linux_dsm_epyc7002/sound/isa/sb/emu8000_pcm.c

704 lines
17 KiB
C
Raw Normal View History

/*
* pcm emulation on emu8000 wavetable
*
* Copyright (C) 2002 Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "emu8000_local.h"
#include <linux/sched/signal.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <sound/initval.h>
#include <sound/pcm.h>
/*
* define the following if you want to use this pcm with non-interleaved mode
*/
/* #define USE_NONINTERLEAVE */
/* NOTE: for using the non-interleaved mode with alsa-lib, you have to set
* mmap_emulation flag to 1 in your .asoundrc, such like
*
* pcm.emu8k {
* type plug
* slave.pcm {
* type hw
* card 0
* device 1
* mmap_emulation 1
* }
* }
*
* besides, for the time being, the non-interleaved mode doesn't work well on
* alsa-lib...
*/
struct snd_emu8k_pcm {
struct snd_emu8000 *emu;
struct snd_pcm_substream *substream;
unsigned int allocated_bytes;
struct snd_util_memblk *block;
unsigned int offset;
unsigned int buf_size;
unsigned int period_size;
unsigned int loop_start[2];
unsigned int pitch;
int panning[2];
int last_ptr;
int period_pos;
int voices;
unsigned int dram_opened: 1;
unsigned int running: 1;
unsigned int timer_running: 1;
struct timer_list timer;
spinlock_t timer_lock;
};
#define LOOP_BLANK_SIZE 8
/*
* open up channels for the simultaneous data transfer and playback
*/
static int
emu8k_open_dram_for_pcm(struct snd_emu8000 *emu, int channels)
{
int i;
/* reserve up to 2 voices for playback */
snd_emux_lock_voice(emu->emu, 0);
if (channels > 1)
snd_emux_lock_voice(emu->emu, 1);
/* reserve 28 voices for loading */
for (i = channels + 1; i < EMU8000_DRAM_VOICES; i++) {
unsigned int mode = EMU8000_RAM_WRITE;
snd_emux_lock_voice(emu->emu, i);
#ifndef USE_NONINTERLEAVE
if (channels > 1 && (i & 1) != 0)
mode |= EMU8000_RAM_RIGHT;
#endif
snd_emu8000_dma_chan(emu, i, mode);
}
/* assign voice 31 and 32 to ROM */
EMU8000_VTFT_WRITE(emu, 30, 0);
EMU8000_PSST_WRITE(emu, 30, 0x1d8);
EMU8000_CSL_WRITE(emu, 30, 0x1e0);
EMU8000_CCCA_WRITE(emu, 30, 0x1d8);
EMU8000_VTFT_WRITE(emu, 31, 0);
EMU8000_PSST_WRITE(emu, 31, 0x1d8);
EMU8000_CSL_WRITE(emu, 31, 0x1e0);
EMU8000_CCCA_WRITE(emu, 31, 0x1d8);
return 0;
}
/*
*/
static void
snd_emu8000_write_wait(struct snd_emu8000 *emu, int can_schedule)
{
while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
if (can_schedule) {
schedule_timeout_interruptible(1);
if (signal_pending(current))
break;
}
}
}
/*
* close all channels
*/
static void
emu8k_close_dram(struct snd_emu8000 *emu)
{
int i;
for (i = 0; i < 2; i++)
snd_emux_unlock_voice(emu->emu, i);
for (; i < EMU8000_DRAM_VOICES; i++) {
snd_emu8000_dma_chan(emu, i, EMU8000_RAM_CLOSE);
snd_emux_unlock_voice(emu->emu, i);
}
}
/*
* convert Hz to AWE32 rate offset (see emux/soundfont.c)
*/
#define OFFSET_SAMPLERATE 1011119 /* base = 44100 */
#define SAMPLERATE_RATIO 4096
static int calc_rate_offset(int hz)
{
return snd_sf_linear_to_log(hz, OFFSET_SAMPLERATE, SAMPLERATE_RATIO);
}
/*
*/
static struct snd_pcm_hardware emu8k_pcm_hw = {
#ifdef USE_NONINTERLEAVE
.info = SNDRV_PCM_INFO_NONINTERLEAVED,
#else
.info = SNDRV_PCM_INFO_INTERLEAVED,
#endif
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 1024,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
/*
* get the current position at the given channel from CCCA register
*/
static inline int emu8k_get_curpos(struct snd_emu8k_pcm *rec, int ch)
{
int val = EMU8000_CCCA_READ(rec->emu, ch) & 0xfffffff;
val -= rec->loop_start[ch] - 1;
return val;
}
/*
* timer interrupt handler
* check the current position and update the period if necessary.
