2019-06-28 09:38:37 +07:00
|
|
|
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
|
/* Copyright (C) 2019 IBM Corp. */
|
|
|
|
|
|
|
|
|
|
#ifndef ASPEED_PINMUX_H
|
|
|
|
|
#define ASPEED_PINMUX_H
|
|
|
|
|
|
|
|
|
|
#include <linux/regmap.h>
|
|
|
|
|
#include <stdbool.h>
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The ASPEED SoCs provide typically more than 200 pins for GPIO and other
|
|
|
|
|
* functions. The SoC function enabled on a pin is determined on a priority
|
|
|
|
|
* basis where a given pin can provide a number of different signal types.
|
|
|
|
|
*
|
|
|
|
|
* The signal active on a pin is described by both a priority level and
|
|
|
|
|
* compound logical expressions involving multiple operators, registers and
|
|
|
|
|
* bits. Some difficulty arises as the pin's function bit masks for each
|
|
|
|
|
* priority level are frequently not the same (i.e. cannot just flip a bit to
|
|
|
|
|
* change from a high to low priority signal), or even in the same register.
|
|
|
|
|
* Further, not all signals can be unmuxed, as some expressions depend on
|
2019-06-28 09:38:38 +07:00
|
|
|
|
* values in the hardware strapping register (which may be treated as
|
|
|
|
|
* read-only).
|
2019-06-28 09:38:37 +07:00
|
|
|
|
*
|
|
|
|
|
* SoC Multi-function Pin Expression Examples
|
|
|
|
|
* ------------------------------------------
|
|
|
|
|
*
|
|
|
|
|
* Here are some sample mux configurations from the AST2400 and AST2500
|
|
|
|
|
* datasheets to illustrate the corner cases, roughly in order of least to most
|
|
|
|
|
* corner. The signal priorities are in decending order from P0 (highest).
|
|
|
|
|
*
|
|
|
|
|
* D6 is a pin with a single function (beside GPIO); a high priority signal
|
|
|
|
|
* that participates in one function:
|
|
|
|
|
*
|
|
|
|
|
* Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
|
|
|
|
|
* -----+---------+-----------+-----------------------------+-----------+---------------+----------
|
|
|
|
|
* D6 GPIOA0 MAC1LINK SCU80[0]=1 GPIOA0
|
|
|
|
|
* -----+---------+-----------+-----------------------------+-----------+---------------+----------
|
|
|
|
|
*
|
|
|
|
|
* C5 is a multi-signal pin (high and low priority signals). Here we touch
|
|
|
|
|
* different registers for the different functions that enable each signal:
|
|
|
|
|
*
|
|
|
|
|
* -----+---------+-----------+-----------------------------+-----------+---------------+----------
|
|
|
|
|
* C5 GPIOA4 SCL9 SCU90[22]=1 TIMER5 SCU80[4]=1 GPIOA4
|
|
|
|
|
* -----+---------+-----------+-----------------------------+-----------+---------------+----------
|
|
|
|
|
*
|
|
|
|
|
* E19 is a single-signal pin with two functions that influence the active
|
|
|
|
|
* signal. In this case both bits have the same meaning - enable a dedicated
|
|
|
|
|
* LPC reset pin. However it's not always the case that the bits in the
|
|
|
|
|
* OR-relationship have the same meaning.
|
|
|
|
|
*
|
|
|
|
|
* -----+---------+-----------+-----------------------------+-----------+---------------+----------
|
|
|
|
|
* E19 GPIOB4 LPCRST# SCU80[12]=1 | Strap[14]=1 GPIOB4
|
|
|
|
|
* -----+---------+-----------+-----------------------------+-----------+---------------+----------
|
|
|
|
|
*
|
|
|
|
|
* For example, pin B19 has a low-priority signal that's enabled by two
|
|
|
|
|
* distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI
|
|
|
|
|
* bit in the STRAP register. The ACPI bit configures signals on pins in
|
|
|
|
|
* addition to B19. Both of the low priority functions as well as the high
|
|
|
|
|
* priority function must be disabled for GPIOF1 to be used.
|
|
|
|
|
*
|
|
|
|
|
* Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
|
|
|
|
|
* -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
|
|
|
|
|
* B19 GPIOF1 NDCD4 SCU80[25]=1 SIOPBI# SCUA4[12]=1 | Strap[19]=0 GPIOF1
|
|
|
|
|
* -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
|
|
|
|
|
*
|
|
|
|
|
* For pin E18, the SoC ANDs the expected state of three bits to determine the
|
|
|
|
|
* pin's active signal:
|
|
|
|
|
*
|
|
|
|
|
* * SCU3C[3]: Enable external SOC reset function
|
|
|
|
|
* * SCU80[15]: Enable SPICS1# or EXTRST# function pin
|
|
|
|
|
* * SCU90[31]: Select SPI interface CS# output
|
|
|
|
|
*
|
|
|
|
|
* -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
|
|
|
|
|
* E18 GPIOB7 EXTRST# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0 SPICS1# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1 GPIOB7
|
|
|
|
|
* -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
|
|
|
|
|
*
|
|
|
|
|
* (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for
|
|
|
|
|
* selecting the signals on pin E18)
|
|
|
|
|
*
|
|
|
|
|
* Pin T5 is a multi-signal pin with a more complex configuration:
|
|
|
|
|
*
|
|
|
|
|
* Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
|
|
|
|
|
* -----+---------+-----------+------------------------------+-----------+---------------+----------
|
|
|
|
|
* T5 GPIOL1 VPIDE SCU90[5:4]!=0 & SCU84[17]=1 NDCD1 SCU84[17]=1 GPIOL1
|
|
|
|
|
* -----+---------+-----------+------------------------------+-----------+---------------+----------
|
|
|
|
|
*
|
|
|
|
|
* The high priority signal configuration is best thought of in terms of its
|
|
|
|
|
* exploded form, with reference to the SCU90[5:4] bits:
|
|
|
|
|
*
|
|
|
|
|
* * SCU90[5:4]=00: disable
|
|
|
|
|
* * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode.
