linux_dsm_epyc7002/include/linux/lz4.h

649 lines
26 KiB
C
Raw Normal View History

lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
/* LZ4 Kernel Interface
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
*
* Copyright (C) 2013, LG Electronics, Kyungsik Lee <kyungsik.lee@lge.com>
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* Copyright (C) 2016, Sven Schmidt <4sschmid@informatik.uni-hamburg.de>
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
*
* This file is based on the original header file
* for LZ4 - Fast LZ compression algorithm.
*
* LZ4 - Fast LZ compression algorithm
* Copyright (C) 2011-2016, Yann Collet.
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* You can contact the author at :
* - LZ4 homepage : http://www.lz4.org
* - LZ4 source repository : https://github.com/lz4/lz4
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
*/
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
#ifndef __LZ4_H__
#define __LZ4_H__
#include <linux/types.h>
#include <linux/string.h> /* memset, memcpy */
/*-************************************************************************
* CONSTANTS
**************************************************************************/
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
/*
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* LZ4_MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes
* (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
*/
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
#define LZ4_MEMORY_USAGE 14
#define LZ4_MAX_INPUT_SIZE 0x7E000000 /* 2 113 929 216 bytes */
#define LZ4_COMPRESSBOUND(isize) (\
(unsigned int)(isize) > (unsigned int)LZ4_MAX_INPUT_SIZE \
? 0 \
: (isize) + ((isize)/255) + 16)
#define LZ4_ACCELERATION_DEFAULT 1
#define LZ4_HASHLOG (LZ4_MEMORY_USAGE-2)
#define LZ4_HASHTABLESIZE (1 << LZ4_MEMORY_USAGE)
#define LZ4_HASH_SIZE_U32 (1 << LZ4_HASHLOG)
#define LZ4HC_MIN_CLEVEL 3
#define LZ4HC_DEFAULT_CLEVEL 9
#define LZ4HC_MAX_CLEVEL 16
#define LZ4HC_DICTIONARY_LOGSIZE 16
#define LZ4HC_MAXD (1<<LZ4HC_DICTIONARY_LOGSIZE)
#define LZ4HC_MAXD_MASK (LZ4HC_MAXD - 1)
#define LZ4HC_HASH_LOG (LZ4HC_DICTIONARY_LOGSIZE - 1)
#define LZ4HC_HASHTABLESIZE (1 << LZ4HC_HASH_LOG)
#define LZ4HC_HASH_MASK (LZ4HC_HASHTABLESIZE - 1)
/*-************************************************************************
* STREAMING CONSTANTS AND STRUCTURES
**************************************************************************/
#define LZ4_STREAMSIZE_U64 ((1 << (LZ4_MEMORY_USAGE - 3)) + 4)
#define LZ4_STREAMSIZE (LZ4_STREAMSIZE_U64 * sizeof(unsigned long long))
#define LZ4_STREAMHCSIZE 262192
#define LZ4_STREAMHCSIZE_SIZET (262192 / sizeof(size_t))
#define LZ4_STREAMDECODESIZE_U64 4
#define LZ4_STREAMDECODESIZE (LZ4_STREAMDECODESIZE_U64 * \
sizeof(unsigned long long))
/*
* LZ4_stream_t - information structure to track an LZ4 stream.
*/
typedef struct {
uint32_t hashTable[LZ4_HASH_SIZE_U32];
uint32_t currentOffset;
uint32_t initCheck;
const uint8_t *dictionary;
uint8_t *bufferStart;
uint32_t dictSize;
} LZ4_stream_t_internal;
typedef union {
unsigned long long table[LZ4_STREAMSIZE_U64];
LZ4_stream_t_internal internal_donotuse;
} LZ4_stream_t;
/*
* LZ4_streamHC_t - information structure to track an LZ4HC stream.