*/
static void emu8k_pcm_timer_func(unsigned long data)
{
struct snd_emu8k_pcm *rec = (struct snd_emu8k_pcm *)data;
int ptr, delta;
spin_lock(&rec->timer_lock);
/* update the current pointer */
ptr = emu8k_get_curpos(rec, 0);
if (ptr < rec->last_ptr)
delta = ptr + rec->buf_size - rec->last_ptr;
else
delta = ptr - rec->last_ptr;
rec->period_pos += delta;
rec->last_ptr = ptr;
/* reprogram timer */
mod_timer(&rec->timer, jiffies + 1);
/* update period */
if (rec->period_pos >= (int)rec->period_size) {
rec->period_pos %= rec->period_size;
spin_unlock(&rec->timer_lock);
snd_pcm_period_elapsed(rec->substream);
return;
}
spin_unlock(&rec->timer_lock);
}
/*
* open pcm
* creating an instance here
*/
static int emu8k_pcm_open(struct snd_pcm_substream *subs)
{
struct snd_emu8000 *emu = snd_pcm_substream_chip(subs);
struct snd_emu8k_pcm *rec;
struct snd_pcm_runtime *runtime = subs->runtime;
rec = kzalloc(sizeof(*rec), GFP_KERNEL);
if (! rec)
return -ENOMEM;
rec->emu = emu;
rec->substream = subs;
runtime->private_data = rec;
spin_lock_init(&rec->timer_lock);
setup_timer(&rec->timer, emu8k_pcm_timer_func, (unsigned long)rec);
runtime->hw = emu8k_pcm_hw;
runtime->hw.buffer_bytes_max = emu->mem_size - LOOP_BLANK_SIZE * 3;
runtime->hw.period_bytes_max = runtime->hw.buffer_bytes_max / 2;
/* use timer to update periods.. (specified in msec) */
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME,
(1000000 + HZ - 1) / HZ, UINT_MAX);
return 0;
}
static int emu8k_pcm_close(struct snd_pcm_substream *subs)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
kfree(rec);
subs->runtime->private_data = NULL;
return 0;
}
/*
* calculate pitch target
*/
static int calc_pitch_target(int pitch)
{
int ptarget = 1 << (pitch >> 12);
if (pitch & 0x800) ptarget += (ptarget * 0x102e) / 0x2710;
if (pitch & 0x400) ptarget += (ptarget * 0x764) / 0x2710;
if (pitch & 0x200) ptarget += (ptarget * 0x389) / 0x2710;
ptarget += (ptarget >> 1);
if (ptarget > 0xffff) ptarget = 0xffff;
return ptarget;
}
/*
* set up the voice
*/
static void setup_voice(struct snd_emu8k_pcm *rec, int ch)
{
struct snd_emu8000 *hw = rec->emu;
unsigned int temp;
/* channel to be silent and idle */
EMU8000_DCYSUSV_WRITE(hw, ch, 0x0080);
EMU8000_VTFT_WRITE(hw, ch, 0x0000FFFF);
EMU8000_CVCF_WRITE(hw, ch, 0x0000FFFF);
EMU8000_PTRX_WRITE(hw, ch, 0);
EMU8000_CPF_WRITE(hw, ch, 0);
/* pitch offset */
EMU8000_IP_WRITE(hw, ch, rec->pitch);
/* set envelope parameters */
EMU8000_ENVVAL_WRITE(hw, ch, 0x8000);
EMU8000_ATKHLD_WRITE(hw, ch, 0x7f7f);
EMU8000_DCYSUS_WRITE(hw, ch, 0x7f7f);
EMU8000_ENVVOL_WRITE(hw, ch, 0x8000);
EMU8000_ATKHLDV_WRITE(hw, ch, 0x7f7f);
/* decay/sustain parameter for volume envelope is used
for triggerg the voice */
/* modulation envelope heights */