|
|
|
|
|
* * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode.
|
|
|
|
|
* * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode.
|
|
|
|
|
*
|
|
|
|
|
* Re-writing:
|
|
|
|
|
*
|
|
|
|
|
* -----+---------+-----------+------------------------------+-----------+---------------+----------
|
|
|
|
|
* T5 GPIOL1 VPIDE (SCU90[5:4]=1 & SCU84[17]=1) NDCD1 SCU84[17]=1 GPIOL1
|
|
|
|
|
* | (SCU90[5:4]=2 & SCU84[17]=1)
|
|
|
|
|
* | (SCU90[5:4]=3 & SCU84[17]=1)
|
|
|
|
|
* -----+---------+-----------+------------------------------+-----------+---------------+----------
|
|
|
|
|
*
|
|
|
|
|
* For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE
|
|
|
|
|
* function pin", where the signal itself is determined by whether SCU94[5:4]
|
|
|
|
|
* is disabled or in one of the 18, 24 or 30bit video modes.
|
|
|
|
|
*
|
|
|
|
|
* Other video-input-related pins require an explicit state in SCU90[5:4], e.g.
|
|
|
|
|
* W1 and U5:
|
|
|
|
|
*
|
|
|
|
|
* -----+---------+-----------+------------------------------+-----------+---------------+----------
|
|
|
|
|
* W1 GPIOL6 VPIB0 SCU90[5:4]=3 & SCU84[22]=1 TXD1 SCU84[22]=1 GPIOL6
|
|
|
|
|
* U5 GPIOL7 VPIB1 SCU90[5:4]=3 & SCU84[23]=1 RXD1 SCU84[23]=1 GPIOL7
|
|
|
|
|
* -----+---------+-----------+------------------------------+-----------+---------------+----------
|
|
|
|
|
*
|
|
|
|
|
* The examples of T5 and W1 are particularly fertile, as they also demonstrate
|
|
|
|
|
* that despite operating as part of the video input bus each signal needs to
|
|
|
|
|
* be enabled individually via it's own SCU84 (in the cases of T5 and W1)
|
|
|
|
|
* register bit. This is a little crazy if the bus doesn't have optional
|
|
|
|
|
* signals, but is used to decent effect with some of the UARTs where not all
|
|
|
|
|
* signals are required. However, this isn't done consistently - UART1 is
|
|
|
|
|
* enabled on a per-pin basis, and by contrast, all signals for UART6 are
|
|
|
|
|
* enabled by a single bit.
|
|
|
|
|
*
|
|
|
|
|
* Further, the high and low priority signals listed in the table above share
|
|
|
|
|
* a configuration bit. The VPI signals should operate in concert in a single
|
|
|
|
|
* function, but the UART signals should retain the ability to be configured
|
|
|
|
|
* independently. This pushes the implementation down the path of tagging a
|
|
|
|
|
* signal's expressions with the function they participate in, rather than
|
|
|
|
|
* defining masks affecting multiple signals per function. The latter approach
|
|
|
|
|
* fails in this instance where applying the configuration for the UART pin of
|
|
|
|
|
* interest will stomp on the state of other UART signals when disabling the
|
|
|
|
|
* VPI functions on the current pin.
|
|
|
|
|
*
|
|
|
|
|
* Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
|
|
|
|
|
* -----+------------+-----------+---------------------------+-----------+---------------+------------
|
|
|
|
|
* A12 RGMII1TXCK GPIOT0 SCUA0[0]=1 RMII1TXEN Strap[6]=0 RGMII1TXCK
|
|
|
|
|
* B12 RGMII1TXCTL GPIOT1 SCUA0[1]=1 – Strap[6]=0 RGMII1TXCTL
|
|
|
|
|
* -----+------------+-----------+---------------------------+-----------+---------------+------------
|
|
|
|
|
*
|
|
|
|
|
* A12 demonstrates that the "Other" signal isn't always GPIO - in this case
|
|
|
|
|
* GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO
|
|
|
|
|
* should be treated like any other signal type with full function expression
|
|
|
|
|
* requirements, and not assumed to be the default case. Separately, GPIOT0 and
|
|
|
|
|
* GPIOT1's signal descriptor bits are distinct, therefore we must iterate all
|
|
|
|
|
* pins in the function's group to disable the higher-priority signals such
|
|
|
|
|
* that the signal for the function of interest is correctly enabled.