*/
typedef struct {
unsigned int hashTable[LZ4HC_HASHTABLESIZE];
unsigned short chainTable[LZ4HC_MAXD];
/* next block to continue on current prefix */
const unsigned char *end;
/* All index relative to this position */
const unsigned char *base;
/* alternate base for extDict */
const unsigned char *dictBase;
/* below that point, need extDict */
unsigned int dictLimit;
/* below that point, no more dict */
unsigned int lowLimit;
/* index from which to continue dict update */
unsigned int nextToUpdate;
unsigned int compressionLevel;
} LZ4HC_CCtx_internal;
typedef union {
size_t table[LZ4_STREAMHCSIZE_SIZET];
LZ4HC_CCtx_internal internal_donotuse;
} LZ4_streamHC_t;
/*
* LZ4_streamDecode_t - information structure to track an
* LZ4 stream during decompression.
*
* init this structure using LZ4_setStreamDecode (or memset()) before first use
*/
typedef struct {
const uint8_t *externalDict;
size_t extDictSize;
const uint8_t *prefixEnd;
size_t prefixSize;
} LZ4_streamDecode_t_internal;
typedef union {
unsigned long long table[LZ4_STREAMDECODESIZE_U64];
LZ4_streamDecode_t_internal internal_donotuse;
} LZ4_streamDecode_t;
/*-************************************************************************
* SIZE OF STATE
**************************************************************************/
#define LZ4_MEM_COMPRESS LZ4_STREAMSIZE
#define LZ4HC_MEM_COMPRESS LZ4_STREAMHCSIZE
/*-************************************************************************
* Compression Functions
**************************************************************************/
/**
* LZ4_compressBound() - Max. output size in worst case szenarios
* @isize: Size of the input data
*
* Return: Max. size LZ4 may output in a "worst case" szenario
* (data not compressible)
*/
static inline int LZ4_compressBound(size_t isize)
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
{
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
return LZ4_COMPRESSBOUND(isize);
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
}
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
/**
* LZ4_compress_default() - Compress data from source to dest
* @source: source address of the original data
* @dest: output buffer address of the compressed data
* @inputSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxOutputSize: full or partial size of buffer 'dest'
* which must be already allocated
* @wrkmem: address of the working memory.
* This requires 'workmem' of LZ4_MEM_COMPRESS.
*
* Compresses 'sourceSize' bytes from buffer 'source'
* into already allocated 'dest' buffer of size 'maxOutputSize'.
* Compression is guaranteed to succeed if
* 'maxOutputSize' >= LZ4_compressBound(inputSize).
* It also runs faster, so it's a recommended setting.
* If the function cannot compress 'source' into a more limited 'dest' budget,
* compression stops *immediately*, and the function result is zero.
* As a consequence, 'dest' content is not valid.
*
* Return: Number of bytes written into buffer 'dest'
* (necessarily <= maxOutputSize) or 0 if compression fails
*/
int LZ4_compress_default(const char *source, char *dest, int inputSize,
int maxOutputSize, void *wrkmem);
/**
* LZ4_compress_fast() - As LZ4_compress_default providing an acceleration param
* @source: source address of the original data
* @dest: output buffer address of the compressed data
* @inputSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxOutputSize: full or partial size of buffer 'dest'
* which must be already allocated
* @acceleration: acceleration factor
* @wrkmem: address of the working memory.
* This requires 'workmem' of LZ4_MEM_COMPRESS.
*
* Same as LZ4_compress_default(), but allows to select an "acceleration"
* factor. The larger the acceleration value, the faster the algorithm,
* but also the lesser the compression. It's a trade-off. It can be fine tuned,
* with each successive value providing roughly +~3% to speed.
* An acceleration value of "1" is the same as regular LZ4_compress_default()
* Values <= 0 will be replaced by LZ4_ACCELERATION_DEFAULT, which is 1.
*
* Return: Number of bytes written into buffer 'dest'
* (necessarily <= maxOutputSize) or 0 if compression fails
*/
int LZ4_compress_fast(const char *source, char *dest, int inputSize,
int maxOutputSize, int acceleration, void *wrkmem);
/**
* LZ4_compress_destSize() - Compress as much data as possible
* from source to dest
* @source: source address of the original data
* @dest: output buffer address of the compressed data
* @sourceSizePtr: will be modified to indicate how many bytes where read
* from 'source' to fill 'dest'. New value is necessarily <= old value.
