linux_dsm_epyc7002/drivers/net/ethernet/jme.c

3303 lines
73 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* JMicron JMC2x0 series PCIe Ethernet Linux Device Driver
*
* Copyright 2008 JMicron Technology Corporation
* http://www.jmicron.com/
* Copyright (c) 2009 - 2010 Guo-Fu Tseng <cooldavid@cooldavid.org>
*
* Author: Guo-Fu Tseng <cooldavid@cooldavid.org>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_vlan.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <net/ip6_checksum.h>
#include "jme.h"
static int force_pseudohp = -1;
static int no_pseudohp = -1;
static int no_extplug = -1;
module_param(force_pseudohp, int, 0);
MODULE_PARM_DESC(force_pseudohp,
"Enable pseudo hot-plug feature manually by driver instead of BIOS.");
module_param(no_pseudohp, int, 0);
MODULE_PARM_DESC(no_pseudohp, "Disable pseudo hot-plug feature.");
module_param(no_extplug, int, 0);
MODULE_PARM_DESC(no_extplug,
"Do not use external plug signal for pseudo hot-plug.");
static int
jme_mdio_read(struct net_device *netdev, int phy, int reg)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, val, again = (reg == MII_BMSR) ? 1 : 0;
read_again:
jwrite32(jme, JME_SMI, SMI_OP_REQ |
smi_phy_addr(phy) |
smi_reg_addr(reg));
wmb();
for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) {
udelay(20);
val = jread32(jme, JME_SMI);
if ((val & SMI_OP_REQ) == 0)
break;
}
if (i == 0) {
pr_err("phy(%d) read timeout : %d\n", phy, reg);
return 0;
}
if (again--)
goto read_again;
return (val & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
}
static void
jme_mdio_write(struct net_device *netdev,
int phy, int reg, int val)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i;
jwrite32(jme, JME_SMI, SMI_OP_WRITE | SMI_OP_REQ |
((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
smi_phy_addr(phy) | smi_reg_addr(reg));
wmb();
for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) {
udelay(20);
if ((jread32(jme, JME_SMI) & SMI_OP_REQ) == 0)
break;
}
if (i == 0)
pr_err("phy(%d) write timeout : %d\n", phy, reg);
}
static inline void
jme_reset_phy_processor(struct jme_adapter *jme)
{
u32 val;
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_ADVERTISE, ADVERTISE_ALL |
ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
if (jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC250)
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_CTRL1000,
ADVERTISE_1000FULL | ADVERTISE_1000HALF);
val = jme_mdio_read(jme->dev,
jme->mii_if.phy_id,
MII_BMCR);
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_BMCR, val | BMCR_RESET);
}
static void
jme_setup_wakeup_frame(struct jme_adapter *jme,
const u32 *mask, u32 crc, int fnr)
{
int i;
/*
* Setup CRC pattern
*/
jwrite32(jme, JME_WFOI, WFOI_CRC_SEL | (fnr & WFOI_FRAME_SEL));
wmb();
jwrite32(jme, JME_WFODP, crc);
wmb();
/*
* Setup Mask
*/
for (i = 0 ; i < WAKEUP_FRAME_MASK_DWNR ; ++i) {
jwrite32(jme, JME_WFOI,
((i << WFOI_MASK_SHIFT) & WFOI_MASK_SEL) |
(fnr & WFOI_FRAME_SEL));
wmb();
jwrite32(jme, JME_WFODP, mask[i]);
wmb();
}
}
static inline void
jme_mac_rxclk_off(struct jme_adapter *jme)
{
jme->reg_gpreg1 |= GPREG1_RXCLKOFF;
jwrite32f(jme, JME_GPREG1, jme->reg_gpreg1);
}
static inline void
jme_mac_rxclk_on(struct jme_adapter *jme)
{
jme->reg_gpreg1 &= ~GPREG1_RXCLKOFF;
jwrite32f(jme, JME_GPREG1, jme->reg_gpreg1);
}
static inline void
jme_mac_txclk_off(struct jme_adapter *jme)
{
jme->reg_ghc &= ~(GHC_TO_CLK_SRC | GHC_TXMAC_CLK_SRC);
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_mac_txclk_on(struct jme_adapter *jme)
{
u32 speed = jme->reg_ghc & GHC_SPEED;
if (speed == GHC_SPEED_1000M)
jme->reg_ghc |= GHC_TO_CLK_GPHY | GHC_TXMAC_CLK_GPHY;
else
jme->reg_ghc |= GHC_TO_CLK_PCIE | GHC_TXMAC_CLK_PCIE;
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_reset_ghc_speed(struct jme_adapter *jme)
{
jme->reg_ghc &= ~(GHC_SPEED | GHC_DPX);
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_reset_250A2_workaround(struct jme_adapter *jme)
{
jme->reg_gpreg1 &= ~(GPREG1_HALFMODEPATCH |
GPREG1_RSSPATCH);
jwrite32(jme, JME_GPREG1, jme->reg_gpreg1);
}
static inline void
jme_assert_ghc_reset(struct jme_adapter *jme)
{
jme->reg_ghc |= GHC_SWRST;
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_clear_ghc_reset(struct jme_adapter *jme)
{
jme->reg_ghc &= ~GHC_SWRST;
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static void
jme_reset_mac_processor(struct jme_adapter *jme)
{
static const u32 mask[WAKEUP_FRAME_MASK_DWNR] = {0, 0, 0, 0};
u32 crc = 0xCDCDCDCD;
u32 gpreg0;
int i;
jme_reset_ghc_speed(jme);
jme_reset_250A2_workaround(jme);
jme_mac_rxclk_on(jme);
jme_mac_txclk_on(jme);
udelay(1);
jme_assert_ghc_reset(jme);
udelay(1);
jme_mac_rxclk_off(jme);
jme_mac_txclk_off(jme);
udelay(1);
jme_clear_ghc_reset(jme);
udelay(1);
jme_mac_rxclk_on(jme);
jme_mac_txclk_on(jme);
udelay(1);
jme_mac_rxclk_off(jme);
jme_mac_txclk_off(jme);
jwrite32(jme, JME_RXDBA_LO, 0x00000000);
jwrite32(jme, JME_RXDBA_HI, 0x00000000);
jwrite32(jme, JME_RXQDC, 0x00000000);
jwrite32(jme, JME_RXNDA, 0x00000000);
jwrite32(jme, JME_TXDBA_LO, 0x00000000);
jwrite32(jme, JME_TXDBA_HI, 0x00000000);
jwrite32(jme, JME_TXQDC, 0x00000000);
jwrite32(jme, JME_TXNDA, 0x00000000);
jwrite32(jme, JME_RXMCHT_LO, 0x00000000);
jwrite32(jme, JME_RXMCHT_HI, 0x00000000);
for (i = 0 ; i < WAKEUP_FRAME_NR ; ++i)
jme_setup_wakeup_frame(jme, mask, crc, i);
if (jme->fpgaver)
gpreg0 = GPREG0_DEFAULT | GPREG0_LNKINTPOLL;
else
gpreg0 = GPREG0_DEFAULT;
jwrite32(jme, JME_GPREG0, gpreg0);
}
static inline void
jme_clear_pm_enable_wol(struct jme_adapter *jme)
{
jwrite32(jme, JME_PMCS, PMCS_STMASK | jme->reg_pmcs);
}
static inline void
jme_clear_pm_disable_wol(struct jme_adapter *jme)
{
jwrite32(jme, JME_PMCS, PMCS_STMASK);
}
static int
jme_reload_eeprom(struct jme_adapter *jme)
{
u32 val;
int i;
val = jread32(jme, JME_SMBCSR);
if (val & SMBCSR_EEPROMD) {
val |= SMBCSR_CNACK;
jwrite32(jme, JME_SMBCSR, val);
val |= SMBCSR_RELOAD;
jwrite32(jme, JME_SMBCSR, val);
mdelay(12);
for (i = JME_EEPROM_RELOAD_TIMEOUT; i > 0; --i) {
mdelay(1);
if ((jread32(jme, JME_SMBCSR) & SMBCSR_RELOAD) == 0)
break;
}
if (i == 0) {
pr_err("eeprom reload timeout\n");
return -EIO;
}
}
return 0;
}
static void
jme_load_macaddr(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
unsigned char macaddr[ETH_ALEN];
u32 val;
spin_lock_bh(&jme->macaddr_lock);
val = jread32(jme, JME_RXUMA_LO);
macaddr[0] = (val >> 0) & 0xFF;
macaddr[1] = (val >> 8) & 0xFF;
macaddr[2] = (val >> 16) & 0xFF;
macaddr[3] = (val >> 24) & 0xFF;
val = jread32(jme, JME_RXUMA_HI);
macaddr[4] = (val >> 0) & 0xFF;
macaddr[5] = (val >> 8) & 0xFF;
memcpy(netdev->dev_addr, macaddr, ETH_ALEN);
spin_unlock_bh(&jme->macaddr_lock);
}
static inline void
jme_set_rx_pcc(struct jme_adapter *jme, int p)
{
switch (p) {
case PCC_OFF:
jwrite32(jme, JME_PCCRX0,
((PCC_OFF_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_OFF_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P1:
jwrite32(jme, JME_PCCRX0,
((PCC_P1_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P1_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P2:
jwrite32(jme, JME_PCCRX0,
((PCC_P2_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P2_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P3:
jwrite32(jme, JME_PCCRX0,
((PCC_P3_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P3_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
default:
break;
}
wmb();
if (!(test_bit(JME_FLAG_POLL, &jme->flags)))
netif_info(jme, rx_status, jme->dev, "Switched to PCC_P%d\n", p);
}
static void
jme_start_irq(struct jme_adapter *jme)
{
register struct dynpcc_info *dpi = &(jme->dpi);
jme_set_rx_pcc(jme, PCC_P1);
dpi->cur = PCC_P1;
dpi->attempt = PCC_P1;
dpi->cnt = 0;
jwrite32(jme, JME_PCCTX,
((PCC_TX_TO << PCCTXTO_SHIFT) & PCCTXTO_MASK) |
((PCC_TX_CNT << PCCTX_SHIFT) & PCCTX_MASK) |
PCCTXQ0_EN
);
/*
* Enable Interrupts
*/
jwrite32(jme, JME_IENS, INTR_ENABLE);
}
static inline void
jme_stop_irq(struct jme_adapter *jme)
{
/*
* Disable Interrupts
*/
jwrite32f(jme, JME_IENC, INTR_ENABLE);
}
static u32
jme_linkstat_from_phy(struct jme_adapter *jme)
{
u32 phylink, bmsr;
phylink = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 17);
bmsr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMSR);
if (bmsr & BMSR_ANCOMP)
phylink |= PHY_LINK_AUTONEG_COMPLETE;
return phylink;
}
static inline void
jme_set_phyfifo_5level(struct jme_adapter *jme)
{
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0004);
}
static inline void
jme_set_phyfifo_8level(struct jme_adapter *jme)
{
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0000);
}
static int
jme_check_link(struct net_device *netdev, int testonly)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 phylink, cnt = JME_SPDRSV_TIMEOUT, bmcr;
char linkmsg[64];
int rc = 0;
linkmsg[0] = '\0';
if (jme->fpgaver)
phylink = jme_linkstat_from_phy(jme);
else
phylink = jread32(jme, JME_PHY_LINK);
if (phylink & PHY_LINK_UP) {
if (!(phylink & PHY_LINK_AUTONEG_COMPLETE)) {
/*
* If we did not enable AN
* Speed/Duplex Info should be obtained from SMI
*/
phylink = PHY_LINK_UP;
bmcr = jme_mdio_read(jme->dev,
jme->mii_if.phy_id,
MII_BMCR);
phylink |= ((bmcr & BMCR_SPEED1000) &&
(bmcr & BMCR_SPEED100) == 0) ?