|
|
|
|
|
*
|
|
|
|
|
* Finally, three priority levels aren't always enough; the AST2500 brings with
|
|
|
|
|
* it 18 pins of five priority levels, however the 18 pins only use three of
|
|
|
|
|
* the five priority levels.
|
|
|
|
|
*
|
|
|
|
|
* Ultimately the requirement to control pins in the examples above drive the
|
|
|
|
|
* design:
|
|
|
|
|
*
|
|
|
|
|
* * Pins provide signals according to functions activated in the mux
|
|
|
|
|
* configuration
|
|
|
|
|
*
|
|
|
|
|
* * Pins provide up to five signal types in a priority order
|
|
|
|
|
*
|
|
|
|
|
* * For priorities levels defined on a pin, each priority provides one signal
|
|
|
|
|
*
|
|
|
|
|
* * Enabling lower priority signals requires higher priority signals be
|
|
|
|
|
* disabled
|
|
|
|
|
*
|
|
|
|
|
* * A function represents a set of signals; functions are distinct if their
|
|
|
|
|
* sets of signals are not equal
|
|
|
|
|
*
|
|
|
|
|
* * Signals participate in one or more functions
|
|
|
|
|
*
|
|
|
|
|
* * A function is described by an expression of one or more signal
|
|
|
|
|
* descriptors, which compare bit values in a register
|
|
|
|
|
*
|
|
|
|
|
* * A signal expression is the smallest set of signal descriptors whose
|
|
|
|
|
* comparisons must evaluate 'true' for a signal to be enabled on a pin.
|
|
|
|
|
*
|
2019-06-28 09:38:38 +07:00
|
|
|
|
* * A signal participating in a function is active on a pin if evaluating all
|
|
|
|
|
* signal descriptors in the pin's signal expression for the function yields
|
|
|
|
|
* a 'true' result
|
2019-06-28 09:38:37 +07:00
|
|
|
|
*
|
|
|
|
|
* * A signal at a given priority on a given pin is active if any of the
|
|
|
|
|
* functions in which the signal participates are active, and no higher
|
|
|
|
|
* priority signal on the pin is active
|
|
|
|
|
*
|
|
|
|
|
* * GPIO is configured per-pin
|
|
|
|
|
*
|
|
|
|
|
* And so:
|
|
|
|
|
*
|
|
|
|
|
* * To disable a signal, any function(s) activating the signal must be
|
|
|
|
|
* disabled
|
|
|
|
|
*
|
|
|
|
|
* * Each pin must know the signal expressions of functions in which it
|
|
|
|
|
* participates, for the purpose of enabling the Other function. This is done
|
|
|
|
|
* by deactivating all functions that activate higher priority signals on the
|
|
|
|
|
* pin.
|
|
|
|
|
*
|
|
|
|
|
* As a concrete example:
|
|
|
|
|
*
|
|
|
|
|
* * T5 provides three signals types: VPIDE, NDCD1 and GPIO
|
|
|
|
|
*
|
|
|
|
|
* * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30
|
|
|
|
|
*
|
|
|
|
|
* * The NDCD1 signal participates in just its own NDCD1 function
|
|
|
|
|
*
|
|
|
|
|
* * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least
|
|
|
|
|
* prioritised
|
|
|
|
|
*
|
|
|
|
|
* * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24
|
|
|
|
|
* and VPI30 functions all be disabled
|
|
|
|
|
*
|
|
|
|
|
* * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled
|
|
|
|
|
* to provide GPIOL6
|
|
|
|
|
*
|
|
|
|
|
* Considerations
|
|
|
|
|
* --------------
|
|
|
|
|
*
|
|
|
|
|
* If pinctrl allows us to allocate a pin we can configure a function without
|
|
|
|
|
* concern for the function of already allocated pins, if pin groups are
|
|
|
|
|
* created with respect to the SoC functions in which they participate. This is
|
|
|
|
|
* intuitive, but it did not feel obvious from the bit/pin relationships.
|
|
|
|
|
*
|
|
|
|
|
* Conversely, failing to allocate all pins in a group indicates some bits (as
|
|
|
|
|
* well as pins) required for the group's configuration will already be in use,
|
|
|
|
|
* likely in a way that's inconsistent with the requirements of the failed
|
|
|
|
|
* group.
|
2019-06-28 09:38:38 +07:00
|
|
|
|
*
|
|
|
|
|
* Implementation
|
|
|
|
|
* --------------
|
|
|
|
|
*
|
|
|
|
|
* Beyond the documentation below the various structures and helper macros that
|
|
|
|
|
* allow the implementation to hang together are defined. The macros are fairly
|
|
|
|
|
* dense, so below we walk through some raw examples of the configuration
|
|
|
|
|
* tables in an effort to clarify the concepts.