* @targetDestSize: Size of buffer 'dest' which must be already allocated
* @wrkmem: address of the working memory.
* This requires 'workmem' of LZ4_MEM_COMPRESS.
*
* Reverse the logic, by compressing as much data as possible
* from 'source' buffer into already allocated buffer 'dest'
* of size 'targetDestSize'.
* This function either compresses the entire 'source' content into 'dest'
* if it's large enough, or fill 'dest' buffer completely with as much data as
* possible from 'source'.
*
* Return: Number of bytes written into 'dest' (necessarily <= targetDestSize)
* or 0 if compression fails
*/
int LZ4_compress_destSize(const char *source, char *dest, int *sourceSizePtr,
int targetDestSize, void *wrkmem);
lib: add lz4 compressor module This patchset is for supporting LZ4 compression and the crypto API using it. As shown below, the size of data is a little bit bigger but compressing speed is faster under the enabled unaligned memory access. We can use lz4 de/compression through crypto API as well. Also, It will be useful for another potential user of lz4 compression. lz4 Compression Benchmark: Compiler: ARM gcc 4.6.4 ARMv7, 1 GHz based board Kernel: linux 3.4 Uncompressed data Size: 101 MB Compressed Size compression Speed LZO 72.1MB 32.1MB/s, 33.0MB/s(UA) LZ4 75.1MB 30.4MB/s, 35.9MB/s(UA) LZ4HC 59.8MB 2.4MB/s, 2.5MB/s(UA) - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch: Add support for LZ4 compression in the Linux Kernel. LZ4 Compression APIs for kernel are based on LZ4 implementation by Yann Collet and were changed for kernel coding style. LZ4 homepage : http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository : http://code.google.com/p/lz4/ svn revision : r90 Two APIs are added: lz4_compress() support basic lz4 compression whereas lz4hc_compress() support high compression or CPU performance get lower but compression ratio get higher. Also, we require the pre-allocated working memory with the defined size and destination buffer must be allocated with the size of lz4_compressbound. [akpm@linux-foundation.org: make lz4_compresshcctx() static] Signed-off-by: Chanho Min <chanho.min@lge.com> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Bob Pearson <rpearson@systemfabricworks.com> Cc: Richard Weinberger <richard@nod.at> Cc: Herbert Xu <herbert@gondor.hengli.com.au> Cc: Yann Collet <yann.collet.73@gmail.com> Cc: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:49 +07:00
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
/*-************************************************************************
* Decompression Functions
**************************************************************************/
/**
* LZ4_decompress_fast() - Decompresses data from 'source' into 'dest'
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated with 'originalSize' bytes
* @originalSize: is the original and therefore uncompressed size
*
* Decompresses data from 'source' into 'dest'.
* This function fully respect memory boundaries for properly formed
* compressed data.
* It is a bit faster than LZ4_decompress_safe().
* However, it does not provide any protection against intentionally
* modified data stream (malicious input).
* Use this function in trusted environment only
* (data to decode comes from a trusted source).
*
* Return: number of bytes read from the source buffer
* or a negative result if decompression fails.
*/
int LZ4_decompress_fast(const char *source, char *dest, int originalSize);
/**
* LZ4_decompress_safe() - Decompression protected against buffer overflow
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated
* @compressedSize: is the precise full size of the compressed block
* @maxDecompressedSize: is the size of 'dest' buffer
*
* Decompresses data from 'source' into 'dest'.
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* If the source stream is detected malformed, the function will
* stop decoding and return a negative result.
* This function is protected against buffer overflow exploits,
* including malicious data packets. It never writes outside output buffer,
* nor reads outside input buffer.
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_safe(const char *source, char *dest, int compressedSize,
int maxDecompressedSize);
/**
* LZ4_decompress_safe_partial() - Decompress a block of size 'compressedSize'
* at position 'source' into buffer 'dest'
* @source: source address of the compressed data
* @dest: output buffer address of the decompressed data which must be
* already allocated
* @compressedSize: is the precise full size of the compressed block.