PHY_LINK_SPEED_1000M :
(bmcr & BMCR_SPEED100) ?
PHY_LINK_SPEED_100M :
PHY_LINK_SPEED_10M;
phylink |= (bmcr & BMCR_FULLDPLX) ?
PHY_LINK_DUPLEX : 0;
strcat(linkmsg, "Forced: ");
} else {
/*
* Keep polling for speed/duplex resolve complete
*/
while (!(phylink & PHY_LINK_SPEEDDPU_RESOLVED) &&
--cnt) {
udelay(1);
if (jme->fpgaver)
phylink = jme_linkstat_from_phy(jme);
else
phylink = jread32(jme, JME_PHY_LINK);
}
if (!cnt)
pr_err("Waiting speed resolve timeout\n");
strcat(linkmsg, "ANed: ");
}
if (jme->phylink == phylink) {
rc = 1;
goto out;
}
if (testonly)
goto out;
jme->phylink = phylink;
/*
* The speed/duplex setting of jme->reg_ghc already cleared
* by jme_reset_mac_processor()
*/
switch (phylink & PHY_LINK_SPEED_MASK) {
case PHY_LINK_SPEED_10M:
jme->reg_ghc |= GHC_SPEED_10M;
strcat(linkmsg, "10 Mbps, ");
break;
case PHY_LINK_SPEED_100M:
jme->reg_ghc |= GHC_SPEED_100M;
strcat(linkmsg, "100 Mbps, ");
break;
case PHY_LINK_SPEED_1000M:
jme->reg_ghc |= GHC_SPEED_1000M;
strcat(linkmsg, "1000 Mbps, ");
break;
default:
break;
}
if (phylink & PHY_LINK_DUPLEX) {
jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT);
jwrite32(jme, JME_TXTRHD, TXTRHD_FULLDUPLEX);
jme->reg_ghc |= GHC_DPX;
} else {
jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT |
TXMCS_BACKOFF |
TXMCS_CARRIERSENSE |
TXMCS_COLLISION);
jwrite32(jme, JME_TXTRHD, TXTRHD_HALFDUPLEX);
}
jwrite32(jme, JME_GHC, jme->reg_ghc);
if (is_buggy250(jme->pdev->device, jme->chiprev)) {
jme->reg_gpreg1 &= ~(GPREG1_HALFMODEPATCH |
GPREG1_RSSPATCH);
if (!(phylink & PHY_LINK_DUPLEX))
jme->reg_gpreg1 |= GPREG1_HALFMODEPATCH;
switch (phylink & PHY_LINK_SPEED_MASK) {
case PHY_LINK_SPEED_10M:
jme_set_phyfifo_8level(jme);
jme->reg_gpreg1 |= GPREG1_RSSPATCH;
break;
case PHY_LINK_SPEED_100M:
jme_set_phyfifo_5level(jme);
jme->reg_gpreg1 |= GPREG1_RSSPATCH;
break;
case PHY_LINK_SPEED_1000M:
jme_set_phyfifo_8level(jme);
break;
default:
break;
}
}
jwrite32(jme, JME_GPREG1, jme->reg_gpreg1);
strcat(linkmsg, (phylink & PHY_LINK_DUPLEX) ?
"Full-Duplex, " :
"Half-Duplex, ");
strcat(linkmsg, (phylink & PHY_LINK_MDI_STAT) ?
"MDI-X" :
"MDI");
netif_info(jme, link, jme->dev, "Link is up at %s\n", linkmsg);
netif_carrier_on(netdev);
} else {
if (testonly)
goto out;
netif_info(jme, link, jme->dev, "Link is down\n");
jme->phylink = 0;
netif_carrier_off(netdev);
}
out:
return rc;
}
static int
jme_setup_tx_resources(struct jme_adapter *jme)
{
struct jme_ring *txring = &(jme->txring[0]);
txring->alloc = dma_alloc_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
&(txring->dmaalloc),
GFP_ATOMIC);
if (!txring->alloc)
goto err_set_null;
/*
* 16 Bytes align
*/
txring->desc = (void *)ALIGN((unsigned long)(txring->alloc),
RING_DESC_ALIGN);
txring->dma = ALIGN(txring->dmaalloc, RING_DESC_ALIGN);
txring->next_to_use = 0;
atomic_set(&txring->next_to_clean, 0);
atomic_set(&txring->nr_free, jme->tx_ring_size);
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:03:40 +07:00
txring->bufinf = kcalloc(jme->tx_ring_size,
sizeof(struct jme_buffer_info),
GFP_ATOMIC);
if (unlikely(!(txring->bufinf)))
goto err_free_txring;
return 0;
err_free_txring:
dma_free_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
txring->alloc,
txring->dmaalloc);
err_set_null:
txring->desc = NULL;
txring->dmaalloc = 0;
txring->dma = 0;
txring->bufinf = NULL;
return -ENOMEM;
}
static void
jme_free_tx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *txring = &(jme->txring[0]);
struct jme_buffer_info *txbi;
if (txring->alloc) {
if (txring->bufinf) {
for (i = 0 ; i < jme->tx_ring_size ; ++i) {
txbi = txring->bufinf + i;
if (txbi->skb) {
dev_kfree_skb(txbi->skb);
txbi->skb = NULL;
}
txbi->mapping = 0;
txbi->len = 0;
txbi->nr_desc = 0;
txbi->start_xmit = 0;
}
kfree(txring->bufinf);
}
dma_free_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
txring->alloc,
txring->dmaalloc);
txring->alloc = NULL;
txring->desc = NULL;
txring->dmaalloc = 0;
txring->dma = 0;
txring->bufinf = NULL;
}
txring->next_to_use = 0;
atomic_set(&txring->next_to_clean, 0);
atomic_set(&txring->nr_free, 0);
}
static inline void
jme_enable_tx_engine(struct jme_adapter *jme)
{
/*
* Select Queue 0
*/
jwrite32(jme, JME_TXCS, TXCS_DEFAULT | TXCS_SELECT_QUEUE0);
wmb();
/*
* Setup TX Queue 0 DMA Bass Address
*/
jwrite32(jme, JME_TXDBA_LO, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL);
jwrite32(jme, JME_TXDBA_HI, (__u64)(jme->txring[0].dma) >> 32);
jwrite32(jme, JME_TXNDA, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL);
/*
* Setup TX Descptor Count
*/
jwrite32(jme, JME_TXQDC, jme->tx_ring_size);
/*
* Enable TX Engine
*/
wmb();
jwrite32f(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_ENABLE);
/*
* Start clock for TX MAC Processor
*/
jme_mac_txclk_on(jme);
}
static inline void
jme_disable_tx_engine(struct jme_adapter *jme)
{
int i;
u32 val;
/*
* Disable TX Engine
*/
jwrite32(jme, JME_TXCS, jme->reg_txcs | TXCS_SELECT_QUEUE0);
wmb();
val = jread32(jme, JME_TXCS);
for (i = JME_TX_DISABLE_TIMEOUT ; (val & TXCS_ENABLE) && i > 0 ; --i) {
mdelay(1);
val = jread32(jme, JME_TXCS);
rmb();
}
if (!i)
pr_err("Disable TX engine timeout\n");
/*
* Stop clock for TX MAC Processor
*/
jme_mac_txclk_off(jme);
}
static void
jme_set_clean_rxdesc(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
register struct rxdesc *rxdesc = rxring->desc;
struct jme_buffer_info *rxbi = rxring->bufinf;
rxdesc += i;
rxbi += i;
rxdesc->dw[0] = 0;
rxdesc->dw[1] = 0;
rxdesc->desc1.bufaddrh = cpu_to_le32((__u64)rxbi->mapping >> 32);
rxdesc->desc1.bufaddrl = cpu_to_le32(
(__u64)rxbi->mapping & 0xFFFFFFFFUL);
rxdesc->desc1.datalen = cpu_to_le16(rxbi->len);
if (jme->dev->features & NETIF_F_HIGHDMA)
rxdesc->desc1.flags = RXFLAG_64BIT;
wmb();
rxdesc->desc1.flags |= RXFLAG_OWN | RXFLAG_INT;
}
static int
jme_make_new_rx_buf(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct jme_buffer_info *rxbi = rxring->bufinf + i;
struct sk_buff *skb;
dma_addr_t mapping;
skb = netdev_alloc_skb(jme->dev,
jme->dev->mtu + RX_EXTRA_LEN);
if (unlikely(!skb))
return -ENOMEM;
mapping = pci_map_page(jme->pdev, virt_to_page(skb->data),
offset_in_page(skb->data), skb_tailroom(skb),
PCI_DMA_FROMDEVICE);
if (unlikely(pci_dma_mapping_error(jme->pdev, mapping))) {
dev_kfree_skb(skb);
return -ENOMEM;
}
if (likely(rxbi->mapping))
pci_unmap_page(jme->pdev, rxbi->mapping,
rxbi->len, PCI_DMA_FROMDEVICE);
rxbi->skb = skb;
rxbi->len = skb_tailroom(skb);
rxbi->mapping = mapping;
return 0;
}
static void
jme_free_rx_buf(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct jme_buffer_info *rxbi = rxring->bufinf;
rxbi += i;
if (rxbi->skb) {
pci_unmap_page(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(rxbi->skb);
rxbi->skb = NULL;
rxbi->mapping = 0;
rxbi->len = 0;
}
}
static void
jme_free_rx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *rxring = &(jme->rxring[0]);
if (rxring->alloc) {
if (rxring->bufinf) {
for (i = 0 ; i < jme->rx_ring_size ; ++i)
jme_free_rx_buf(jme, i);
kfree(rxring->bufinf);
}
dma_free_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
rxring->alloc,
rxring->dmaalloc);
rxring->alloc = NULL;
rxring->desc = NULL;
rxring->dmaalloc = 0;
rxring->dma = 0;
rxring->bufinf = NULL;
}
rxring->next_to_use = 0;
atomic_set(&rxring->next_to_clean, 0);
}
static int
jme_setup_rx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *rxring = &(jme->rxring[0]);
rxring->alloc = dma_alloc_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
&(rxring->dmaalloc),
GFP_ATOMIC);
if (!rxring->alloc)
goto err_set_null;
/*
* 16 Bytes align
*/
rxring->desc = (void *)ALIGN((unsigned long)(rxring->alloc),
RING_DESC_ALIGN);
rxring->dma = ALIGN(rxring->dmaalloc, RING_DESC_ALIGN);
rxring->next_to_use = 0;
atomic_set(&rxring->next_to_clean, 0);
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:03:40 +07:00
rxring->bufinf = kcalloc(jme->rx_ring_size,
sizeof(struct jme_buffer_info),
GFP_ATOMIC);
if (unlikely(!(rxring->bufinf)))
goto err_free_rxring;
/*
* Initiallize Receive Descriptors
*/
for (i = 0 ; i < jme->rx_ring_size ; ++i) {
if (unlikely(jme_make_new_rx_buf(jme, i))) {
jme_free_rx_resources(jme);
return -ENOMEM;
}
jme_set_clean_rxdesc(jme, i);
}
return 0;
err_free_rxring:
dma_free_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
rxring->alloc,
rxring->dmaalloc);
err_set_null:
rxring->desc = NULL;
rxring->dmaalloc = 0;
rxring->dma = 0;
rxring->bufinf = NULL;
return -ENOMEM;
}
static inline void
jme_enable_rx_engine(struct jme_adapter *jme)
{
/*
* Select Queue 0
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0);
wmb();
/*
* Setup RX DMA Bass Address
*/
jwrite32(jme, JME_RXDBA_LO, (__u64)(jme->rxring[0].dma) & 0xFFFFFFFFUL);
jwrite32(jme, JME_RXDBA_HI, (__u64)(jme->rxring[0].dma) >> 32);
jwrite32(jme, JME_RXNDA, (__u64)(jme->rxring[0].dma) & 0xFFFFFFFFUL);