|
|
|
|
|
*
|
|
|
|
|
* The complexity of configuring the mux combined with the scale of the pins
|
|
|
|
|
* and functions was a concern, so the table design along with the macro jungle
|
|
|
|
|
* is an attempt to address it. The rough principles of the approach are:
|
|
|
|
|
*
|
|
|
|
|
* 1. Use a data-driven solution rather than embedding state into code
|
|
|
|
|
* 2. Minimise editing to the specifics of the given mux configuration
|
|
|
|
|
* 3. Detect as many errors as possible at compile time
|
|
|
|
|
*
|
|
|
|
|
* Addressing point 3 leads to naming of symbols in terms of the four
|
|
|
|
|
* properties associated with a given mux configuration: The pin, the signal,
|
|
|
|
|
* the group and the function. In this way copy/paste errors cause duplicate
|
|
|
|
|
* symbols to be defined, which prevents successful compilation. Failing to
|
|
|
|
|
* properly parent the tables leads to unused symbol warnings, and use of
|
|
|
|
|
* designated initialisers and additional warnings ensures that there are
|
|
|
|
|
* no override errors in the pin, group and function arrays.
|
|
|
|
|
*
|
|
|
|
|
* Addressing point 2 drives the development of the macro jungle, as it
|
|
|
|
|
* centralises the definition noise at the cost of taking some time to
|
|
|
|
|
* understand.
|
|
|
|
|
*
|
|
|
|
|
* Here's a complete, concrete "pre-processed" example of the table structures
|
|
|
|
|
* used to describe the D6 ball from the examples above:
|
|
|
|
|
*
|
|
|
|
|
* ```
|
|
|
|
|
* static const struct aspeed_sig_desc sig_descs_MAC1LINK_MAC1LINK[] = {
|
|
|
|
|
* {
|
|
|
|
|
* .ip = ASPEED_IP_SCU,
|
|
|
|
|
* .reg = 0x80,
|
|
|
|
|
* .mask = BIT(0),
|
|
|
|
|
* .enable = 1,
|
|
|
|
|
* .disable = 0
|
|
|
|
|
* },
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr sig_expr_MAC1LINK_MAC1LINK = {
|
|
|
|
|
* .signal = "MAC1LINK",
|
|
|
|
|
* .function = "MAC1LINK",
|
|
|
|
|
* .ndescs = ARRAY_SIZE(sig_descs_MAC1LINK_MAC1LINK),
|
|
|
|
|
* .descs = &(sig_descs_MAC1LINK_MAC1LINK)[0],
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr *sig_exprs_MAC1LINK_MAC1LINK[] = {
|
|
|
|
|
* &sig_expr_MAC1LINK_MAC1LINK,
|
|
|
|
|
* NULL,
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_desc sig_descs_GPIOA0_GPIOA0[] = { };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr sig_expr_GPIOA0_GPIOA0 = {
|
|
|
|
|
* .signal = "GPIOA0",
|
|
|
|
|
* .function = "GPIOA0",
|
|
|
|
|
* .ndescs = ARRAY_SIZE(sig_descs_GPIOA0_GPIOA0),
|
|
|
|
|
* .descs = &(sig_descs_GPIOA0_GPIOA0)[0],
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr *sig_exprs_GPIOA0_GPIOA0[] = {
|
|
|
|
|
* &sig_expr_GPIOA0_GPIOA0,
|
|
|
|
|
* NULL
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr **pin_exprs_0[] = {
|
|
|
|
|
* sig_exprs_MAC1LINK_MAC1LINK,
|
|
|
|
|
* sig_exprs_GPIOA0_GPIOA0,
|
|
|
|
|
* NULL
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_pin_desc pin_0 = { "0", (&pin_exprs_0[0]) };
|
|
|
|
|
* static const int group_pins_MAC1LINK[] = { 0 };
|
|
|
|
|
* static const char *func_groups_MAC1LINK[] = { "MAC1LINK" };
|
|
|
|
|
*
|
|
|
|
|
* static struct pinctrl_pin_desc aspeed_g4_pins[] = {
|
|
|
|
|
* [0] = { .number = 0, .name = "D6", .drv_data = &pin_0 },
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_pin_group aspeed_g4_groups[] = {
|
|
|
|
|
* {
|
|
|
|
|
* .name = "MAC1LINK",
|
|
|
|
|
* .pins = &(group_pins_MAC1LINK)[0],
|
|
|
|
|
* .npins = ARRAY_SIZE(group_pins_MAC1LINK),
|
|
|
|
|
* },
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_pin_function aspeed_g4_functions[] = {
|
|
|
|
|
* {
|
|
|
|
|
* .name = "MAC1LINK",
|
|
|
|
|
* .groups = &func_groups_MAC1LINK[0],
|
|
|
|
|
* .ngroups = ARRAY_SIZE(func_groups_MAC1LINK),
|
|
|
|
|
* },
|
|
|
|
|
* };
|
|
|
|
|
* ```
|
|
|
|
|
*
|
|
|
|
|
* At the end of the day much of the above code is compressed into the
|
|
|
|
|
* following two lines:
|
|
|
|
|
*
|
|
|
|
|
* ```
|
|
|
|
|
* #define D6 0
|
|
|
|
|
* SSSF_PIN_DECL(D6, GPIOA0, MAC1LINK, SIG_DESC_SET(SCU80, 0));
|
|
|
|
|
* ```
|
|
|
|
|
*
|
|
|
|
|
* The two examples below show just the differences from the example above.