* @targetOutputSize: the decompression operation will try
* to stop as soon as 'targetOutputSize' has been reached
* @maxDecompressedSize: is the size of destination buffer
*
* This function decompresses a compressed block of size 'compressedSize'
* at position 'source' into destination buffer 'dest'
* of size 'maxDecompressedSize'.
* The function tries to stop decompressing operation as soon as
* 'targetOutputSize' has been reached, reducing decompression time.
* This function never writes outside of output buffer,
* and never reads outside of input buffer.
* It is therefore protected against malicious data packets.
*
* Return: the number of bytes decoded in the destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*
*/
int LZ4_decompress_safe_partial(const char *source, char *dest,
int compressedSize, int targetOutputSize, int maxDecompressedSize);
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
/*-************************************************************************
* LZ4 HC Compression
**************************************************************************/
/**
* LZ4_compress_HC() - Compress data from `src` into `dst`, using HC algorithm
* @src: source address of the original data
* @dst: output buffer address of the compressed data
* @srcSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @dstCapacity: full or partial size of buffer 'dst',
* which must be already allocated
* @compressionLevel: Recommended values are between 4 and 9, although any
* value between 1 and LZ4HC_MAX_CLEVEL will work.
* Values >LZ4HC_MAX_CLEVEL behave the same as 16.
* @wrkmem: address of the working memory.
* This requires 'wrkmem' of size LZ4HC_MEM_COMPRESS.
*
* Compress data from 'src' into 'dst', using the more powerful
* but slower "HC" algorithm. Compression is guaranteed to succeed if
* `dstCapacity >= LZ4_compressBound(srcSize)
*
* Return : the number of bytes written into 'dst' or 0 if compression fails.
*/
int LZ4_compress_HC(const char *src, char *dst, int srcSize, int dstCapacity,
int compressionLevel, void *wrkmem);
/**
* LZ4_resetStreamHC() - Init an allocated 'LZ4_streamHC_t' structure
* @streamHCPtr: pointer to the 'LZ4_streamHC_t' structure
* @compressionLevel: Recommended values are between 4 and 9, although any
* value between 1 and LZ4HC_MAX_CLEVEL will work.
* Values >LZ4HC_MAX_CLEVEL behave the same as 16.
*
* An LZ4_streamHC_t structure can be allocated once
* and re-used multiple times.
* Use this function to init an allocated `LZ4_streamHC_t` structure
* and start a new compression.
*/
void LZ4_resetStreamHC(LZ4_streamHC_t *streamHCPtr, int compressionLevel);
/**
* LZ4_loadDictHC() - Load a static dictionary into LZ4_streamHC
* @streamHCPtr: pointer to the LZ4HC_stream_t
* @dictionary: dictionary to load
* @dictSize: size of dictionary
*
* Use this function to load a static dictionary into LZ4HC_stream.
* Any previous data will be forgotten, only 'dictionary'
* will remain in memory.
* Loading a size of 0 is allowed.
*
* Return : dictionary size, in bytes (necessarily <= 64 KB)
*/
int LZ4_loadDictHC(LZ4_streamHC_t *streamHCPtr, const char *dictionary,
int dictSize);
/**
* LZ4_compress_HC_continue() - Compress 'src' using data from previously
* compressed blocks as a dictionary using the HC algorithm
* @streamHCPtr: Pointer to the previous 'LZ4_streamHC_t' structure
* @src: source address of the original data
* @dst: output buffer address of the compressed data,
* which must be already allocated
* @srcSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxDstSize: full or partial size of buffer 'dest'
* which must be already allocated
*
* These functions compress data in successive blocks of any size, using
* previous blocks as dictionary. One key assumption is that previous
* blocks (up to 64 KB) remain read-accessible while
* compressing next blocks. There is an exception for ring buffers,
* which can be smaller than 64 KB.
