage\n");
return ret;
}
}
ret = device_create_file(adev->dev,
&dev_attr_gpu_busy_percent);
if (ret) {
DRM_ERROR("failed to create device file "
"gpu_busy_level\n");
return ret;
}
/* APU does not have its own dedicated memory */
if (!(adev->flags & AMD_IS_APU)) {
ret = device_create_file(adev->dev,
&dev_attr_mem_busy_percent);
if (ret) {
DRM_ERROR("failed to create device file "
"mem_busy_percent\n");
return ret;
}
}
/* PCIe Perf counters won't work on APU nodes */
if (!(adev->flags & AMD_IS_APU)) {
ret = device_create_file(adev->dev, &dev_attr_pcie_bw);
if (ret) {
DRM_ERROR("failed to create device file pcie_bw\n");
return ret;
}
}
if (adev->unique_id)
ret = device_create_file(adev->dev, &dev_attr_unique_id);
if (ret) {
DRM_ERROR("failed to create device file unique_id\n");
return ret;
}
ret = amdgpu_debugfs_pm_init(adev);
if (ret) {
DRM_ERROR("Failed to register debugfs file for dpm!\n");
return ret;
}
if ((adev->asic_type >= CHIP_VEGA10) &&
!(adev->flags & AMD_IS_APU)) {
ret = device_create_file(adev->dev,
&dev_attr_ppfeatures);
if (ret) {
DRM_ERROR("failed to create device file "
"ppfeatures\n");
return ret;
}
}
adev->pm.sysfs_initialized = true;
return 0;
}
void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev)
{
struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle;
if (adev->pm.dpm_enabled == 0)
return;
if (adev->pm.int_hwmon_dev)
hwmon_device_unregister(adev->pm.int_hwmon_dev);
device_remove_file(adev->dev, &dev_attr_power_dpm_state);
device_remove_file(adev->dev, &dev_attr_power_dpm_force_performance_level);
device_remove_file(adev->dev, &dev_attr_pp_num_states);
device_remove_file(adev->dev, &dev_attr_pp_cur_state);
device_remove_file(adev->dev, &dev_attr_pp_force_state);
device_remove_file(adev->dev, &dev_attr_pp_table);
device_remove_file(adev->dev, &dev_attr_pp_dpm_sclk);
device_remove_file(adev->dev, &dev_attr_pp_dpm_mclk);
if (adev->asic_type >= CHIP_VEGA10) {
device_remove_file(adev->dev, &dev_attr_pp_dpm_socclk);
device_remove_file(adev->dev, &dev_attr_pp_dpm_dcefclk);
}
device_remove_file(adev->dev, &dev_attr_pp_dpm_pcie);
if (adev->asic_type >= CHIP_VEGA20)
device_remove_file(adev->dev, &dev_attr_pp_dpm_fclk);
device_remove_file(adev->dev, &dev_attr_pp_sclk_od);
device_remove_file(adev->dev, &dev_attr_pp_mclk_od);
device_remove_file(adev->dev,
&dev_attr_pp_power_profile_mode);
if ((is_support_sw_smu(adev) && adev->smu.od_enabled) ||
(!is_support_sw_smu(adev) && hwmgr->od_enabled))
device_remove_file(adev->dev,
&dev_attr_pp_od_clk_voltage);
device_remove_file(adev->dev, &dev_attr_gpu_busy_percent);
if (!(adev->flags & AMD_IS_APU))
device_remove_file(adev->dev, &dev_attr_mem_busy_percent);
if (!(adev->flags & AMD_IS_APU))
device_remove_file(adev->dev, &dev_attr_pcie_bw);
if (adev->unique_id)
device_remove_file(adev->dev, &dev_attr_unique_id);
if ((adev->asic_type >= CHIP_VEGA10) &&
!(adev->flags & AMD_IS_APU))
device_remove_file(adev->dev, &dev_attr_ppfeatures);
}
void amdgpu_pm_compute_clocks(struct amdgpu_device *adev)
{
int i = 0;
if (!adev->pm.dpm_enabled)
return;
if (adev->mode_info.num_crtc)
amdgpu_display_bandwidth_update(adev);
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (ring && ring->sched.ready)
amdgpu_fence_wait_empty(ring);
}
if (is_support_sw_smu(adev)) {
struct smu_context *smu = &adev->smu;
struct smu_dpm_context *smu_dpm = &adev->smu.smu_dpm;
mutex_lock(&(smu->mutex));
smu_handle_task(&adev->smu,
smu_dpm->dpm_level,
AMD_PP_TASK_DISPLAY_CONFIG_CHANGE);
mutex_unlock(&(smu->mutex));
} else {
if (adev->powerplay.pp_funcs->dispatch_tasks) {
if (!amdgpu_device_has_dc_support(adev)) {
mutex_lock(&adev->pm.mutex);
amdgpu_dpm_get_active_displays(adev);
adev->pm.pm_display_cfg.num_display = adev->pm.dpm.new_active_crtc_count;
adev->pm.pm_display_cfg.vrefresh = amdgpu_dpm_get_vrefresh(adev);