|
|
|
|
|
*
|
|
|
|
|
* Ball E18 demonstrates a function, EXTRST, that requires multiple descriptors
|
|
|
|
|
* be set for it to be muxed:
|
|
|
|
|
*
|
|
|
|
|
* ```
|
|
|
|
|
* static const struct aspeed_sig_desc sig_descs_EXTRST_EXTRST[] = {
|
|
|
|
|
* {
|
|
|
|
|
* .ip = ASPEED_IP_SCU,
|
|
|
|
|
* .reg = 0x3C,
|
|
|
|
|
* .mask = BIT(3),
|
|
|
|
|
* .enable = 1,
|
|
|
|
|
* .disable = 0
|
|
|
|
|
* },
|
|
|
|
|
* {
|
|
|
|
|
* .ip = ASPEED_IP_SCU,
|
|
|
|
|
* .reg = 0x80,
|
|
|
|
|
* .mask = BIT(15),
|
|
|
|
|
* .enable = 1,
|
|
|
|
|
* .disable = 0
|
|
|
|
|
* },
|
|
|
|
|
* {
|
|
|
|
|
* .ip = ASPEED_IP_SCU,
|
|
|
|
|
* .reg = 0x90,
|
|
|
|
|
* .mask = BIT(31),
|
|
|
|
|
* .enable = 0,
|
|
|
|
|
* .disable = 1
|
|
|
|
|
* },
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr sig_expr_EXTRST_EXTRST = {
|
|
|
|
|
* .signal = "EXTRST",
|
|
|
|
|
* .function = "EXTRST",
|
|
|
|
|
* .ndescs = ARRAY_SIZE(sig_descs_EXTRST_EXTRST),
|
|
|
|
|
* .descs = &(sig_descs_EXTRST_EXTRST)[0],
|
|
|
|
|
* };
|
|
|
|
|
* ...
|
|
|
|
|
* ```
|
|
|
|
|
*
|
|
|
|
|
* For ball E19, we have multiple functions enabling a single signal, LPCRST#.
|
|
|
|
|
* The data structures look like:
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRST[] = {
|
|
|
|
|
* {
|
|
|
|
|
* .ip = ASPEED_IP_SCU,
|
|
|
|
|
* .reg = 0x80,
|
|
|
|
|
* .mask = BIT(12),
|
|
|
|
|
* .enable = 1,
|
|
|
|
|
* .disable = 0
|
|
|
|
|
* },
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRST = {
|
|
|
|
|
* .signal = "LPCRST",
|
|
|
|
|
* .function = "LPCRST",
|
|
|
|
|
* .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRST),
|
|
|
|
|
* .descs = &(sig_descs_LPCRST_LPCRST)[0],
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRSTS[] = {
|
|
|
|
|
* {
|
|
|
|
|
* .ip = ASPEED_IP_SCU,
|
|
|
|
|
* .reg = 0x70,
|
|
|
|
|
* .mask = BIT(14),
|
|
|
|
|
* .enable = 1,
|
|
|
|
|
* .disable = 0
|
|
|
|
|
* },
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRSTS = {
|
|
|
|
|
* .signal = "LPCRST",
|
|
|
|
|
* .function = "LPCRSTS",
|
|
|
|
|
* .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRSTS),
|
|
|
|
|
* .descs = &(sig_descs_LPCRST_LPCRSTS)[0],
|
|
|
|
|
* };
|
|
|
|
|
*
|
|
|
|
|
* static const struct aspeed_sig_expr *sig_exprs_LPCRST_LPCRST[] = {
|
|
|
|
|
* &sig_expr_LPCRST_LPCRST,
|
|
|
|
|
* &sig_expr_LPCRST_LPCRSTS,
|
|
|
|
|
* NULL,
|
|
|
|
|
* };
|
|
|
|
|
* ...
|
|
|
|
|
* ```
|
|
|
|
|
*
|
|
|
|
|
* Both expressions listed in the sig_exprs_LPCRST_LPCRST array need to be set
|
|
|
|
|
* to disabled for the associated GPIO to be muxed.
|
|
|
|
|
*
|
2019-06-28 09:38:37 +07:00
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#define ASPEED_IP_SCU 0
|
|
|
|
|
#define ASPEED_IP_GFX 1
|
|
|
|
|
#define ASPEED_IP_LPC 2
|
|
|
|
|
#define ASPEED_NR_PINMUX_IPS 3
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* A signal descriptor, which describes the register, bits and the
|
|
|
|
|
* enable/disable values that should be compared or written.
|
|
|
|
|
*
|
|
|
|
|
* @ip: The IP block identifier, used as an index into the regmap array in
|
|
|
|
|
* struct aspeed_pinctrl_data
|
|
|
|
|
* @reg: The register offset with respect to the base address of the IP block
|
|
|
|
|
* @mask: The mask to apply to the register. The lowest set bit of the mask is
|
|
|
|
|
* used to derive the shift value.
|
|
|
|
|
* @enable: The value that enables the function. Value should be in the LSBs,
|
|
|
|
|
* not at the position of the mask.
|
|
|
|
|
* @disable: The value that disables the function. Value should be in the
|
|
|
|
|
* LSBs, not at the position of the mask.