* Ring buffers scenario is automatically detected and handled by
* LZ4_compress_HC_continue().
* Before starting compression, state must be properly initialized,
* using LZ4_resetStreamHC().
* A first "fictional block" can then be designated as
* initial dictionary, using LZ4_loadDictHC() (Optional).
* Then, use LZ4_compress_HC_continue()
* to compress each successive block. Previous memory blocks
* (including initial dictionary when present) must remain accessible
* and unmodified during compression.
* 'dst' buffer should be sized to handle worst case scenarios, using
* LZ4_compressBound(), to ensure operation success.
* If, for any reason, previous data blocks can't be preserved unmodified
* in memory during next compression block,
* you must save it to a safer memory space, using LZ4_saveDictHC().
* Return value of LZ4_saveDictHC() is the size of dictionary
* effectively saved into 'safeBuffer'.
*
* Return: Number of bytes written into buffer 'dst' or 0 if compression fails
*/
int LZ4_compress_HC_continue(LZ4_streamHC_t *streamHCPtr, const char *src,
char *dst, int srcSize, int maxDstSize);
/**
* LZ4_saveDictHC() - Save static dictionary from LZ4HC_stream
* @streamHCPtr: pointer to the 'LZ4HC_stream_t' structure
* @safeBuffer: buffer to save dictionary to, must be already allocated
* @maxDictSize: size of 'safeBuffer'
*
* If previously compressed data block is not guaranteed
* to remain available at its memory location,
* save it into a safer place (char *safeBuffer).
* Note : you don't need to call LZ4_loadDictHC() afterwards,
* dictionary is immediately usable, you can therefore call
* LZ4_compress_HC_continue().
*
* Return : saved dictionary size in bytes (necessarily <= maxDictSize),
* or 0 if error.
*/
int LZ4_saveDictHC(LZ4_streamHC_t *streamHCPtr, char *safeBuffer,
int maxDictSize);
/*-*********************************************
* Streaming Compression Functions
***********************************************/
/**
* LZ4_resetStream() - Init an allocated 'LZ4_stream_t' structure
* @LZ4_stream: pointer to the 'LZ4_stream_t' structure
*
* An LZ4_stream_t structure can be allocated once
* and re-used multiple times.
* Use this function to init an allocated `LZ4_stream_t` structure
* and start a new compression.
*/
void LZ4_resetStream(LZ4_stream_t *LZ4_stream);
/**
* LZ4_loadDict() - Load a static dictionary into LZ4_stream
* @streamPtr: pointer to the LZ4_stream_t
* @dictionary: dictionary to load
* @dictSize: size of dictionary
*
* Use this function to load a static dictionary into LZ4_stream.
* Any previous data will be forgotten, only 'dictionary'
* will remain in memory.
* Loading a size of 0 is allowed.
*
* Return : dictionary size, in bytes (necessarily <= 64 KB)
*/
int LZ4_loadDict(LZ4_stream_t *streamPtr, const char *dictionary,
int dictSize);
/**
* LZ4_saveDict() - Save static dictionary from LZ4_stream
* @streamPtr: pointer to the 'LZ4_stream_t' structure
* @safeBuffer: buffer to save dictionary to, must be already allocated
* @dictSize: size of 'safeBuffer'
*
* If previously compressed data block is not guaranteed
* to remain available at its memory location,
* save it into a safer place (char *safeBuffer).
* Note : you don't need to call LZ4_loadDict() afterwards,
* dictionary is immediately usable, you can therefore call
* LZ4_compress_fast_continue().
*
* Return : saved dictionary size in bytes (necessarily <= dictSize),
* or 0 if error.
*/
int LZ4_saveDict(LZ4_stream_t *streamPtr, char *safeBuffer, int dictSize);
/**
* LZ4_compress_fast_continue() - Compress 'src' using data from previously
* compressed blocks as a dictionary
* @streamPtr: Pointer to the previous 'LZ4_stream_t' structure
* @src: source address of the original data
* @dst: output buffer address of the compressed data,
* which must be already allocated
* @srcSize: size of the input data. Max supported value is LZ4_MAX_INPUT_SIZE
* @maxDstSize: full or partial size of buffer 'dest'
* which must be already allocated
* @acceleration: acceleration factor
*
* Compress buffer content 'src', using data from previously compressed blocks
* as dictionary to improve compression ratio.