EMU8000_PEFE_WRITE(hw, ch, 0x0);
/* lfo1/2 delay */
EMU8000_LFO1VAL_WRITE(hw, ch, 0x8000);
EMU8000_LFO2VAL_WRITE(hw, ch, 0x8000);
/* lfo1 pitch & cutoff shift */
EMU8000_FMMOD_WRITE(hw, ch, 0);
/* lfo1 volume & freq */
EMU8000_TREMFRQ_WRITE(hw, ch, 0);
/* lfo2 pitch & freq */
EMU8000_FM2FRQ2_WRITE(hw, ch, 0);
/* pan & loop start */
temp = rec->panning[ch];
temp = (temp <<24) | ((unsigned int)rec->loop_start[ch] - 1);
EMU8000_PSST_WRITE(hw, ch, temp);
/* chorus & loop end (chorus 8bit, MSB) */
temp = 0; // chorus
temp = (temp << 24) | ((unsigned int)rec->loop_start[ch] + rec->buf_size - 1);
EMU8000_CSL_WRITE(hw, ch, temp);
/* Q & current address (Q 4bit value, MSB) */
temp = 0; // filterQ
temp = (temp << 28) | ((unsigned int)rec->loop_start[ch] - 1);
EMU8000_CCCA_WRITE(hw, ch, temp);
/* clear unknown registers */
EMU8000_00A0_WRITE(hw, ch, 0);
EMU8000_0080_WRITE(hw, ch, 0);
}
/*
* trigger the voice
*/
static void start_voice(struct snd_emu8k_pcm *rec, int ch)
{
unsigned long flags;
struct snd_emu8000 *hw = rec->emu;
unsigned int temp, aux;
int pt = calc_pitch_target(rec->pitch);
/* cutoff and volume */
EMU8000_IFATN_WRITE(hw, ch, 0xff00);
EMU8000_VTFT_WRITE(hw, ch, 0xffff);
EMU8000_CVCF_WRITE(hw, ch, 0xffff);
/* trigger envelope */
EMU8000_DCYSUSV_WRITE(hw, ch, 0x7f7f);
/* set reverb and pitch target */
temp = 0; // reverb
if (rec->panning[ch] == 0)
aux = 0xff;
else
aux = (-rec->panning[ch]) & 0xff;
temp = (temp << 8) | (pt << 16) | aux;
EMU8000_PTRX_WRITE(hw, ch, temp);
EMU8000_CPF_WRITE(hw, ch, pt << 16);
/* start timer */
spin_lock_irqsave(&rec->timer_lock, flags);
if (! rec->timer_running) {
mod_timer(&rec->timer, jiffies + 1);
rec->timer_running = 1;
}
spin_unlock_irqrestore(&rec->timer_lock, flags);
}
/*
* stop the voice immediately
*/
static void stop_voice(struct snd_emu8k_pcm *rec, int ch)
{
unsigned long flags;
struct snd_emu8000 *hw = rec->emu;
EMU8000_DCYSUSV_WRITE(hw, ch, 0x807F);
/* stop timer */
spin_lock_irqsave(&rec->timer_lock, flags);
if (rec->timer_running) {
del_timer(&rec->timer);
rec->timer_running = 0;
}
spin_unlock_irqrestore(&rec->timer_lock, flags);
}
static int emu8k_pcm_trigger(struct snd_pcm_substream *subs, int cmd)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
int ch;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
for (ch = 0; ch < rec->voices; ch++)
start_voice(rec, ch);
rec->running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
rec->running = 0;
for (ch = 0; ch < rec->voices; ch++)
stop_voice(rec, ch);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* copy / silence ops
*/
/*
* this macro should be inserted in the copy/silence loops
* to reduce the latency. without this, the system will hang up
* during the whole loop.