/*
* Setup RX Descriptor Count
*/
jwrite32(jme, JME_RXQDC, jme->rx_ring_size);
/*
* Setup Unicast Filter
*/
jme_set_unicastaddr(jme->dev);
jme_set_multi(jme->dev);
/*
* Enable RX Engine
*/
wmb();
jwrite32f(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0 |
RXCS_ENABLE |
RXCS_QST);
/*
* Start clock for RX MAC Processor
*/
jme_mac_rxclk_on(jme);
}
static inline void
jme_restart_rx_engine(struct jme_adapter *jme)
{
/*
* Start RX Engine
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0 |
RXCS_ENABLE |
RXCS_QST);
}
static inline void
jme_disable_rx_engine(struct jme_adapter *jme)
{
int i;
u32 val;
/*
* Disable RX Engine
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs);
wmb();
val = jread32(jme, JME_RXCS);
for (i = JME_RX_DISABLE_TIMEOUT ; (val & RXCS_ENABLE) && i > 0 ; --i) {
mdelay(1);
val = jread32(jme, JME_RXCS);
rmb();
}
if (!i)
pr_err("Disable RX engine timeout\n");
/*
* Stop clock for RX MAC Processor
*/
jme_mac_rxclk_off(jme);
}
static u16
jme_udpsum(struct sk_buff *skb)
{
u16 csum = 0xFFFFu;
if (skb->len < (ETH_HLEN + sizeof(struct iphdr)))
return csum;
if (skb->protocol != htons(ETH_P_IP))
return csum;
skb_set_network_header(skb, ETH_HLEN);
if ((ip_hdr(skb)->protocol != IPPROTO_UDP) ||
(skb->len < (ETH_HLEN +
(ip_hdr(skb)->ihl << 2) +
sizeof(struct udphdr)))) {
skb_reset_network_header(skb);
return csum;
}
skb_set_transport_header(skb,
ETH_HLEN + (ip_hdr(skb)->ihl << 2));
csum = udp_hdr(skb)->check;
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
return csum;
}
static int
jme_rxsum_ok(struct jme_adapter *jme, u16 flags, struct sk_buff *skb)
{
if (!(flags & (RXWBFLAG_TCPON | RXWBFLAG_UDPON | RXWBFLAG_IPV4)))
return false;
if (unlikely((flags & (RXWBFLAG_MF | RXWBFLAG_TCPON | RXWBFLAG_TCPCS))
== RXWBFLAG_TCPON)) {
if (flags & RXWBFLAG_IPV4)
netif_err(jme, rx_err, jme->dev, "TCP Checksum error\n");
return false;
}
if (unlikely((flags & (RXWBFLAG_MF | RXWBFLAG_UDPON | RXWBFLAG_UDPCS))
== RXWBFLAG_UDPON) && jme_udpsum(skb)) {
if (flags & RXWBFLAG_IPV4)
netif_err(jme, rx_err, jme->dev, "UDP Checksum error\n");
return false;
}
if (unlikely((flags & (RXWBFLAG_IPV4 | RXWBFLAG_IPCS))
== RXWBFLAG_IPV4)) {
netif_err(jme, rx_err, jme->dev, "IPv4 Checksum error\n");
return false;
}
return true;
}
static void
jme_alloc_and_feed_skb(struct jme_adapter *jme, int idx)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct rxdesc *rxdesc = rxring->desc;
struct jme_buffer_info *rxbi = rxring->bufinf;
struct sk_buff *skb;
int framesize;
rxdesc += idx;
rxbi += idx;
skb = rxbi->skb;
pci_dma_sync_single_for_cpu(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
if (unlikely(jme_make_new_rx_buf(jme, idx))) {
pci_dma_sync_single_for_device(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
++(NET_STAT(jme).rx_dropped);
} else {
framesize = le16_to_cpu(rxdesc->descwb.framesize)
- RX_PREPAD_SIZE;
skb_reserve(skb, RX_PREPAD_SIZE);
skb_put(skb, framesize);
skb->protocol = eth_type_trans(skb, jme->dev);
if (jme_rxsum_ok(jme, le16_to_cpu(rxdesc->descwb.flags), skb))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
if (rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_TAGON)) {
u16 vid = le16_to_cpu(rxdesc->descwb.vlan);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
NET_STAT(jme).rx_bytes += 4;
}
jme->jme_rx(skb);
if ((rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_DEST)) ==
cpu_to_le16(RXWBFLAG_DEST_MUL))
++(NET_STAT(jme).multicast);
NET_STAT(jme).rx_bytes += framesize;
++(NET_STAT(jme).rx_packets);
}
jme_set_clean_rxdesc(jme, idx);
}
static int
jme_process_receive(struct jme_adapter *jme, int limit)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct rxdesc *rxdesc;
int i, j, ccnt, desccnt, mask = jme->rx_ring_mask;
if (unlikely(!atomic_dec_and_test(&jme->rx_cleaning)))
goto out_inc;
if (unlikely(atomic_read(&jme->link_changing) != 1))
goto out_inc;
if (unlikely(!netif_carrier_ok(jme->dev)))
goto out_inc;
i = atomic_read(&rxring->next_to_clean);
while (limit > 0) {
rxdesc = rxring->desc;
rxdesc += i;
if ((rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_OWN)) ||
!(rxdesc->descwb.desccnt & RXWBDCNT_WBCPL))
goto out;
--limit;
rmb();
desccnt = rxdesc->descwb.desccnt & RXWBDCNT_DCNT;
if (unlikely(desccnt > 1 ||
rxdesc->descwb.errstat & RXWBERR_ALLERR)) {
if (rxdesc->descwb.errstat & RXWBERR_CRCERR)
++(NET_STAT(jme).rx_crc_errors);
else if (rxdesc->descwb.errstat & RXWBERR_OVERUN)
++(NET_STAT(jme).rx_fifo_errors);
else
++(NET_STAT(jme).rx_errors);
if (desccnt > 1)
limit -= desccnt - 1;
for (j = i, ccnt = desccnt ; ccnt-- ; ) {
jme_set_clean_rxdesc(jme, j);
j = (j + 1) & (mask);
}
} else {
jme_alloc_and_feed_skb(jme, i);
}
i = (i + desccnt) & (mask);
}
out:
atomic_set(&rxring->next_to_clean, i);
out_inc:
atomic_inc(&jme->rx_cleaning);
return limit > 0 ? limit : 0;
}
static void
jme_attempt_pcc(struct dynpcc_info *dpi, int atmp)
{
if (likely(atmp == dpi->cur)) {
dpi->cnt = 0;
return;
}
if (dpi->attempt == atmp) {
++(dpi->cnt);
} else {
dpi->attempt = atmp;
dpi->cnt = 0;
}
}
static void
jme_dynamic_pcc(struct jme_adapter *jme)
{
register struct dynpcc_info *dpi = &(jme->dpi);
if ((NET_STAT(jme).rx_bytes - dpi->last_bytes) > PCC_P3_THRESHOLD)
jme_attempt_pcc(dpi, PCC_P3);
else if ((NET_STAT(jme).rx_packets - dpi->last_pkts) > PCC_P2_THRESHOLD ||
dpi->intr_cnt > PCC_INTR_THRESHOLD)
jme_attempt_pcc(dpi, PCC_P2);
else
jme_attempt_pcc(dpi, PCC_P1);
if (unlikely(dpi->attempt != dpi->cur && dpi->cnt > 5)) {
if (dpi->attempt < dpi->cur)
tasklet_schedule(&jme->rxclean_task);
jme_set_rx_pcc(jme, dpi->attempt);
dpi->cur = dpi->attempt;
dpi->cnt = 0;
}
}
static void
jme_start_pcc_timer(struct jme_adapter *jme)
{
struct dynpcc_info *dpi = &(jme->dpi);
dpi->last_bytes = NET_STAT(jme).rx_bytes;
dpi->last_pkts = NET_STAT(jme).rx_packets;
dpi->intr_cnt = 0;
jwrite32(jme, JME_TMCSR,
TMCSR_EN | ((0xFFFFFF - PCC_INTERVAL_US) & TMCSR_CNT));
}
static inline void
jme_stop_pcc_timer(struct jme_adapter *jme)
{
jwrite32(jme, JME_TMCSR, 0);
}
static void
jme_shutdown_nic(struct jme_adapter *jme)
{
u32 phylink;
phylink = jme_linkstat_from_phy(jme);
if (!(phylink & PHY_LINK_UP)) {
/*
* Disable all interrupt before issue timer
*/
jme_stop_irq(jme);
jwrite32(jme, JME_TIMER2, TMCSR_EN | 0xFFFFFE);
}
}
static void
jme_pcc_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct net_device *netdev = jme->dev;
if (unlikely(test_bit(JME_FLAG_SHUTDOWN, &jme->flags))) {
jme_shutdown_nic(jme);
return;
}
if (unlikely(!netif_carrier_ok(netdev) ||
(atomic_read(&jme->link_changing) != 1)
)) {
jme_stop_pcc_timer(jme);
return;
}
if (!(test_bit(JME_FLAG_POLL, &jme->flags)))
jme_dynamic_pcc(jme);
jme_start_pcc_timer(jme);
}
static inline void
jme_polling_mode(struct jme_adapter *jme)
{
jme_set_rx_pcc(jme, PCC_OFF);
}
static inline void
jme_interrupt_mode(struct jme_adapter *jme)
{
jme_set_rx_pcc(jme, PCC_P1);
}
static inline int
jme_pseudo_hotplug_enabled(struct jme_adapter *jme)
{
u32 apmc;
apmc = jread32(jme, JME_APMC);
return apmc & JME_APMC_PSEUDO_HP_EN;
}
static void
jme_start_shutdown_timer(struct jme_adapter *jme)
{
u32 apmc;
apmc = jread32(jme, JME_APMC) | JME_APMC_PCIE_SD_EN;
apmc &= ~JME_APMC_EPIEN_CTRL;
if (!no_extplug) {
jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_EN);
wmb();
}
jwrite32f(jme, JME_APMC, apmc);
jwrite32f(jme, JME_TIMER2, 0);
set_bit(JME_FLAG_SHUTDOWN, &jme->flags);
jwrite32(jme, JME_TMCSR,
TMCSR_EN | ((0xFFFFFF - APMC_PHP_SHUTDOWN_DELAY) & TMCSR_CNT));
}
static void
jme_stop_shutdown_timer(struct jme_adapter *jme)
{
u32 apmc;
jwrite32f(jme, JME_TMCSR, 0);
jwrite32f(jme, JME_TIMER2, 0);
clear_bit(JME_FLAG_SHUTDOWN, &jme->flags);
apmc = jread32(jme, JME_APMC);
apmc &= ~(JME_APMC_PCIE_SD_EN | JME_APMC_EPIEN_CTRL);
jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_DIS);
wmb();
jwrite32f(jme, JME_APMC, apmc);
}
static void
jme_link_change_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct net_device *netdev = jme->dev;
int rc;
while (!atomic_dec_and_test(&jme->link_changing)) {
atomic_inc(&jme->link_changing);
netif_info(jme, intr, jme->dev, "Get link change lock failed\n");
while (atomic_read(&jme->link_changing) != 1)
netif_info(jme, intr, jme->dev, "Waiting link change lock\n");
}
if (jme_check_link(netdev, 1) && jme->old_mtu == netdev->mtu)
goto out;
jme->old_mtu = netdev->mtu;
netif_stop_queue(netdev);
if (jme_pseudo_hotplug_enabled(jme))
jme_stop_shutdown_timer(jme);
jme_stop_pcc_timer(jme);
tasklet_disable(&jme->txclean_task);
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
if (netif_carrier_ok(netdev)) {
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_polling_mode(jme);
netif_carrier_off(netdev);
}
jme_check_link(netdev, 0);
if (netif_carrier_ok(netdev)) {
rc = jme_setup_rx_resources(jme);
if (rc) {