* Important : Previous data blocks are assumed to still
* be present and unmodified !
* If maxDstSize >= LZ4_compressBound(srcSize),
* compression is guaranteed to succeed, and runs faster.
*
* Return: Number of bytes written into buffer 'dst' or 0 if compression fails
*/
int LZ4_compress_fast_continue(LZ4_stream_t *streamPtr, const char *src,
char *dst, int srcSize, int maxDstSize, int acceleration);
/**
* LZ4_setStreamDecode() - Instruct where to find dictionary
* @LZ4_streamDecode: the 'LZ4_streamDecode_t' structure
* @dictionary: dictionary to use
* @dictSize: size of dictionary
*
* Use this function to instruct where to find the dictionary.
* Setting a size of 0 is allowed (same effect as reset).
*
* Return: 1 if OK, 0 if error
*/
int LZ4_setStreamDecode(LZ4_streamDecode_t *LZ4_streamDecode,
const char *dictionary, int dictSize);
/**
* LZ4_decompress_safe_continue() - Decompress blocks in streaming mode
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* @LZ4_streamDecode: the 'LZ4_streamDecode_t' structure
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated
* @compressedSize: is the precise full size of the compressed block
* @maxDecompressedSize: is the size of 'dest' buffer
*
* This decoding function allows decompression of multiple blocks
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* in "streaming" mode.
* Previously decoded blocks *must* remain available at the memory position
* where they were decoded (up to 64 KB)
* In the case of a ring buffers, decoding buffer must be either :
* - Exactly same size as encoding buffer, with same update rule
* (block boundaries at same positions) In which case,
* the decoding & encoding ring buffer can have any size,
* including very small ones ( < 64 KB).
* - Larger than encoding buffer, by a minimum of maxBlockSize more bytes.
* maxBlockSize is implementation dependent.
* It's the maximum size you intend to compress into a single block.
* In which case, encoding and decoding buffers do not need
* to be synchronized, and encoding ring buffer can have any size,
* including small ones ( < 64 KB).
* - _At least_ 64 KB + 8 bytes + maxBlockSize.
* In which case, encoding and decoding buffers do not need to be
* synchronized, and encoding ring buffer can have any size,
* including larger than decoding buffer. W
* Whenever these conditions are not possible, save the last 64KB of decoded
* data into a safe buffer, and indicate where it is saved
* using LZ4_setStreamDecode()
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_safe_continue(LZ4_streamDecode_t *LZ4_streamDecode,
const char *source, char *dest, int compressedSize,
int maxDecompressedSize);
/**
* LZ4_decompress_fast_continue() - Decompress blocks in streaming mode
* @LZ4_streamDecode: the 'LZ4_streamDecode_t' structure
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated with 'originalSize' bytes
* @originalSize: is the original and therefore uncompressed size
*
* This decoding function allows decompression of multiple blocks
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* in "streaming" mode.
* Previously decoded blocks *must* remain available at the memory position
* where they were decoded (up to 64 KB)
* In the case of a ring buffers, decoding buffer must be either :
* - Exactly same size as encoding buffer, with same update rule
* (block boundaries at same positions) In which case,
* the decoding & encoding ring buffer can have any size,
* including very small ones ( < 64 KB).
* - Larger than encoding buffer, by a minimum of maxBlockSize more bytes.
* maxBlockSize is implementation dependent.
* It's the maximum size you intend to compress into a single block.
* In which case, encoding and decoding buffers do not need
* to be synchronized, and encoding ring buffer can have any size,
* including small ones ( < 64 KB).
* - _At least_ 64 KB + 8 bytes + maxBlockSize.