*/
#define CHECK_SCHEDULER() \
do { \
cond_resched();\
if (signal_pending(current))\
return -EAGAIN;\
} while (0)
#ifdef USE_NONINTERLEAVE
/* copy one channel block */
static int emu8k_transfer_block(struct snd_emu8000 *emu, int offset, unsigned short *buf, int count)
{
EMU8000_SMALW_WRITE(emu, offset);
while (count > 0) {
unsigned short sval;
CHECK_SCHEDULER();
if (get_user(sval, buf))
return -EFAULT;
EMU8000_SMLD_WRITE(emu, sval);
buf++;
count--;
}
return 0;
}
static int emu8k_pcm_copy(struct snd_pcm_substream *subs,
int voice,
snd_pcm_uframes_t pos,
void *src,
snd_pcm_uframes_t count)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
struct snd_emu8000 *emu = rec->emu;
snd_emu8000_write_wait(emu, 1);
if (voice == -1) {
unsigned short *buf = src;
int i, err;
count /= rec->voices;
for (i = 0; i < rec->voices; i++) {
err = emu8k_transfer_block(emu, pos + rec->loop_start[i], buf, count);
if (err < 0)
return err;
buf += count;
}
return 0;
} else {
return emu8k_transfer_block(emu, pos + rec->loop_start[voice], src, count);
}
}
/* make a channel block silence */
static int emu8k_silence_block(struct snd_emu8000 *emu, int offset, int count)
{
EMU8000_SMALW_WRITE(emu, offset);
while (count > 0) {
CHECK_SCHEDULER();
EMU8000_SMLD_WRITE(emu, 0);
count--;
}
return 0;
}
static int emu8k_pcm_silence(struct snd_pcm_substream *subs,
int voice,
snd_pcm_uframes_t pos,
snd_pcm_uframes_t count)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
struct snd_emu8000 *emu = rec->emu;
snd_emu8000_write_wait(emu, 1);
if (voice == -1 && rec->voices == 1)
voice = 0;
if (voice == -1) {
int err;
err = emu8k_silence_block(emu, pos + rec->loop_start[0], count / 2);
if (err < 0)
return err;
return emu8k_silence_block(emu, pos + rec->loop_start[1], count / 2);
} else {
return emu8k_silence_block(emu, pos + rec->loop_start[voice], count);
}
}
#else /* interleave */
/*
* copy the interleaved data can be done easily by using
* DMA "left" and "right" channels on emu8k engine.
*/
static int emu8k_pcm_copy(struct snd_pcm_substream *subs,
int voice,
snd_pcm_uframes_t pos,
void __user *src,
snd_pcm_uframes_t count)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
struct snd_emu8000 *emu = rec->emu;
unsigned short __user *buf = src;
snd_emu8000_write_wait(emu, 1);
EMU8000_SMALW_WRITE(emu, pos + rec->loop_start[0]);
if (rec->voices > 1)
EMU8000_SMARW_WRITE(emu, pos + rec->loop_start[1]);
while (count-- > 0) {
unsigned short sval;
CHECK_SCHEDULER();
if (get_user(sval, buf))
return -EFAULT;
EMU8000_SMLD_WRITE(emu, sval);
buf++;
if (rec->voices > 1) {
CHECK_SCHEDULER();
if (get_user(sval, buf))
return -EFAULT;
EMU8000_SMRD_WRITE(emu, sval);
buf++;
}
}
return 0;
}
static int emu8k_pcm_silence(struct snd_pcm_substream *subs,
int voice,
snd_pcm_uframes_t pos,
snd_pcm_uframes_t count)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
struct snd_emu8000 *emu = rec->emu;
snd_emu8000_write_wait(emu, 1);
EMU8000_SMALW_WRITE(emu, rec->loop_start[0] + pos);
if (rec->voices > 1)
EMU8000_SMARW_WRITE(emu, rec->loop_start[1] + pos);
while (count-- > 0) {
CHECK_SCHEDULER();
EMU8000_SMLD_WRITE(emu, 0);
if (rec->voices > 1) {
CHECK_SCHEDULER();
EMU8000_SMRD_WRITE(emu, 0);
}
}
return 0;
}
#endif
/*
* allocate a memory block
*/
static int emu8k_pcm_hw_params(struct snd_pcm_substream *subs,