pr_err("Allocating resources for RX error, Device STOPPED!\n");
goto out_enable_tasklet;
}
rc = jme_setup_tx_resources(jme);
if (rc) {
pr_err("Allocating resources for TX error, Device STOPPED!\n");
goto err_out_free_rx_resources;
}
jme_enable_rx_engine(jme);
jme_enable_tx_engine(jme);
netif_start_queue(netdev);
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_interrupt_mode(jme);
jme_start_pcc_timer(jme);
} else if (jme_pseudo_hotplug_enabled(jme)) {
jme_start_shutdown_timer(jme);
}
goto out_enable_tasklet;
err_out_free_rx_resources:
jme_free_rx_resources(jme);
out_enable_tasklet:
tasklet_enable(&jme->txclean_task);
tasklet_enable(&jme->rxclean_task);
tasklet_enable(&jme->rxempty_task);
out:
atomic_inc(&jme->link_changing);
}
static void
jme_rx_clean_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct dynpcc_info *dpi = &(jme->dpi);
jme_process_receive(jme, jme->rx_ring_size);
++(dpi->intr_cnt);
}
static int
jme_poll(JME_NAPI_HOLDER(holder), JME_NAPI_WEIGHT(budget))
{
struct jme_adapter *jme = jme_napi_priv(holder);
int rest;
rest = jme_process_receive(jme, JME_NAPI_WEIGHT_VAL(budget));
while (atomic_read(&jme->rx_empty) > 0) {
atomic_dec(&jme->rx_empty);
++(NET_STAT(jme).rx_dropped);
jme_restart_rx_engine(jme);
}
atomic_inc(&jme->rx_empty);
if (rest) {
JME_RX_COMPLETE(netdev, holder);
jme_interrupt_mode(jme);
}
JME_NAPI_WEIGHT_SET(budget, rest);
return JME_NAPI_WEIGHT_VAL(budget) - rest;
}
static void
jme_rx_empty_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
if (unlikely(atomic_read(&jme->link_changing) != 1))
return;
if (unlikely(!netif_carrier_ok(jme->dev)))
return;
netif_info(jme, rx_status, jme->dev, "RX Queue Full!\n");
jme_rx_clean_tasklet(arg);
while (atomic_read(&jme->rx_empty) > 0) {
atomic_dec(&jme->rx_empty);
++(NET_STAT(jme).rx_dropped);
jme_restart_rx_engine(jme);
}
atomic_inc(&jme->rx_empty);
}
static void
jme_wake_queue_if_stopped(struct jme_adapter *jme)
{
struct jme_ring *txring = &(jme->txring[0]);
smp_wmb();
if (unlikely(netif_queue_stopped(jme->dev) &&
atomic_read(&txring->nr_free) >= (jme->tx_wake_threshold))) {
netif_info(jme, tx_done, jme->dev, "TX Queue Waked\n");
netif_wake_queue(jme->dev);
}
}
static void
jme_tx_clean_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct jme_ring *txring = &(jme->txring[0]);
struct txdesc *txdesc = txring->desc;
struct jme_buffer_info *txbi = txring->bufinf, *ctxbi, *ttxbi;
int i, j, cnt = 0, max, err, mask;
tx_dbg(jme, "Into txclean\n");
if (unlikely(!atomic_dec_and_test(&jme->tx_cleaning)))
goto out;
if (unlikely(atomic_read(&jme->link_changing) != 1))
goto out;
if (unlikely(!netif_carrier_ok(jme->dev)))
goto out;
max = jme->tx_ring_size - atomic_read(&txring->nr_free);
mask = jme->tx_ring_mask;
for (i = atomic_read(&txring->next_to_clean) ; cnt < max ; ) {
ctxbi = txbi + i;
if (likely(ctxbi->skb &&
!(txdesc[i].descwb.flags & TXWBFLAG_OWN))) {
tx_dbg(jme, "txclean: %d+%d@%lu\n",
i, ctxbi->nr_desc, jiffies);
err = txdesc[i].descwb.flags & TXWBFLAG_ALLERR;
for (j = 1 ; j < ctxbi->nr_desc ; ++j) {
ttxbi = txbi + ((i + j) & (mask));
txdesc[(i + j) & (mask)].dw[0] = 0;
pci_unmap_page(jme->pdev,
ttxbi->mapping,
ttxbi->len,
PCI_DMA_TODEVICE);
ttxbi->mapping = 0;
ttxbi->len = 0;
}
dev_kfree_skb(ctxbi->skb);
cnt += ctxbi->nr_desc;
if (unlikely(err)) {
++(NET_STAT(jme).tx_carrier_errors);
} else {
++(NET_STAT(jme).tx_packets);
NET_STAT(jme).tx_bytes += ctxbi->len;
}
ctxbi->skb = NULL;
ctxbi->len = 0;
ctxbi->start_xmit = 0;
} else {
break;
}
i = (i + ctxbi->nr_desc) & mask;
ctxbi->nr_desc = 0;
}
tx_dbg(jme, "txclean: done %d@%lu\n", i, jiffies);
atomic_set(&txring->next_to_clean, i);
atomic_add(cnt, &txring->nr_free);
jme_wake_queue_if_stopped(jme);
out:
atomic_inc(&jme->tx_cleaning);
}
static void
jme_intr_msi(struct jme_adapter *jme, u32 intrstat)
{
/*
* Disable interrupt
*/
jwrite32f(jme, JME_IENC, INTR_ENABLE);
if (intrstat & (INTR_LINKCH | INTR_SWINTR)) {
/*
* Link change event is critical
* all other events are ignored
*/
jwrite32(jme, JME_IEVE, intrstat);
tasklet_schedule(&jme->linkch_task);
goto out_reenable;
}
if (intrstat & INTR_TMINTR) {
jwrite32(jme, JME_IEVE, INTR_TMINTR);
tasklet_schedule(&jme->pcc_task);
}
if (intrstat & (INTR_PCCTXTO | INTR_PCCTX)) {
jwrite32(jme, JME_IEVE, INTR_PCCTXTO | INTR_PCCTX | INTR_TX0);
tasklet_schedule(&jme->txclean_task);
}
if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) {
jwrite32(jme, JME_IEVE, (intrstat & (INTR_PCCRX0TO |
INTR_PCCRX0 |
INTR_RX0EMP)) |
INTR_RX0);
}
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
if (intrstat & INTR_RX0EMP)
atomic_inc(&jme->rx_empty);
if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) {
if (likely(JME_RX_SCHEDULE_PREP(jme))) {
jme_polling_mode(jme);
JME_RX_SCHEDULE(jme);
}
}
} else {
if (intrstat & INTR_RX0EMP) {
atomic_inc(&jme->rx_empty);
tasklet_hi_schedule(&jme->rxempty_task);
} else if (intrstat & (INTR_PCCRX0TO | INTR_PCCRX0)) {
tasklet_hi_schedule(&jme->rxclean_task);
}
}
out_reenable:
/*
* Re-enable interrupt
*/
jwrite32f(jme, JME_IENS, INTR_ENABLE);
}
static irqreturn_t
jme_intr(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct jme_adapter *jme = netdev_priv(netdev);
u32 intrstat;
intrstat = jread32(jme, JME_IEVE);
/*
* Check if it's really an interrupt for us
*/
if (unlikely((intrstat & INTR_ENABLE) == 0))
return IRQ_NONE;
/*
* Check if the device still exist
*/
if (unlikely(intrstat == ~((typeof(intrstat))0)))
return IRQ_NONE;
jme_intr_msi(jme, intrstat);
return IRQ_HANDLED;
}
static irqreturn_t
jme_msi(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct jme_adapter *jme = netdev_priv(netdev);
u32 intrstat;
intrstat = jread32(jme, JME_IEVE);
jme_intr_msi(jme, intrstat);
return IRQ_HANDLED;
}
static void
jme_reset_link(struct jme_adapter *jme)
{
jwrite32(jme, JME_TMCSR, TMCSR_SWIT);
}
static void
jme_restart_an(struct jme_adapter *jme)
{
u32 bmcr;
spin_lock_bh(&jme->phy_lock);
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr);
spin_unlock_bh(&jme->phy_lock);
}
static int
jme_request_irq(struct jme_adapter *jme)
{
int rc;
struct net_device *netdev = jme->dev;
irq_handler_t handler = jme_intr;
int irq_flags = IRQF_SHARED;
if (!pci_enable_msi(jme->pdev)) {
set_bit(JME_FLAG_MSI, &jme->flags);
handler = jme_msi;
irq_flags = 0;
}
rc = request_irq(jme->pdev->irq, handler, irq_flags, netdev->name,
netdev);
if (rc) {
netdev_err(netdev,
"Unable to request %s interrupt (return: %d)\n",
test_bit(JME_FLAG_MSI, &jme->flags) ? "MSI" : "INTx",
rc);
if (test_bit(JME_FLAG_MSI, &jme->flags)) {
pci_disable_msi(jme->pdev);
clear_bit(JME_FLAG_MSI, &jme->flags);
}
} else {
netdev->irq = jme->pdev->irq;
}
return rc;
}
static void
jme_free_irq(struct jme_adapter *jme)
{
free_irq(jme->pdev->irq, jme->dev);
if (test_bit(JME_FLAG_MSI, &jme->flags)) {
pci_disable_msi(jme->pdev);
clear_bit(JME_FLAG_MSI, &jme->flags);
jme->dev->irq = jme->pdev->irq;
}
}
static inline void
jme_new_phy_on(struct jme_adapter *jme)
{
u32 reg;
reg = jread32(jme, JME_PHY_PWR);
reg &= ~(PHY_PWR_DWN1SEL | PHY_PWR_DWN1SW |
PHY_PWR_DWN2 | PHY_PWR_CLKSEL);
jwrite32(jme, JME_PHY_PWR, reg);
pci_read_config_dword(jme->pdev, PCI_PRIV_PE1, &reg);
reg &= ~PE1_GPREG0_PBG;
reg |= PE1_GPREG0_ENBG;
pci_write_config_dword(jme->pdev, PCI_PRIV_PE1, reg);
}
static inline void
jme_new_phy_off(struct jme_adapter *jme)
{
u32 reg;
reg = jread32(jme, JME_PHY_PWR);
reg |= PHY_PWR_DWN1SEL | PHY_PWR_DWN1SW |
PHY_PWR_DWN2 | PHY_PWR_CLKSEL;
jwrite32(jme, JME_PHY_PWR, reg);
pci_read_config_dword(jme->pdev, PCI_PRIV_PE1, &reg);
reg &= ~PE1_GPREG0_PBG;
reg |= PE1_GPREG0_PDD3COLD;
pci_write_config_dword(jme->pdev, PCI_PRIV_PE1, reg);
}
static inline void
jme_phy_on(struct jme_adapter *jme)
{
u32 bmcr;
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
bmcr &= ~BMCR_PDOWN;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr);
if (new_phy_power_ctrl(jme->chip_main_rev))
jme_new_phy_on(jme);
}
static inline void
jme_phy_off(struct jme_adapter *jme)
{
u32 bmcr;
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
bmcr |= BMCR_PDOWN;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr);
if (new_phy_power_ctrl(jme->chip_main_rev))
jme_new_phy_off(jme);
}
static int
jme_phy_specreg_read(struct jme_adapter *jme, u32 specreg)
{
u32 phy_addr;
phy_addr = JM_PHY_SPEC_REG_READ | specreg;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, JM_PHY_SPEC_ADDR_REG,
phy_addr);
return jme_mdio_read(jme->dev, jme->mii_if.phy_id,
JM_PHY_SPEC_DATA_REG);
}
static void
jme_phy_specreg_write(struct jme_adapter *jme, u32 ext_reg, u32 phy_data)
{
u32 phy_addr;
phy_addr = JM_PHY_SPEC_REG_WRITE | ext_reg;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, JM_PHY_SPEC_DATA_REG,
phy_data);
jme_mdio_write(jme->dev, jme->mii_if.phy_id, JM_PHY_SPEC_ADDR_REG,
phy_addr);
}
static int