|
|
|
|
|
*/
|
|
|
|
|
struct aspeed_sig_desc {
|
|
|
|
|
unsigned int ip;
|
|
|
|
|
unsigned int reg;
|
|
|
|
|
u32 mask;
|
|
|
|
|
u32 enable;
|
|
|
|
|
u32 disable;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Describes a signal expression. The expression is evaluated by ANDing the
|
|
|
|
|
* evaluation of the descriptors.
|
|
|
|
|
*
|
|
|
|
|
* @signal: The signal name for the priority level on the pin. If the signal
|
|
|
|
|
* type is GPIO, then the signal name must begin with the string
|
|
|
|
|
* "GPIO", e.g. GPIOA0, GPIOT4 etc.
|
|
|
|
|
* @function: The name of the function the signal participates in for the
|
|
|
|
|
* associated expression
|
|
|
|
|
* @ndescs: The number of signal descriptors in the expression
|
|
|
|
|
* @descs: Pointer to an array of signal descriptors that comprise the
|
|
|
|
|
* function expression
|
|
|
|
|
*/
|
|
|
|
|
struct aspeed_sig_expr {
|
|
|
|
|
const char *signal;
|
|
|
|
|
const char *function;
|
|
|
|
|
int ndescs;
|
|
|
|
|
const struct aspeed_sig_desc *descs;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* A struct capturing the list of expressions enabling signals at each priority
|
|
|
|
|
* for a given pin. The signal configuration for a priority level is evaluated
|
|
|
|
|
* by ORing the evaluation of the signal expressions in the respective
|
|
|
|
|
* priority's list.
|
|
|
|
|
*
|
|
|
|
|
* @name: A name for the pin
|
|
|
|
|
* @prios: A pointer to an array of expression list pointers
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
struct aspeed_pin_desc {
|
|
|
|
|
const char *name;
|
|
|
|
|
const struct aspeed_sig_expr ***prios;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Macro hell */
|
|
|
|
|
|
|
|
|
|
#define SIG_DESC_IP_BIT(ip, reg, idx, val) \
|
|
|
|
|
{ ip, reg, BIT_MASK(idx), val, (((val) + 1) & 1) }
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Short-hand macro for describing an SCU descriptor enabled by the state of
|
|
|
|
|
* one bit. The disable value is derived.
|
|
|
|
|
*
|
|
|
|
|
* @reg: The signal's associated register, offset from base
|
|
|
|
|
* @idx: The signal's bit index in the register
|
|
|
|
|
* @val: The value (0 or 1) that enables the function
|
|
|
|
|
*/
|
|
|
|
|
#define SIG_DESC_BIT(reg, idx, val) \
|
|
|
|
|
SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, val)
|
|
|
|
|
|
|
|
|
|
#define SIG_DESC_IP_SET(ip, reg, idx) SIG_DESC_IP_BIT(ip, reg, idx, 1)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* A further short-hand macro expanding to an SCU descriptor enabled by a set
|
|
|
|
|
* bit.
|
|
|
|
|
*
|
|
|
|
|
* @reg: The register, offset from base
|
|
|
|
|
* @idx: The bit index in the register
|
|
|
|
|
*/
|
|
|
|
|
#define SIG_DESC_SET(reg, idx) SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, 1)
|
|
|
|
|
|
|
|
|
|
#define SIG_DESC_LIST_SYM(sig, func) sig_descs_ ## sig ## _ ## func
|
|
|
|
|
#define SIG_DESC_LIST_DECL(sig, func, ...) \
|
|
|
|
|
static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, func)[] = \
|
|
|
|
|
{ __VA_ARGS__ }
|
|
|
|
|
|
|
|
|
|
#define SIG_EXPR_SYM(sig, func) sig_expr_ ## sig ## _ ## func
|
|
|
|
|
#define SIG_EXPR_DECL_(sig, func) \
|
|
|
|
|
static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, func) = \
|
|
|
|
|
{ \
|
|
|
|
|
.signal = #sig, \
|
|
|
|
|
.function = #func, \
|
|
|
|
|
.ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, func)), \
|
|
|
|
|
.descs = &(SIG_DESC_LIST_SYM(sig, func))[0], \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Declare a signal expression.
|
|
|
|
|
*
|
|
|
|
|
* @sig: A macro symbol name for the signal (is subjected to stringification
|
|
|
|
|
* and token pasting)
|
|
|
|
|
* @func: The function in which the signal is participating
|
|
|
|
|
* @...: Signal descriptors that define the signal expression
|
|
|
|
|
*
|
|
|
|
|
* For example, the following declares the ROMD8 signal for the ROM16 function:
|
|
|
|
|
*
|
|
|
|
|
* SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
|
|
|
|
|
*
|
|
|
|
|
* And with multiple signal descriptors:
|
|
|
|
|
*
|
|
|
|
|
* SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
|
|
|
|
|
* { HW_STRAP1, GENMASK(1, 0), 0, 0 });
|
|
|
|
|
*/
|
|
|
|
|
#define SIG_EXPR_DECL(sig, func, ...) \
|
|
|
|
|
SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
|
|
|
|
|
SIG_EXPR_DECL_(sig, func)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Declare a pointer to a signal expression
|
|
|
|
|
*
|
|
|
|
|
* @sig: The macro symbol name for the signal (subjected to token pasting)
|
|
|
|
|
* @func: The macro symbol name for the function (subjected to token pasting)
|
|
|
|
|
*/
|
|
|
|
|
#define SIG_EXPR_PTR(sig, func) (&SIG_EXPR_SYM(sig, func))
|
|
|
|
|
|
|
|
|
|
#define SIG_EXPR_LIST_SYM(sig) sig_exprs_ ## sig
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Declare a signal expression list for reference in a struct aspeed_pin_prio.