struct snd_pcm_hw_params *hw_params)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
if (rec->block) {
/* reallocation - release the old block */
snd_util_mem_free(rec->emu->memhdr, rec->block);
rec->block = NULL;
}
rec->allocated_bytes = params_buffer_bytes(hw_params) + LOOP_BLANK_SIZE * 4;
rec->block = snd_util_mem_alloc(rec->emu->memhdr, rec->allocated_bytes);
if (! rec->block)
return -ENOMEM;
rec->offset = EMU8000_DRAM_OFFSET + (rec->block->offset >> 1); /* in word */
/* at least dma_bytes must be set for non-interleaved mode */
subs->dma_buffer.bytes = params_buffer_bytes(hw_params);
return 0;
}
/*
* free the memory block
*/
static int emu8k_pcm_hw_free(struct snd_pcm_substream *subs)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
if (rec->block) {
int ch;
for (ch = 0; ch < rec->voices; ch++)
stop_voice(rec, ch); // to be sure
if (rec->dram_opened)
emu8k_close_dram(rec->emu);
snd_util_mem_free(rec->emu->memhdr, rec->block);
rec->block = NULL;
}
return 0;
}
/*
*/
static int emu8k_pcm_prepare(struct snd_pcm_substream *subs)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
rec->pitch = 0xe000 + calc_rate_offset(subs->runtime->rate);
rec->last_ptr = 0;
rec->period_pos = 0;
rec->buf_size = subs->runtime->buffer_size;
rec->period_size = subs->runtime->period_size;
rec->voices = subs->runtime->channels;
rec->loop_start[0] = rec->offset + LOOP_BLANK_SIZE;
if (rec->voices > 1)
rec->loop_start[1] = rec->loop_start[0] + rec->buf_size + LOOP_BLANK_SIZE;
if (rec->voices > 1) {
rec->panning[0] = 0xff;
rec->panning[1] = 0x00;
} else
rec->panning[0] = 0x80;
if (! rec->dram_opened) {
int err, i, ch;
snd_emux_terminate_all(rec->emu->emu);
if ((err = emu8k_open_dram_for_pcm(rec->emu, rec->voices)) != 0)
return err;
rec->dram_opened = 1;
/* clear loop blanks */
snd_emu8000_write_wait(rec->emu, 0);
EMU8000_SMALW_WRITE(rec->emu, rec->offset);
for (i = 0; i < LOOP_BLANK_SIZE; i++)
EMU8000_SMLD_WRITE(rec->emu, 0);
for (ch = 0; ch < rec->voices; ch++) {
EMU8000_SMALW_WRITE(rec->emu, rec->loop_start[ch] + rec->buf_size);
for (i = 0; i < LOOP_BLANK_SIZE; i++)
EMU8000_SMLD_WRITE(rec->emu, 0);
}
}
setup_voice(rec, 0);
if (rec->voices > 1)
setup_voice(rec, 1);
return 0;
}
static snd_pcm_uframes_t emu8k_pcm_pointer(struct snd_pcm_substream *subs)
{
struct snd_emu8k_pcm *rec = subs->runtime->private_data;
if (rec->running)
return emu8k_get_curpos(rec, 0);
return 0;
}
static struct snd_pcm_ops emu8k_pcm_ops = {
.open = emu8k_pcm_open,
.close = emu8k_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = emu8k_pcm_hw_params,
.hw_free = emu8k_pcm_hw_free,
.prepare = emu8k_pcm_prepare,
.trigger = emu8k_pcm_trigger,
.pointer = emu8k_pcm_pointer,
.copy = emu8k_pcm_copy,
.silence = emu8k_pcm_silence,
};
static void snd_emu8000_pcm_free(struct snd_pcm *pcm)
{
struct snd_emu8000 *emu = pcm->private_data;
emu->pcm = NULL;
}
int snd_emu8000_pcm_new(struct snd_card *card, struct snd_emu8000 *emu, int index)
{
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(card, "Emu8000 PCM", index, 1, 0, &pcm)) < 0)
return err;
pcm->private_data = emu;
pcm->private_free = snd_emu8000_pcm_free;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &emu8k_pcm_ops);
emu->pcm = pcm;
snd_device_register(card, pcm);
return 0;
}