jme_phy_calibration(struct jme_adapter *jme)
{
u32 ctrl1000, phy_data;
jme_phy_off(jme);
jme_phy_on(jme);
/* Enabel PHY test mode 1 */
ctrl1000 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_CTRL1000);
ctrl1000 &= ~PHY_GAD_TEST_MODE_MSK;
ctrl1000 |= PHY_GAD_TEST_MODE_1;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_CTRL1000, ctrl1000);
phy_data = jme_phy_specreg_read(jme, JM_PHY_EXT_COMM_2_REG);
phy_data &= ~JM_PHY_EXT_COMM_2_CALI_MODE_0;
phy_data |= JM_PHY_EXT_COMM_2_CALI_LATCH |
JM_PHY_EXT_COMM_2_CALI_ENABLE;
jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_2_REG, phy_data);
msleep(20);
phy_data = jme_phy_specreg_read(jme, JM_PHY_EXT_COMM_2_REG);
phy_data &= ~(JM_PHY_EXT_COMM_2_CALI_ENABLE |
JM_PHY_EXT_COMM_2_CALI_MODE_0 |
JM_PHY_EXT_COMM_2_CALI_LATCH);
jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_2_REG, phy_data);
/* Disable PHY test mode */
ctrl1000 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_CTRL1000);
ctrl1000 &= ~PHY_GAD_TEST_MODE_MSK;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_CTRL1000, ctrl1000);
return 0;
}
static int
jme_phy_setEA(struct jme_adapter *jme)
{
u32 phy_comm0 = 0, phy_comm1 = 0;
u8 nic_ctrl;
pci_read_config_byte(jme->pdev, PCI_PRIV_SHARE_NICCTRL, &nic_ctrl);
if ((nic_ctrl & 0x3) == JME_FLAG_PHYEA_ENABLE)
return 0;
switch (jme->pdev->device) {
case PCI_DEVICE_ID_JMICRON_JMC250:
if (((jme->chip_main_rev == 5) &&
((jme->chip_sub_rev == 0) || (jme->chip_sub_rev == 1) ||
(jme->chip_sub_rev == 3))) ||
(jme->chip_main_rev >= 6)) {
phy_comm0 = 0x008A;
phy_comm1 = 0x4109;
}
if ((jme->chip_main_rev == 3) &&
((jme->chip_sub_rev == 1) || (jme->chip_sub_rev == 2)))
phy_comm0 = 0xE088;
break;
case PCI_DEVICE_ID_JMICRON_JMC260:
if (((jme->chip_main_rev == 5) &&
((jme->chip_sub_rev == 0) || (jme->chip_sub_rev == 1) ||
(jme->chip_sub_rev == 3))) ||
(jme->chip_main_rev >= 6)) {
phy_comm0 = 0x008A;
phy_comm1 = 0x4109;
}
if ((jme->chip_main_rev == 3) &&
((jme->chip_sub_rev == 1) || (jme->chip_sub_rev == 2)))
phy_comm0 = 0xE088;
if ((jme->chip_main_rev == 2) && (jme->chip_sub_rev == 0))
phy_comm0 = 0x608A;
if ((jme->chip_main_rev == 2) && (jme->chip_sub_rev == 2))
phy_comm0 = 0x408A;
break;
default:
return -ENODEV;
}
if (phy_comm0)
jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_0_REG, phy_comm0);
if (phy_comm1)
jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_1_REG, phy_comm1);
return 0;
}
static int
jme_open(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc;
jme_clear_pm_disable_wol(jme);
JME_NAPI_ENABLE(jme);
tasklet_init(&jme->linkch_task, jme_link_change_tasklet,
(unsigned long) jme);
tasklet_init(&jme->txclean_task, jme_tx_clean_tasklet,
(unsigned long) jme);
tasklet_init(&jme->rxclean_task, jme_rx_clean_tasklet,
(unsigned long) jme);
tasklet_init(&jme->rxempty_task, jme_rx_empty_tasklet,
(unsigned long) jme);
rc = jme_request_irq(jme);
if (rc)
goto err_out;
jme_start_irq(jme);
jme_phy_on(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_link_ksettings(netdev, &jme->old_cmd);
else
jme_reset_phy_processor(jme);
jme_phy_calibration(jme);
jme_phy_setEA(jme);
jme_reset_link(jme);
return 0;
err_out:
netif_stop_queue(netdev);
netif_carrier_off(netdev);
return rc;
}
static void
jme_set_100m_half(struct jme_adapter *jme)
{
u32 bmcr, tmp;
jme_phy_on(jme);
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
tmp = bmcr & ~(BMCR_ANENABLE | BMCR_SPEED100 |
BMCR_SPEED1000 | BMCR_FULLDPLX);
tmp |= BMCR_SPEED100;
if (bmcr != tmp)
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, tmp);
if (jme->fpgaver)
jwrite32(jme, JME_GHC, GHC_SPEED_100M | GHC_LINK_POLL);
else
jwrite32(jme, JME_GHC, GHC_SPEED_100M);
}
#define JME_WAIT_LINK_TIME 2000 /* 2000ms */
static void
jme_wait_link(struct jme_adapter *jme)
{
u32 phylink, to = JME_WAIT_LINK_TIME;
msleep(1000);
phylink = jme_linkstat_from_phy(jme);
while (!(phylink & PHY_LINK_UP) && (to -= 10) > 0) {
usleep_range(10000, 11000);
phylink = jme_linkstat_from_phy(jme);
}
}
static void
jme_powersave_phy(struct jme_adapter *jme)
{
if (jme->reg_pmcs && device_may_wakeup(&jme->pdev->dev)) {
jme_set_100m_half(jme);
if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN))
jme_wait_link(jme);
jme_clear_pm_enable_wol(jme);
} else {
jme_phy_off(jme);
}
}
static int
jme_close(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
netif_stop_queue(netdev);
netif_carrier_off(netdev);
jme_stop_irq(jme);
jme_free_irq(jme);
JME_NAPI_DISABLE(jme);
tasklet_kill(&jme->linkch_task);
tasklet_kill(&jme->txclean_task);
tasklet_kill(&jme->rxclean_task);
tasklet_kill(&jme->rxempty_task);
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
jme->phylink = 0;
jme_phy_off(jme);
return 0;
}
static int
jme_alloc_txdesc(struct jme_adapter *jme,
struct sk_buff *skb)
{
struct jme_ring *txring = &(jme->txring[0]);
int idx, nr_alloc, mask = jme->tx_ring_mask;
idx = txring->next_to_use;
nr_alloc = skb_shinfo(skb)->nr_frags + 2;
if (unlikely(atomic_read(&txring->nr_free) < nr_alloc))
return -1;
atomic_sub(nr_alloc, &txring->nr_free);
txring->next_to_use = (txring->next_to_use + nr_alloc) & mask;
return idx;
}
static int
jme_fill_tx_map(struct pci_dev *pdev,
struct txdesc *txdesc,
struct jme_buffer_info *txbi,
struct page *page,
u32 page_offset,
u32 len,
bool hidma)
{
dma_addr_t dmaaddr;
dmaaddr = pci_map_page(pdev,
page,
page_offset,
len,
PCI_DMA_TODEVICE);
if (unlikely(pci_dma_mapping_error(pdev, dmaaddr)))
return -EINVAL;
pci_dma_sync_single_for_device(pdev,
dmaaddr,
len,
PCI_DMA_TODEVICE);
txdesc->dw[0] = 0;
txdesc->dw[1] = 0;
txdesc->desc2.flags = TXFLAG_OWN;
txdesc->desc2.flags |= (hidma) ? TXFLAG_64BIT : 0;
txdesc->desc2.datalen = cpu_to_le16(len);
txdesc->desc2.bufaddrh = cpu_to_le32((__u64)dmaaddr >> 32);
txdesc->desc2.bufaddrl = cpu_to_le32(
(__u64)dmaaddr & 0xFFFFFFFFUL);
txbi->mapping = dmaaddr;
txbi->len = len;
return 0;
}
static void jme_drop_tx_map(struct jme_adapter *jme, int startidx, int count)
{
struct jme_ring *txring = &(jme->txring[0]);
struct jme_buffer_info *txbi = txring->bufinf, *ctxbi;
int mask = jme->tx_ring_mask;
int j;
for (j = 0 ; j < count ; j++) {
ctxbi = txbi + ((startidx + j + 2) & (mask));
pci_unmap_page(jme->pdev,
ctxbi->mapping,
ctxbi->len,
PCI_DMA_TODEVICE);
ctxbi->mapping = 0;
ctxbi->len = 0;
}
}
static int
jme_map_tx_skb(struct jme_adapter *jme, struct sk_buff *skb, int idx)
{
struct jme_ring *txring = &(jme->txring[0]);
struct txdesc *txdesc = txring->desc, *ctxdesc;
struct jme_buffer_info *txbi = txring->bufinf, *ctxbi;
bool hidma = jme->dev->features & NETIF_F_HIGHDMA;
int i, nr_frags = skb_shinfo(skb)->nr_frags;
int mask = jme->tx_ring_mask;
u32 len;
int ret = 0;
for (i = 0 ; i < nr_frags ; ++i) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
ctxdesc = txdesc + ((idx + i + 2) & (mask));
ctxbi = txbi + ((idx + i + 2) & (mask));
ret = jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi,
skb_frag_page(frag), skb_frag_off(frag),
skb_frag_size(frag), hidma);
if (ret) {
jme_drop_tx_map(jme, idx, i);
goto out;
}
}
len = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
ctxdesc = txdesc + ((idx + 1) & (mask));
ctxbi = txbi + ((idx + 1) & (mask));
ret = jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, virt_to_page(skb->data),
offset_in_page(skb->data), len, hidma);
if (ret)
jme_drop_tx_map(jme, idx, i);
out:
return ret;
}
static int
jme_tx_tso(struct sk_buff *skb, __le16 *mss, u8 *flags)
{
*mss = cpu_to_le16(skb_shinfo(skb)->gso_size << TXDESC_MSS_SHIFT);
if (*mss) {
*flags |= TXFLAG_LSEN;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
} else {
tcp_v6_gso_csum_prep(skb);
}
return 0;
}
return 1;
}
static void
jme_tx_csum(struct jme_adapter *jme, struct sk_buff *skb, u8 *flags)
{
if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_proto;
switch (skb->protocol) {
case htons(ETH_P_IP):
ip_proto = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
ip_proto = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_proto = 0;
break;
}
switch (ip_proto) {
case IPPROTO_TCP:
*flags |= TXFLAG_TCPCS;
break;
case IPPROTO_UDP:
*flags |= TXFLAG_UDPCS;
break;
default:
netif_err(jme, tx_err, jme->dev, "Error upper layer protocol\n");
break;
}
}
}
static inline void
jme_tx_vlan(struct sk_buff *skb, __le16 *vlan, u8 *flags)
{
if (skb_vlan_tag_present(skb)) {
*flags |= TXFLAG_TAGON;
*vlan = cpu_to_le16(skb_vlan_tag_get(skb));
}
}
static int
jme_fill_tx_desc(struct jme_adapter *jme, struct sk_buff *skb, int idx)
{
struct jme_ring *txring = &(jme->txring[0]);
struct txdesc *txdesc;
struct jme_buffer_info *txbi;
u8 flags;
int ret = 0;
txdesc = (struct txdesc *)txring->desc + idx;
txbi = txring->bufinf + idx;
txdesc->dw[0] = 0;
txdesc->dw[1] = 0;
txdesc->dw[2] = 0;
txdesc->dw[3] = 0;
txdesc->desc1.pktsize = cpu_to_le16(skb->len);
/*
* Set OWN bit at final.
