linux_dsm_epyc7002/arch/x86/kernel/module.c

243 lines
6.2 KiB
C
Raw Normal View History

/* Kernel module help for x86.
Copyright (C) 2001 Rusty Russell.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/moduleloader.h>
#include <linux/elf.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/gfp.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#if 0
#define DEBUGP printk
#else
#define DEBUGP(fmt...)
#endif
void *module_alloc(unsigned long size)
{
if (PAGE_ALIGN(size) > MODULES_LEN)
return NULL;
return __vmalloc_node_range(size, 1, MODULES_VADDR, MODULES_END,
GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
-1, __builtin_return_address(0));
}
/* Free memory returned from module_alloc */
void module_free(struct module *mod, void *module_region)
{
vfree(module_region);
}
/* We don't need anything special. */
int module_frob_arch_sections(Elf_Ehdr *hdr,
Elf_Shdr *sechdrs,
char *secstrings,
struct module *mod)
{
return 0;
}
#ifdef CONFIG_X86_32
int apply_relocate(Elf32_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
unsigned int i;
Elf32_Rel *rel = (void *)sechdrs[relsec].sh_addr;
Elf32_Sym *sym;
uint32_t *location;
DEBUGP("Applying relocate section %u to %u\n", relsec,
sechdrs[relsec].sh_info);
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
/* This is where to make the change */
location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
+ rel[i].r_offset;
/* This is the symbol it is referring to. Note that all
undefined symbols have been resolved. */
sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
+ ELF32_R_SYM(rel[i].r_info);
switch (ELF32_R_TYPE(rel[i].r_info)) {
case R_386_32:
/* We add the value into the location given */
*location += sym->st_value;
break;
case R_386_PC32:
/* Add the value, subtract its postition */
*location += sym->st_value - (uint32_t)location;
break;
default:
printk(KERN_ERR "module %s: Unknown relocation: %u\n",
me->name, ELF32_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
}
return 0;
}
int apply_relocate_add(Elf32_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
printk(KERN_ERR "module %s: ADD RELOCATION unsupported\n",
me->name);
return -ENOEXEC;
}
#else /*X86_64*/
int apply_relocate_add(Elf64_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
unsigned int i;
Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
Elf64_Sym *sym;
void *loc;
u64 val;
DEBUGP("Applying relocate section %u to %u\n", relsec,
sechdrs[relsec].sh_info);
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
/* This is where to make the change */
loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
+ rel[i].r_offset;
/* This is the symbol it is referring to. Note that all
undefined symbols have been resolved. */
sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
+ ELF64_R_SYM(rel[i].r_info);
DEBUGP("type %d st_value %Lx r_addend %Lx loc %Lx\n",
(int)ELF64_R_TYPE(rel[i].r_info),
sym->st_value, rel[i].r_addend, (u64)loc);
val = sym->st_value + rel[i].r_addend;
switch (ELF64_R_TYPE(rel[i].r_info)) {
case R_X86_64_NONE:
break;
case R_X86_64_64:
*(u64 *)loc = val;
break;
case R_X86_64_32:
*(u32 *)loc = val;
if (val != *(u32 *)loc)
goto overflow;
break;
case R_X86_64_32S:
*(s32 *)loc = val;
if ((s64)val != *(s32 *)loc)
goto overflow;
break;
case R_X86_64_PC32:
val -= (u64)loc;
*(u32 *)loc = val;
#if 0
if ((s64)val != *(s32 *)loc)
goto overflow;
#endif
break;
default:
printk(KERN_ERR "module %s: Unknown rela relocation: %llu\n",
me->name, ELF64_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
}
return 0;
overflow:
printk(KERN_ERR "overflow in relocation type %d val %Lx\n",
(int)ELF64_R_TYPE(rel[i].r_info), val);
printk(KERN_ERR "`%s' likely not compiled with -mcmodel=kernel\n",
me->name);
return -ENOEXEC;
}
int apply_relocate(Elf_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
printk(KERN_ERR "non add relocation not supported\n");
return -ENOSYS;
}
#endif
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
{
const Elf_Shdr *s, *text = NULL, *alt = NULL, *locks = NULL,
*para = NULL;
char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
if (!strcmp(".text", secstrings + s->sh_name))
text = s;
if (!strcmp(".altinstructions", secstrings + s->sh_name))
alt = s;
if (!strcmp(".smp_locks", secstrings + s->sh_name))
locks = s;
if (!strcmp(".parainstructions", secstrings + s->sh_name))
para = s;
}
if (alt) {
/* patch .altinstructions */
void *aseg = (void *)alt->sh_addr;
apply_alternatives(aseg, aseg + alt->sh_size);
}
if (locks && text) {
void *lseg = (void *)locks->sh_addr;
void *tseg = (void *)text->sh_addr;
alternatives_smp_module_add(me, me->name,
lseg, lseg + locks->sh_size,
tseg, tseg + text->sh_size);
}
if (para) {
void *pseg = (void *)para->sh_addr;
apply_paravirt(pseg, pseg + para->sh_size);
}
/* make jump label nops */
jump_label_apply_nops(me);
2010-10-06 01:29:27 +07:00
return 0;
}
void module_arch_cleanup(struct module *mod)
{
alternatives_smp_module_del(mod);
}