|
|
|
|
|
*
|
|
|
|
|
* @sig: A macro symbol name for the signal (is subjected to token pasting)
|
|
|
|
|
* @...: Signal expression structure pointers (use SIG_EXPR_PTR())
|
|
|
|
|
*
|
|
|
|
|
* For example, the 16-bit ROM bus can be enabled by one of two possible signal
|
|
|
|
|
* expressions:
|
|
|
|
|
*
|
|
|
|
|
* SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
|
|
|
|
|
* SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
|
|
|
|
|
* { HW_STRAP1, GENMASK(1, 0), 0, 0 });
|
|
|
|
|
* SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
|
|
|
|
|
* SIG_EXPR_PTR(ROMD8, ROM16S));
|
|
|
|
|
*/
|
|
|
|
|
#define SIG_EXPR_LIST_DECL(sig, ...) \
|
|
|
|
|
static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig)[] = \
|
|
|
|
|
{ __VA_ARGS__, NULL }
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* A short-hand macro for declaring a function expression and an expression
|
|
|
|
|
* list with a single function.
|
|
|
|
|
*
|
|
|
|
|
* @func: A macro symbol name for the function (is subjected to token pasting)
|
|
|
|
|
* @...: Function descriptors that define the function expression
|
|
|
|
|
*
|
|
|
|
|
* For example, signal NCTS6 participates in its own function with one group:
|
|
|
|
|
*
|
|
|
|
|
* SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
|
|
|
|
|
*/
|
|
|
|
|
#define SIG_EXPR_LIST_DECL_SINGLE(sig, func, ...) \
|
|
|
|
|
SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
|
|
|
|
|
SIG_EXPR_DECL_(sig, func); \
|
|
|
|
|
SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, func))
|
|
|
|
|
|
|
|
|
|
#define SIG_EXPR_LIST_DECL_DUAL(sig, f0, f1) \
|
|
|
|
|
SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, f0), SIG_EXPR_PTR(sig, f1))
|
|
|
|
|
|
|
|
|
|
#define SIG_EXPR_LIST_PTR(sig) (&SIG_EXPR_LIST_SYM(sig)[0])
|
|
|
|
|
|
|
|
|
|
#define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin
|
|
|
|
|
#define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0])
|
|
|
|
|
#define PIN_SYM(pin) pin_ ## pin
|
|
|
|
|
|
|
|
|
|
#define MS_PIN_DECL_(pin, ...) \
|
|
|
|
|
static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \
|
|
|
|
|
{ __VA_ARGS__, NULL }; \
|
|
|
|
|
static const struct aspeed_pin_desc PIN_SYM(pin) = \
|
|
|
|
|
{ #pin, PIN_EXPRS_PTR(pin) }
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Declare a multi-signal pin
|
|
|
|
|
*
|
|
|
|
|
* @pin: The pin number
|
|
|
|
|
* @other: Macro name for "other" functionality (subjected to stringification)
|
|
|
|
|
* @high: Macro name for the highest priority signal functions
|
|
|
|
|
* @low: Macro name for the low signal functions
|
|
|
|
|
*
|
|
|
|
|
* For example:
|
|
|
|
|
*
|
|
|
|
|
* #define A8 56
|
|
|
|
|
* SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
|
|
|
|
|
* SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
|
|
|
|
|
* { HW_STRAP1, GENMASK(1, 0), 0, 0 });
|
|
|
|
|
* SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
|
|
|
|
|
* SIG_EXPR_PTR(ROMD8, ROM16S));
|
|
|
|
|
* SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
|
|
|
|
|
* MS_PIN_DECL(A8, GPIOH0, ROMD8, NCTS6);
|
|
|
|
|
*/
|
|
|
|
|
#define MS_PIN_DECL(pin, other, high, low) \
|
|
|
|
|
SIG_EXPR_LIST_DECL_SINGLE(other, other); \
|
|
|
|
|
MS_PIN_DECL_(pin, \
|
|
|
|
|
SIG_EXPR_LIST_PTR(high), \
|
|
|
|
|
SIG_EXPR_LIST_PTR(low), \
|
|
|
|
|
SIG_EXPR_LIST_PTR(other))
|
|
|
|
|
|
|
|
|
|
#define PIN_GROUP_SYM(func) pins_ ## func
|
|
|
|
|
#define FUNC_GROUP_SYM(func) groups_ ## func
|
|
|
|
|
#define FUNC_GROUP_DECL(func, ...) \
|
|
|
|
|
static const int PIN_GROUP_SYM(func)[] = { __VA_ARGS__ }; \
|
|
|
|
|
static const char *FUNC_GROUP_SYM(func)[] = { #func }
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Declare a single signal pin
|
|
|
|
|
*
|
|
|