* When kernel transmit faster than NIC.
* And NIC trying to send this descriptor before we tell
* it to start sending this TX queue.
* Other fields are already filled correctly.
*/
wmb();
flags = TXFLAG_OWN | TXFLAG_INT;
/*
* Set checksum flags while not tso
*/
if (jme_tx_tso(skb, &txdesc->desc1.mss, &flags))
jme_tx_csum(jme, skb, &flags);
jme_tx_vlan(skb, &txdesc->desc1.vlan, &flags);
ret = jme_map_tx_skb(jme, skb, idx);
if (ret)
return ret;
txdesc->desc1.flags = flags;
/*
* Set tx buffer info after telling NIC to send
* For better tx_clean timing
*/
wmb();
txbi->nr_desc = skb_shinfo(skb)->nr_frags + 2;
txbi->skb = skb;
txbi->len = skb->len;
txbi->start_xmit = jiffies;
if (!txbi->start_xmit)
txbi->start_xmit = (0UL-1);
return 0;
}
static void
jme_stop_queue_if_full(struct jme_adapter *jme)
{
struct jme_ring *txring = &(jme->txring[0]);
struct jme_buffer_info *txbi = txring->bufinf;
int idx = atomic_read(&txring->next_to_clean);
txbi += idx;
smp_wmb();
if (unlikely(atomic_read(&txring->nr_free) < (MAX_SKB_FRAGS+2))) {
netif_stop_queue(jme->dev);
netif_info(jme, tx_queued, jme->dev, "TX Queue Paused\n");
smp_wmb();
if (atomic_read(&txring->nr_free)
>= (jme->tx_wake_threshold)) {
netif_wake_queue(jme->dev);
netif_info(jme, tx_queued, jme->dev, "TX Queue Fast Waked\n");
}
}
if (unlikely(txbi->start_xmit &&
(jiffies - txbi->start_xmit) >= TX_TIMEOUT &&
txbi->skb)) {
netif_stop_queue(jme->dev);
netif_info(jme, tx_queued, jme->dev,
"TX Queue Stopped %d@%lu\n", idx, jiffies);
}
}
/*
* This function is already protected by netif_tx_lock()
*/
static netdev_tx_t
jme_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
int idx;
if (unlikely(skb_is_gso(skb) && skb_cow_head(skb, 0))) {
dev_kfree_skb_any(skb);
++(NET_STAT(jme).tx_dropped);
return NETDEV_TX_OK;
}
idx = jme_alloc_txdesc(jme, skb);
if (unlikely(idx < 0)) {
netif_stop_queue(netdev);
netif_err(jme, tx_err, jme->dev,
"BUG! Tx ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
if (jme_fill_tx_desc(jme, skb, idx))
return NETDEV_TX_OK;
jwrite32(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_QUEUE0S |
TXCS_ENABLE);
tx_dbg(jme, "xmit: %d+%d@%lu\n",
idx, skb_shinfo(skb)->nr_frags + 2, jiffies);
jme_stop_queue_if_full(jme);
return NETDEV_TX_OK;
}
static void
jme_set_unicastaddr(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
val = (netdev->dev_addr[3] & 0xff) << 24 |
(netdev->dev_addr[2] & 0xff) << 16 |
(netdev->dev_addr[1] & 0xff) << 8 |
(netdev->dev_addr[0] & 0xff);
jwrite32(jme, JME_RXUMA_LO, val);
val = (netdev->dev_addr[5] & 0xff) << 8 |
(netdev->dev_addr[4] & 0xff);
jwrite32(jme, JME_RXUMA_HI, val);
}
static int
jme_set_macaddr(struct net_device *netdev, void *p)
{
struct jme_adapter *jme = netdev_priv(netdev);
struct sockaddr *addr = p;
if (netif_running(netdev))
return -EBUSY;
spin_lock_bh(&jme->macaddr_lock);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
jme_set_unicastaddr(netdev);
spin_unlock_bh(&jme->macaddr_lock);
return 0;
}
static void
jme_set_multi(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 mc_hash[2] = {};
spin_lock_bh(&jme->rxmcs_lock);
jme->reg_rxmcs |= RXMCS_BRDFRAME | RXMCS_UNIFRAME;
if (netdev->flags & IFF_PROMISC) {
jme->reg_rxmcs |= RXMCS_ALLFRAME;
} else if (netdev->flags & IFF_ALLMULTI) {
jme->reg_rxmcs |= RXMCS_ALLMULFRAME;
} else if (netdev->flags & IFF_MULTICAST) {
struct netdev_hw_addr *ha;
int bit_nr;
jme->reg_rxmcs |= RXMCS_MULFRAME | RXMCS_MULFILTERED;
netdev_for_each_mc_addr(ha, netdev) {
bit_nr = ether_crc(ETH_ALEN, ha->addr) & 0x3F;
mc_hash[bit_nr >> 5] |= 1 << (bit_nr & 0x1F);
}
jwrite32(jme, JME_RXMCHT_LO, mc_hash[0]);
jwrite32(jme, JME_RXMCHT_HI, mc_hash[1]);
}
wmb();
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
spin_unlock_bh(&jme->rxmcs_lock);
}
static int
jme_change_mtu(struct net_device *netdev, int new_mtu)
{
struct jme_adapter *jme = netdev_priv(netdev);
netdev->mtu = new_mtu;
netdev_update_features(netdev);
jme_restart_rx_engine(jme);
jme_reset_link(jme);
return 0;
}
static void
netdev: pass the stuck queue to the timeout handler This allows incrementing the correct timeout statistic without any mess. Down the road, devices can learn to reset just the specific queue. The patch was generated with the following script: use strict; use warnings; our $^I = '.bak'; my @work = ( ["arch/m68k/emu/nfeth.c", "nfeth_tx_timeout"], ["arch/um/drivers/net_kern.c", "uml_net_tx_timeout"], ["arch/um/drivers/vector_kern.c", "vector_net_tx_timeout"], ["arch/xtensa/platforms/iss/network.c", "iss_net_tx_timeout"], ["drivers/char/pcmcia/synclink_cs.c", "hdlcdev_tx_timeout"], ["drivers/infiniband/ulp/ipoib/ipoib_main.c", "ipoib_timeout"], ["drivers/infiniband/ulp/ipoib/ipoib_main.c", "ipoib_timeout"], ["drivers/message/fusion/mptlan.c", "mpt_lan_tx_timeout"], ["drivers/misc/sgi-xp/xpnet.c", "xpnet_dev_tx_timeout"], ["drivers/net/appletalk/cops.c", "cops_timeout"], ["drivers/net/arcnet/arcdevice.h", "arcnet_timeout"], ["drivers/net/arcnet/arcnet.c", "arcnet_timeout"], ["drivers/net/arcnet/com20020.c", "arcnet_timeout"], ["drivers/net/ethernet/3com/3c509.c", "el3_tx_timeout"], ["drivers/net/ethernet/3com/3c515.c", "corkscrew_timeout"], ["drivers/net/ethernet/3com/3c574_cs.c", "el3_tx_timeout"], ["drivers/net/ethernet/3com/3c589_cs.c", "el3_tx_timeout"], ["drivers/net/ethernet/3com/3c59x.c", "vortex_tx_timeout"], ["drivers/net/ethernet/3com/3c59x.c", "vortex_tx_timeout"], ["drivers/net/ethernet/3com/typhoon.c", "typhoon_tx_timeout"], ["drivers/net/ethernet/8390/8390.h", "ei_tx_timeout"], ["drivers/net/ethernet/8390/8390.h", "eip_tx_timeout"], ["drivers/net/ethernet/8390/8390.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/8390p.c", "eip_tx_timeout"], ["drivers/net/ethernet/8390/ax88796.c", "ax_ei_tx_timeout"], ["drivers/net/ethernet/8390/axnet_cs.c", "axnet_tx_timeout"], ["drivers/net/ethernet/8390/etherh.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/hydra.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/mac8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/mcf8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/lib8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/8390/ne2k-pci.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/pcnet_cs.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/smc-ultra.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/wd.c", "ei_tx_timeout"], ["drivers/net/ethernet/8390/zorro8390.c", "__ei_tx_timeout"], ["drivers/net/ethernet/adaptec/starfire.c", "tx_timeout"], ["drivers/net/ethernet/agere/et131x.c", "et131x_tx_timeout"], ["drivers/net/ethernet/allwinner/sun4i-emac.c", "emac_timeout"], ["drivers/net/ethernet/alteon/acenic.c", "ace_watchdog"], ["drivers/net/ethernet/amazon/ena/ena_netdev.c", "ena_tx_timeout"], ["drivers/net/ethernet/amd/7990.h", "lance_tx_timeout"], ["drivers/net/ethernet/amd/7990.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/a2065.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/am79c961a.c", "am79c961_timeout"], ["drivers/net/ethernet/amd/amd8111e.c", "amd8111e_tx_timeout"], ["drivers/net/ethernet/amd/ariadne.c", "ariadne_tx_timeout"], ["drivers/net/ethernet/amd/atarilance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/au1000_eth.c", "au1000_tx_timeout"], ["drivers/net/ethernet/amd/declance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/lance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/mvme147.