* In which case, encoding and decoding buffers do not need to be
* synchronized, and encoding ring buffer can have any size,
* including larger than decoding buffer. W
* Whenever these conditions are not possible, save the last 64KB of decoded
* data into a safe buffer, and indicate where it is saved
* using LZ4_setStreamDecode()
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_fast_continue(LZ4_streamDecode_t *LZ4_streamDecode,
const char *source, char *dest, int originalSize);
/**
* LZ4_decompress_safe_usingDict() - Same as LZ4_setStreamDecode()
* followed by LZ4_decompress_safe_continue()
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated
* @compressedSize: is the precise full size of the compressed block
* @maxDecompressedSize: is the size of 'dest' buffer
* @dictStart: pointer to the start of the dictionary in memory
* @dictSize: size of dictionary
*
* This decoding function works the same as
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* a combination of LZ4_setStreamDecode() followed by
* LZ4_decompress_safe_continue()
* It is stand-alone, and doesn't need an LZ4_streamDecode_t structure.
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_safe_usingDict(const char *source, char *dest,
int compressedSize, int maxDecompressedSize, const char *dictStart,
int dictSize);
/**
* LZ4_decompress_fast_usingDict() - Same as LZ4_setStreamDecode()
* followed by LZ4_decompress_fast_continue()
* @source: source address of the compressed data
* @dest: output buffer address of the uncompressed data
* which must be already allocated with 'originalSize' bytes
* @originalSize: is the original and therefore uncompressed size
* @dictStart: pointer to the start of the dictionary in memory
* @dictSize: size of dictionary
*
* This decoding function works the same as
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
* a combination of LZ4_setStreamDecode() followed by
* LZ4_decompress_fast_continue()
* It is stand-alone, and doesn't need an LZ4_streamDecode_t structure.
lib: update LZ4 compressor module Patch series "Update LZ4 compressor module", v7. This patchset updates the LZ4 compression module to a version based on LZ4 v1.7.3 allowing to use the fast compression algorithm aka LZ4 fast which provides an "acceleration" parameter as a tradeoff between high compression ratio and high compression speed. We want to use LZ4 fast in order to support compression in lustre and (mostly, based on that) investigate data reduction techniques in behalf of storage systems. Also, it will be useful for other users of LZ4 compression, as with LZ4 fast it is possible to enable applications to use fast and/or high compression depending on the usecase. For instance, ZRAM is offering a LZ4 backend and could benefit from an updated LZ4 in the kernel. LZ4 homepage: http://www.lz4.org/ LZ4 source repository: https://github.com/lz4/lz4 Source version: 1.7.3 Benchmark (taken from [1], Core i5-4300U @1.9GHz): ----------------|--------------|----------------|---------- Compressor | Compression | Decompression | Ratio ----------------|--------------|----------------|---------- memcpy | 4200 MB/s | 4200 MB/s | 1.000 LZ4 fast 50 | 1080 MB/s | 2650 MB/s | 1.375 LZ4 fast 17 | 680 MB/s | 2220 MB/s | 1.607 LZ4 fast 5 | 475 MB/s | 1920 MB/s | 1.886 LZ4 default | 385 MB/s | 1850 MB/s | 2.101 [1] http://fastcompression.blogspot.de/2015/04/sampling-or-faster-lz4.html [PATCH 1/5] lib: Update LZ4 compressor module [PATCH 2/5] lib/decompress_unlz4: Change module to work with new LZ4 module version [PATCH 3/5] crypto: Change LZ4 modules to work with new LZ4 module version [PATCH 4/5] fs/pstore: fs/squashfs: Change usage of LZ4 to work with new LZ4 version [PATCH 5/5] lib/lz4: Remove back-compat wrappers This patch (of 5): Update the LZ4 kernel module to LZ4 v1.7.3 by Yann Collet. The kernel module is inspired by the previous work by Chanho Min. The updated LZ4 module will not break existing code since the patchset contains appropriate changes. API changes: New method LZ4_compress_fast which differs from the variant available in kernel by the new acceleration parameter, allowing