|
|
* @pin: The pin number
|
|
|
|
|
* @other: Macro name for "other" functionality (subjected to stringification)
|
|
|
|
|
* @sig: Macro name for the signal (subjected to stringification)
|
|
|
|
|
*
|
|
|
|
|
* For example:
|
|
|
|
|
*
|
|
|
|
|
* #define E3 80
|
|
|
|
|
* SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC);
|
|
|
|
|
* SS_PIN_DECL(E3, GPIOK0, SCL5);
|
|
|
|
|
*/
|
|
|
|
|
#define SS_PIN_DECL(pin, other, sig) \
|
|
|
|
|
SIG_EXPR_LIST_DECL_SINGLE(other, other); \
|
|
|
|
|
MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other))
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Single signal, single function pin declaration
|
|
|
|
|
*
|
|
|
|
|
* @pin: The pin number
|
|
|
|
|
* @other: Macro name for "other" functionality (subjected to stringification)
|
|
|
|
|
* @sig: Macro name for the signal (subjected to stringification)
|
|
|
|
|
* @...: Signal descriptors that define the function expression
|
|
|
|
|
*
|
|
|
|
|
* For example:
|
|
|
|
|
*
|
|
|
|
|
* SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2));
|
|
|
|
|
*/
|
|
|
|
|
#define SSSF_PIN_DECL(pin, other, sig, ...) \
|
|
|
|
|
SIG_EXPR_LIST_DECL_SINGLE(sig, sig, __VA_ARGS__); \
|
|
|
|
|
SIG_EXPR_LIST_DECL_SINGLE(other, other); \
|
|
|
|
|
MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)); \
|
|
|
|
|
FUNC_GROUP_DECL(sig, pin)
|
|
|
|
|
|
|
|
|
|
#define GPIO_PIN_DECL(pin, gpio) \
|
|
|
|
|
SIG_EXPR_LIST_DECL_SINGLE(gpio, gpio); \
|
|
|
|
|
MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(gpio))
|
|
|
|
|
|
|
|
|
|
struct aspeed_pin_group {
|
|
|
|
|
const char *name;
|
|
|
|
|
const unsigned int *pins;
|
|
|
|
|
const unsigned int npins;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define ASPEED_PINCTRL_GROUP(name_) { \
|
|
|
|
|
.name = #name_, \
|
|
|
|
|
.pins = &(PIN_GROUP_SYM(name_))[0], \
|
|
|
|
|
.npins = ARRAY_SIZE(PIN_GROUP_SYM(name_)), \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct aspeed_pin_function {
|
|
|
|
|
const char *name;
|
|
|
|
|
const char *const *groups;
|
|
|
|
|
unsigned int ngroups;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define ASPEED_PINCTRL_FUNC(name_, ...) { \
|
|
|
|
|
.name = #name_, \
|
|
|
|
|
.groups = &FUNC_GROUP_SYM(name_)[0], \
|
|
|
|
|
.ngroups = ARRAY_SIZE(FUNC_GROUP_SYM(name_)), \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct aspeed_pinmux_data;
|
|
|
|
|
|
|
|
|
|
struct aspeed_pinmux_ops {
|
2019-07-24 15:01:55 +07:00
|
|
|
|
int (*set)(struct aspeed_pinmux_data *ctx,
|
2019-06-28 09:38:37 +07:00
|
|
|
|
const struct aspeed_sig_expr *expr, bool enabled);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct aspeed_pinmux_data {
|
2019-07-24 15:01:55 +07:00
|
|
|
|
struct device *dev;
|
2019-06-28 09:38:37 +07:00
|
|
|
|
struct regmap *maps[ASPEED_NR_PINMUX_IPS];
|
|
|
|
|
|
|
|
|
|
const struct aspeed_pinmux_ops *ops;
|
|
|
|
|
|
|
|
|
|
const struct aspeed_pin_group *groups;
|
|
|
|
|
const unsigned int ngroups;
|
|
|
|
|
|
|
|
|
|
const struct aspeed_pin_function *functions;
|
|
|
|
|
const unsigned int nfunctions;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
int aspeed_sig_desc_eval(const struct aspeed_sig_desc *desc, bool enabled,
|
|
|
|
|
struct regmap *map);
|
|
|
|
|
|
|
|
|
|
int aspeed_sig_expr_eval(const struct aspeed_pinmux_data *ctx,
|
|
|
|
|
const struct aspeed_sig_expr *expr,
|
|
|
|
|
bool enabled);
|
|
|
|
|
|
2019-07-24 15:01:55 +07:00
|
|
|
|
static inline int aspeed_sig_expr_set(struct aspeed_pinmux_data *ctx,
|
2019-06-28 09:38:37 +07:00
|
|
|
|
const struct aspeed_sig_expr *expr,
|
|
|
|
|
bool enabled)
|
|
|
|
|
{
|
|
|
|
|
return ctx->ops->set(ctx, expr, enabled);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif /* ASPEED_PINMUX_H */
|