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/ni65.c", "ni65_timeout"], ["drivers/net/ethernet/amd/nmclan_cs.c", "mace_tx_timeout"], ["drivers/net/ethernet/amd/pcnet32.c", "pcnet32_tx_timeout"], ["drivers/net/ethernet/amd/sunlance.c", "lance_tx_timeout"], ["drivers/net/ethernet/amd/xgbe/xgbe-drv.c", "xgbe_tx_timeout"], ["drivers/net/ethernet/apm/xgene-v2/main.c", "xge_timeout"], ["drivers/net/ethernet/apm/xgene/xgene_enet_main.c", "xgene_enet_timeout"], ["drivers/net/ethernet/apple/macmace.c", "mace_tx_timeout"], ["drivers/net/ethernet/atheros/ag71xx.c", "ag71xx_tx_timeout"], ["drivers/net/ethernet/atheros/alx/main.c", "alx_tx_timeout"], ["drivers/net/ethernet/atheros/atl1c/atl1c_main.c", "atl1c_tx_timeout"], ["drivers/net/ethernet/atheros/atl1e/atl1e_main.c", "atl1e_tx_timeout"], ["drivers/net/ethernet/atheros/atlx/atl.c", "atlx_tx_timeout"], ["drivers/net/ethernet/atheros/atlx/atl1.c", "atlx_tx_timeout"], ["drivers/net/ethernet/atheros/atlx/atl2.c", "atl2_tx_timeout"], ["drivers/net/ethernet/broadcom/b44.c", "b44_tx_timeout"], ["drivers/net/ethernet/broadcom/bcmsysport.c", "bcm_sysport_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2.c", "bnx2_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.h", "bnx2x_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c", "bnx2x_tx_timeout"], ["drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c", "bnx2x_tx_timeout"], ["drivers/net/ethernet/broadcom/bnxt/bnxt.c", "bnxt_tx_timeout"], ["drivers/net/ethernet/broadcom/genet/bcmgenet.c", "bcmgenet_timeout"], ["drivers/net/ethernet/broadcom/sb1250-mac.c", "sbmac_tx_timeout"], ["drivers/net/ethernet/broadcom/tg3.c", "tg3_tx_timeout"], ["drivers/net/ethernet/calxeda/xgmac.c", "xgmac_tx_timeout"], ["drivers/net/ethernet/cavium/liquidio/lio_main.c", "liquidio_tx_timeout"], ["drivers/net/ethernet/cavium/liquidio/lio_vf_main.c", "liquidio_tx_timeout"], ["drivers/net/ethernet/cavium/liquidio/lio_vf_rep.c", "lio_vf_rep_tx_timeout"], ["drivers/net/ethernet/cavium/thunder/nicvf_main.c", "nicvf_tx_timeout"], ["drivers/net/ethernet/cirrus/cs89x0.c", "net_timeout"], ["drivers/net/ethernet/cisco/enic/enic_main.c", "enic_tx_timeout"], ["drivers/net/ethernet/cisco/enic/enic_main.c", "enic_tx_timeout"], ["drivers/net/ethernet/cortina/gemini.c", "gmac_tx_timeout"], ["drivers/net/ethernet/davicom/dm9000.c", "dm9000_timeout"], ["drivers/net/ethernet/dec/tulip/de2104x.c", "de_tx_timeout"], ["drivers/net/ethernet/dec/tulip/tulip_core.c", "tulip_tx_timeout"], ["drivers/net/ethernet/dec/tulip/winbond-840.c", "tx_timeout"], ["drivers/net/ethernet/dlink/dl2k.c", "rio_tx_timeout"], ["drivers/net/ethernet/dlink/sundance.c", "tx_timeout"], ["drivers/net/ethernet/emulex/benet/be_main.c", "be_tx_timeout"], ["drivers/net/ethernet/ethoc.c", "ethoc_tx_timeout"], ["drivers/net/ethernet/faraday/ftgmac100.c", "ftgmac100_tx_timeout"], ["drivers/net/ethernet/fealnx.c", "fealnx_tx_timeout"], ["drivers/net/ethernet/freescale/dpaa/dpaa_eth.c", "dpaa_tx_timeout"], ["drivers/net/ethernet/freescale/fec_main.c", "fec_timeout"], ["drivers/net/ethernet/freescale/fec_mpc52xx.c", "mpc52xx_fec_tx_timeout"], ["drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c", "fs_timeout"], ["drivers/net/ethernet/freescale/gianfar.c", "gfar_timeout"], ["drivers/net/ethernet/freescale/ucc_geth.c", "ucc_geth_timeout"], ["drivers/net/ethernet/fujitsu/fmvj18x_cs.c", "fjn_tx_timeout"], ["drivers/net/ethernet/google/gve/gve_main.c", "gve_tx_timeout"], ["drivers/net/ethernet/hisilicon/hip04_eth.c", "hip04_timeout"], ["drivers/net/ethernet/hisilicon/hix5hd2_gmac.c", "hix5hd2_net_timeout"], ["drivers/net/ethernet/hisilicon/hns/hns_enet.c", "hns_nic_net_timeout"], ["drivers/net/ethernet/hisilicon/hns3/hns3_enet.c", "hns3_nic_net_timeout"], ["drivers/net/ethernet/huawei/hinic/hinic_main.c", "hinic_tx_timeout"], ["drivers/net/ethernet/i825xx/82596.c", "i596_tx_timeout"], ["drivers/net/ethernet/i825xx/ether1.c", "ether1_timeout"], ["drivers/net/ethernet/i825xx/lib82596.c", "i596_tx_timeout"], ["drivers/net/ethernet/i825xx/sun3_82586.c", "sun3_82586_timeout"], ["drivers/net/ethernet/ibm/ehea/ehea_main.c", "ehea_tx_watchdog"], ["drivers/net/ethernet/ibm/emac/core.c", "emac_tx_timeout"], ["drivers/net/ethernet/ibm/emac/core.c", "emac_tx_timeout"], ["drivers/net/ethernet/ibm/ibmvnic.c", "ibmvnic_tx_timeout"], ["drivers/net/ethernet/intel/e100.c", "e100_tx_timeout"], ["drivers/net/ethernet/intel/e1000/e1000_main.c", "e1000_tx_timeout"], ["drivers/net/ethernet/intel/e1000e/netdev.c", "e1000_tx_timeout"], ["drivers/net/ethernet/intel/fm10k/fm10k_netdev.c", "fm10k_tx_timeout"], ["drivers/net/ethernet/intel/i40e/i40e_main.c", "i40e_tx_timeout"], ["drivers/net/ethernet/intel/iavf/iavf_main.c", "iavf_tx_timeout"], ["drivers/net/ethernet/intel/ice/ice_main.c", "ice_tx_timeout"], ["drivers/net/ethernet/intel/ice/ice_main.c", "ice_tx_timeout"], ["drivers/net/ethernet/intel/igb/igb_main.c", "igb_tx_timeout"], ["drivers/net/ethernet/intel/igbvf/netdev.c", "igbvf_tx_timeout"], ["drivers/net/ethernet/intel/ixgb/ixgb_main.c", "ixgb_tx_timeout"], ["drivers/net/ethernet/intel/ixgbe/ixgbe_debugfs.c", "adapter->netdev->netdev_ops->ndo_tx_timeout(adapter->netdev);"], ["drivers/net/ethernet/intel/ixgbe/ixgbe_main.c", "ixgbe_tx_timeout"], ["drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c", "ixgbevf_tx_timeout"], ["drivers/net/ethernet/jme.c", "jme_tx_timeout"], ["drivers/net/ethernet/korina.c", "korina_tx_timeout"], ["drivers/net/ethernet/lantiq_etop.c", "ltq_etop_tx_timeout"], ["drivers/net/ethernet/marvell/mv643xx_eth.c", "mv643xx_eth_tx_timeout"], ["drivers/net/ethernet/marvell/pxa168_eth.c", "pxa168_eth_tx_timeout"], ["drivers/net/ethernet/marvell/skge.c", "skge_tx_timeout"], ["drivers/net/ethernet/marvell/sky2.c", "sky2_tx_timeout"], ["drivers/net/ethernet/marvell/sky2.c", "sky2_tx_timeout"], ["drivers/net/ethernet/mediatek/mtk_eth_soc.c", "mtk_tx_timeout"], ["drivers/net/ethernet/mellanox/mlx4/en_netdev.c", "mlx4_en_tx_timeout"], ["drivers/net/ethernet/mellanox/mlx4/en_netdev.c", "mlx4_en_tx_timeout"], ["drivers/net/ethernet/mellanox/mlx5/core/en_main.c", "mlx5e_tx_timeout"], ["drivers/net/ethernet/micrel/ks8842.c", "ks8842_tx_timeout"], ["drivers/net/ethernet/micrel/ksz884x.c", "netdev_tx_timeout"], ["drivers/net/ethernet/microchip/enc28j60.c", "enc28j60_tx_timeout"], ["drivers/net/ethernet/microchip/encx24j600.c", "encx24j600_tx_timeout"], ["drivers/net/ethernet/natsemi/sonic.h", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/sonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/jazzsonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/macsonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/natsemi/natsemi.c", "ns_tx_timeout"], ["drivers/net/ethernet/natsemi/ns83820.c", "ns83820_tx_timeout"], ["drivers/net/ethernet/natsemi/xtsonic.c", "sonic_tx_timeout"], ["drivers/net/ethernet/neterion/s2io.h", "s2io_tx_watchdog"], ["drivers/net/ethernet/neterion/s2io.c", "s2io_tx_watchdog"], ["drivers/net/ethernet/neterion/vxge/vxge-main.c", "vxge_tx_watchdog"], ["drivers/net/ethernet/netronome/nfp/nfp_net_common.c", "nfp_net_tx_timeout"], ["drivers/net/ethernet/nvidia/forcedeth.c", "nv_tx_timeout"], ["drivers/net/ethernet/nvidia/forcedeth.c", "nv_tx_timeout"], ["drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe_main.c", "pch_gbe_tx_timeout"], ["drivers/net/ethernet/packetengines/hamachi.c", "hamachi_tx_timeout"], ["drivers/net/ethernet/packetengines/yellowfin.c", "yellowfin_tx_timeout"], ["drivers/net/ethernet/pensando/ionic/ionic_lif.c", "ionic_tx_timeout"], ["drivers/net/ethernet/qlogic/netxen/netxen_nic_main.c", "netxen_tx_timeout"], ["drivers/net/ethernet/qlogic/qla3xxx.c", "ql3xxx_tx_timeout"], ["drivers/net/ethernet/qlogic/qlcnic/qlcnic_main.c", "qlcnic_tx_timeout"], ["drivers/net/ethernet/qualcomm/emac/emac.c", "emac_tx_timeout"], ["drivers/net/ethernet/qualcomm/qca_spi.c", "qcaspi_netdev_tx_timeout"], ["drivers/net/ethernet/qualcomm/qca_uart.c", "qcauart_netdev_tx_timeout"], ["drivers/net/ethernet/rdc/r6040.c", "r6040_tx_timeout"], ["drivers/net/ethernet/realtek/8139cp.c", "cp_tx_timeout"], ["drivers/net/ethernet/realtek/8139too.c", "rtl8139_tx_timeout"], ["drivers/net/ethernet/realtek/atp.c", "tx_timeout"], ["drivers/net/ethernet/realtek/r8169_main.c", "rtl8169_tx_timeout"], ["drivers/net/ethernet/renesas/ravb_main.c", "ravb_tx_timeout"], ["drivers/net/ethernet/renesas/sh_eth.c", "sh_eth_tx_timeout"], ["drivers/net/ethernet/renesas/sh_eth.c", "sh_eth_tx_timeout"], ["drivers/net/ethernet/samsung/sxgbe/sxgbe_main.c", "sxgbe_tx_timeout"], ["drivers/net/ethernet/seeq/ether3.c", "ether3_timeout"], ["drivers/net/ethernet/seeq/sgiseeq.c", "timeout"], ["drivers/net/ethernet/sfc/efx.c", "efx_watchdog"], ["drivers/net/ethernet/sfc/falcon/efx.c", "ef4_watchdog"], ["drivers/net/ethernet/sgi/ioc3-eth.c", "ioc3_timeout"], ["drivers/net/ethernet/sgi/meth.c", "meth_tx_timeout"], ["drivers/net/ethernet/silan/sc92031.c", "sc92031_tx_timeout"], ["drivers/net/ethernet/sis/sis190.c", "sis190_tx_timeout"], ["drivers/net/ethernet/sis/sis900.c", "sis900_tx_timeout"], ["drivers/net/ethernet/smsc/epic100.c", "epic_tx_timeout"], ["drivers/net/ethernet/smsc/smc911x.c", "smc911x_timeout"], ["drivers/net/ethernet/smsc/smc9194.c", "smc_timeout"], ["drivers/net/ethernet/smsc/smc91c92_cs.c", "smc_tx_timeout"], ["drivers/net/ethernet/smsc/smc91x.c", "smc_timeout"], ["drivers/net/ethernet/stmicro/stmmac/stmmac_main.c", "stmmac_tx_timeout"], ["drivers/net/ethernet/sun/cassini.c", "cas_tx_timeout"], ["drivers/net/ethernet/sun/ldmvsw.c", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/sun/niu.c", "niu_tx_timeout"], ["drivers/net/ethernet/sun/sunbmac.c", "bigmac_tx_timeout"], ["drivers/net/ethernet/sun/sungem.c", "gem_tx_timeout"], ["drivers