to trade compression ratio for more compression speed and vice versa. LZ4_decompress_fast is the respective decompression method, featuring a very fast decoder (multiple GB/s per core), able to reach RAM speed in multi-core systems. The decompressor allows to decompress data compressed with LZ4 fast as well as the LZ4 HC (high compression) algorithm. Also the useful functions LZ4_decompress_safe_partial and LZ4_compress_destsize were added. The latter reverses the logic by trying to compress as much data as possible from source to dest while the former aims to decompress partial blocks of data. A bunch of streaming functions were also added which allow compressig/decompressing data in multiple steps (so called "streaming mode"). The methods lz4_compress and lz4_decompress_unknownoutputsize are now known as LZ4_compress_default respectivley LZ4_decompress_safe. The old methods will be removed since there's no callers left in the code. [arnd@arndb.de: fix KERNEL_LZ4 support] Link: http://lkml.kernel.org/r/20170208211946.2839649-1-arnd@arndb.de [akpm@linux-foundation.org: simplify] [akpm@linux-foundation.org: fix the simplification] [4sschmid@informatik.uni-hamburg.de: fix performance regressions] Link: http://lkml.kernel.org/r/1486898178-17125-2-git-send-email-4sschmid@informatik.uni-hamburg.de [4sschmid@informatik.uni-hamburg.de: v8] Link: http://lkml.kernel.org/r/1487182598-15351-2-git-send-email-4sschmid@informatik.uni-hamburg.de Link: http://lkml.kernel.org/r/1486321748-19085-2-git-send-email-4sschmid@informatik.uni-hamburg.de Signed-off-by: Sven Schmidt <4sschmid@informatik.uni-hamburg.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Rui Salvaterra <rsalvaterra@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25 06:01:12 +07:00
*
* Return: number of bytes decompressed into destination buffer
* (necessarily <= maxDecompressedSize)
* or a negative result in case of error
*/
int LZ4_decompress_fast_usingDict(const char *source, char *dest,
int originalSize, const char *dictStart, int dictSize);
decompressor: add LZ4 decompressor module Add support for LZ4 decompression in the Linux Kernel. LZ4 Decompression APIs for kernel are based on LZ4 implementation by Yann Collet. Benchmark Results(PATCH v3) Compiler: Linaro ARM gcc 4.6.2 1. ARMv7, 1.5GHz based board Kernel: linux 3.4 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.7MB 20.1MB/s, 25.2MB/s(UA) LZ4 7.3MB 29.1MB/s, 45.6MB/s(UA) 2. ARMv7, 1.7GHz based board Kernel: linux 3.7 Uncompressed Kernel Size: 14MB Compressed Size Decompression Speed LZO 6.0MB 34.1MB/s, 52.2MB/s(UA) LZ4 6.5MB 86.7MB/s - UA: Unaligned memory Access support - Latest patch set for LZO applied This patch set is for adding support for LZ4-compressed Kernel. LZ4 is a very fast lossless compression algorithm and it also features an extremely fast decoder [1]. But we have five of decompressors already and one question which does arise, however, is that of where do we stop adding new ones? This issue had been discussed and came to the conclusion [2]. Russell King said that we should have: - one decompressor which is the fastest - one decompressor for the highest compression ratio - one popular decompressor (eg conventional gzip) If we have a replacement one for one of these, then it should do exactly that: replace it. The benchmark shows that an 8% increase in image size vs a 66% increase in decompression speed compared to LZO(which has been known as the fastest decompressor in the Kernel). Therefore the "fast but may not be small" compression title has clearly been taken by LZ4 [3]. [1] http://code.google.com/p/lz4/ [2] http://thread.gmane.org/gmane.linux.kbuild.devel/9157 [3] http://thread.gmane.org/gmane.linux.kbuild.devel/9347 LZ4 homepage: http://fastcompression.blogspot.com/p/lz4.html LZ4 source repository: http://code.google.com/p/lz4/ Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com> Signed-off-by: Yann Collet <yann.collet.73@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Florian Fainelli <florian@openwrt.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 06:01:45 +07:00
#endif