adev->pm.pm_display_cfg.min_vblank_time = amdgpu_dpm_get_vblank_time(adev);
/* we have issues with mclk switching with refresh rates over 120 hz on the non-DC code. */
if (adev->pm.pm_display_cfg.vrefresh > 120)
adev->pm.pm_display_cfg.min_vblank_time = 0;
if (adev->powerplay.pp_funcs->display_configuration_change)
adev->powerplay.pp_funcs->display_configuration_change(
adev->powerplay.pp_handle,
&adev->pm.pm_display_cfg);
mutex_unlock(&adev->pm.mutex);
}
amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_DISPLAY_CONFIG_CHANGE, NULL);
} else {
mutex_lock(&adev->pm.mutex);
amdgpu_dpm_get_active_displays(adev);
amdgpu_dpm_change_power_state_locked(adev);
mutex_unlock(&adev->pm.mutex);
}
}
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev)
{
uint32_t value;
uint64_t value64;
uint32_t query = 0;
int size;
/* GPU Clocks */
size = sizeof(value);
seq_printf(m, "GFX Clocks and Power:\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (MCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (SCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDGFX)\n", value);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDNB)\n", value);
size = sizeof(uint32_t);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size))
seq_printf(m, "\t%u.%u W (average GPU)\n", query >> 8, query & 0xff);
size = sizeof(value);
seq_printf(m, "\n");
/* GPU Temp */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size))
seq_printf(m, "GPU Temperature: %u C\n", value/1000);
/* GPU Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size))
seq_printf(m, "GPU Load: %u %%\n", value);
/* MEM Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size))
seq_printf(m, "MEM Load: %u %%\n", value);
seq_printf(m, "\n");
/* SMC feature mask */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size))
seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64);
/* UVD clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "UVD: Disabled\n");
} else {
seq_printf(m, "UVD: Enabled\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (DCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (VCLK)\n", value/100);
}
}
seq_printf(m, "\n");
/* VCE clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "VCE: Disabled\n");
} else {
seq_printf(m, "VCE: Enabled\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (ECCLK)\n", value/100);
}
}
return 0;
}
static void amdgpu_parse_cg_state(struct seq_file *m, u32 flags)
{
int i;
for (i = 0; clocks[i].flag; i++)
seq_printf(m, "\t%s: %s\n", clocks[i].name,
(flags & clocks[i].flag) ? "On" : "Off");
}
static int amdgpu_debugfs_pm_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
struct drm_device *ddev = adev->ddev;
u32 flags = 0;
amdgpu_device_ip_get_clockgating_state(adev, &flags);
seq_printf(m, "Clock Gating Flags Mask: 0x%x\n", flags);
amdgpu_parse_cg_state(m, flags);
seq_printf(m, "\n");
if (!adev->pm.dpm_enabled) {
seq_printf(m, "dpm not enabled\n");
return 0;
}
if ((adev->flags & AMD_IS_PX) &&
(ddev->switch_power_state != DRM_SWITCH_POWER_ON)) {
seq_printf(m, "PX asic powered off\n");
} else if (!is_support_sw_smu(adev) && adev->powerplay.pp_funcs->debugfs_print_current_performance_level) {
mutex_lock(&adev->pm.mutex);
if (adev->powerplay.pp_funcs->debugfs_print_current_performance_level)
adev->powerplay.pp_funcs->debugfs_print_current_performance_level(adev, m);
else
seq_printf(m, "Debugfs support not implemented for this asic\n");
mutex_unlock(&adev->pm.mutex);
} else {
return amdgpu_debugfs_pm_info_pp(m, adev);
}
return 0;
}
static const struct drm_info_list amdgpu_pm_info_list[] = {
{"amdgpu_pm_info", amdgpu_debugfs_pm_info, 0, NULL},
};
#endif
static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
return amdgpu_debugfs_add_files(adev, amdgpu_pm_info_list, ARRAY_SIZE(amdgpu_pm_info_list));
#else
return 0;
#endif
}