/net/ethernet/sun/sunhme.c", "happy_meal_tx_timeout"], ["drivers/net/ethernet/sun/sunqe.c", "qe_tx_timeout"], ["drivers/net/ethernet/sun/sunvnet.c", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/sun/sunvnet_common.c", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/sun/sunvnet_common.h", "sunvnet_tx_timeout_common"], ["drivers/net/ethernet/synopsys/dwc-xlgmac-net.c", "xlgmac_tx_timeout"], ["drivers/net/ethernet/ti/cpmac.c", "cpmac_tx_timeout"], ["drivers/net/ethernet/ti/cpsw.c", "cpsw_ndo_tx_timeout"], ["drivers/net/ethernet/ti/cpsw_priv.c", "cpsw_ndo_tx_timeout"], ["drivers/net/ethernet/ti/cpsw_priv.h", "cpsw_ndo_tx_timeout"], ["drivers/net/ethernet/ti/davinci_emac.c", "emac_dev_tx_timeout"], ["drivers/net/ethernet/ti/netcp_core.c", "netcp_ndo_tx_timeout"], ["drivers/net/ethernet/ti/tlan.c", "tlan_tx_timeout"], ["drivers/net/ethernet/toshiba/ps3_gelic_net.h", "gelic_net_tx_timeout"], ["drivers/net/ethernet/toshiba/ps3_gelic_net.c", "gelic_net_tx_timeout"], ["drivers/net/ethernet/toshiba/ps3_gelic_wireless.c", "gelic_net_tx_timeout"], ["drivers/net/ethernet/toshiba/spider_net.c", "spider_net_tx_timeout"], ["drivers/net/ethernet/toshiba/tc35815.c", "tc35815_tx_timeout"], ["drivers/net/ethernet/via/via-rhine.c", "rhine_tx_timeout"], ["drivers/net/ethernet/wiznet/w5100.c", "w5100_tx_timeout"], ["drivers/net/ethernet/wiznet/w5300.c", "w5300_tx_timeout"], ["drivers/net/ethernet/xilinx/xilinx_emaclite.c", "xemaclite_tx_timeout"], ["drivers/net/ethernet/xircom/xirc2ps_cs.c", "xirc_tx_timeout"], ["drivers/net/fjes/fjes_main.c", "fjes_tx_retry"], ["drivers/net/slip/slip.c", "sl_tx_timeout"], ["include/linux/usb/usbnet.h", "usbnet_tx_timeout"], ["drivers/net/usb/aqc111.c", "usbnet_tx_timeout"], ["drivers/net/usb/asix_devices.c", "usbnet_tx_timeout"], ["drivers/net/usb/asix_devices.c", "usbnet_tx_timeout"], ["drivers/net/usb/asix_devices.c", "usbnet_tx_timeout"], ["drivers/net/usb/ax88172a.c", "usbnet_tx_timeout"], ["drivers/net/usb/ax88179_178a.c", "usbnet_tx_timeout"], ["drivers/net/usb/catc.c", "catc_tx_timeout"], ["drivers/net/usb/cdc_mbim.c", "usbnet_tx_timeout"], ["drivers/net/usb/cdc_ncm.c", "usbnet_tx_timeout"], ["drivers/net/usb/dm9601.c", "usbnet_tx_timeout"], ["drivers/net/usb/hso.c", "hso_net_tx_timeout"], ["drivers/net/usb/int51x1.c", "usbnet_tx_timeout"], ["drivers/net/usb/ipheth.c", "ipheth_tx_timeout"], ["drivers/net/usb/kaweth.c", "kaweth_tx_timeout"], ["drivers/net/usb/lan78xx.c", "lan78xx_tx_timeout"], ["drivers/net/usb/mcs7830.c", "usbnet_tx_timeout"], ["drivers/net/usb/pegasus.c", "pegasus_tx_timeout"], ["drivers/net/usb/qmi_wwan.c", "usbnet_tx_timeout"], ["drivers/net/usb/r8152.c", "rtl8152_tx_timeout"], ["drivers/net/usb/rndis_host.c", "usbnet_tx_timeout"], ["drivers/net/usb/rtl8150.c", "rtl8150_tx_timeout"], ["drivers/net/usb/sierra_net.c", "usbnet_tx_timeout"], ["drivers/net/usb/smsc75xx.c", "usbnet_tx_timeout"], ["drivers/net/usb/smsc95xx.c", "usbnet_tx_timeout"], ["drivers/net/usb/sr9700.c", "usbnet_tx_timeout"], ["drivers/net/usb/sr9800.c", "usbnet_tx_timeout"], ["drivers/net/usb/usbnet.c", "usbnet_tx_timeout"], ["drivers/net/vmxnet3/vmxnet3_drv.c", "vmxnet3_tx_timeout"], ["drivers/net/wan/cosa.c", "cosa_net_timeout"], ["drivers/net/wan/farsync.c", "fst_tx_timeout"], ["drivers/net/wan/fsl_ucc_hdlc.c", "uhdlc_tx_timeout"], ["drivers/net/wan/lmc/lmc_main.c", "lmc_driver_timeout"], ["drivers/net/wan/x25_asy.c", "x25_asy_timeout"], ["drivers/net/wimax/i2400m/netdev.c", "i2400m_tx_timeout"], ["drivers/net/wireless/intel/ipw2x00/ipw2100.c", "ipw2100_tx_timeout"], ["drivers/net/wireless/intersil/hostap/hostap_main.c", "prism2_tx_timeout"], ["drivers/net/wireless/intersil/hostap/hostap_main.c", "prism2_tx_timeout"], ["drivers/net/wireless/intersil/hostap/hostap_main.c", "prism2_tx_timeout"], ["drivers/net/wireless/intersil/orinoco/main.c", "orinoco_tx_timeout"], ["drivers/net/wireless/intersil/orinoco/orinoco_usb.c", "orinoco_tx_timeout"], ["drivers/net/wireless/intersil/orinoco/orinoco.h", "orinoco_tx_timeout"], ["drivers/net/wireless/intersil/prism54/islpci_dev.c", "islpci_eth_tx_timeout"], ["drivers/net/wireless/intersil/prism54/islpci_eth.c", "islpci_eth_tx_timeout"], ["drivers/net/wireless/intersil/prism54/islpci_eth.h", "islpci_eth_tx_timeout"], ["drivers/net/wireless/marvell/mwifiex/main.c", "mwifiex_tx_timeout"], ["drivers/net/wireless/quantenna/qtnfmac/core.c", "qtnf_netdev_tx_timeout"], ["drivers/net/wireless/quantenna/qtnfmac/core.h", "qtnf_netdev_tx_timeout"], ["drivers/net/wireless/rndis_wlan.c", "usbnet_tx_timeout"], ["drivers/net/wireless/wl3501_cs.c", "wl3501_tx_timeout"], ["drivers/net/wireless/zydas/zd1201.c", "zd1201_tx_timeout"], ["drivers/s390/net/qeth_core.h", "qeth_tx_timeout"], ["drivers/s390/net/qeth_core_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l2_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l2_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l3_main.c", "qeth_tx_timeout"], ["drivers/s390/net/qeth_l3_main.c", "qeth_tx_timeout"], ["drivers/staging/ks7010/ks_wlan_net.c", "ks_wlan_tx_timeout"], ["drivers/staging/qlge/qlge_main.c", "qlge_tx_timeout"], ["drivers/staging/rtl8192e/rtl8192e/rtl_core.c", "_rtl92e_tx_timeout"], ["drivers/staging/rtl8192u/r8192U_core.c", "tx_timeout"], ["drivers/staging/unisys/visornic/visornic_main.c", "visornic_xmit_timeout"], ["drivers/staging/wlan-ng/p80211netdev.c", "p80211knetdev_tx_timeout"], ["drivers/tty/n_gsm.c", "gsm_mux_net_tx_timeout"], ["drivers/tty/synclink.c", "hdlcdev_tx_timeout"], ["drivers/tty/synclink_gt.c", "hdlcdev_tx_timeout"], ["drivers/tty/synclinkmp.c", "hdlcdev_tx_timeout"], ["net/atm/lec.c", "lec_tx_timeout"], ["net/bluetooth/bnep/netdev.c", "bnep_net_timeout"] ); for my $p (@work) { my @pair = @$p; my $file = $pair[0]; my $func = $pair[1]; print STDERR $file , ": ", $func,"\n"; our @ARGV = ($file); while (<ARGV>) { if (m/($func\s*\(struct\s+net_device\s+\*[A-Za-z_]?[A-Za-z-0-9_]*)(\))/) { print STDERR "found $1+$2 in $file\n"; } if (s/($func\s*\(struct\s+net_device\s+\*[A-Za-z_]?[A-Za-z-0-9_]*)(\))/$1, unsigned int txqueue$2/) { print STDERR "$func found in $file\n"; } print; } } where the list of files and functions is simply from: git grep ndo_tx_timeout, with manual addition of headers in the rare cases where the function is from a header, then manually changing the few places which actually call ndo_tx_timeout. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Heiner Kallweit <hkallweit1@gmail.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Shannon Nelson <snelson@pensando.io> Reviewed-by: Martin Habets <mhabets@solarflare.com> changes from v9: fixup a forward declaration changes from v9: more leftovers from v3 change changes from v8: fix up a missing direct call to timeout rebased on net-next changes from v7: fixup leftovers from v3 change changes from v6: fix typo in rtl driver changes from v5: add missing files (allow any net device argument name) changes from v4: add a missing driver header changes from v3: change queue # to unsigned Changes from v2: added headers Changes from v1: Fix errors found by kbuild: generalize the pattern a bit, to pick up a couple of instances missed by the previous version. Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-10 21:23:51 +07:00
jme_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme->phylink = 0;
jme_reset_phy_processor(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_link_ksettings(netdev, &jme->old_cmd);
/*
* Force to Reset the link again
*/
jme_reset_link(jme);
}
static void
jme_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct jme_adapter *jme = netdev_priv(netdev);
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(jme->pdev), sizeof(info->bus_info));
}
static int
jme_get_regs_len(struct net_device *netdev)
{
return JME_REG_LEN;
}
static void
mmapio_memcpy(struct jme_adapter *jme, u32 *p, u32 reg, int len)
{
int i;
for (i = 0 ; i < len ; i += 4)
p[i >> 2] = jread32(jme, reg + i);
}
static void
mdio_memcpy(struct jme_adapter *jme, u32 *p, int reg_nr)
{
int i;
u16 *p16 = (u16 *)p;
for (i = 0 ; i < reg_nr ; ++i)
p16[i] = jme_mdio_read(jme->dev, jme->mii_if.phy_id, i);
}
static void
jme_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 *p32 = (u32 *)p;
memset(p, 0xFF, JME_REG_LEN);
regs->version = 1;
mmapio_memcpy(jme, p32, JME_MAC, JME_MAC_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_PHY, JME_PHY_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_MISC, JME_MISC_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_RSS, JME_RSS_LEN);
p32 += 0x100 >> 2;
mdio_memcpy(jme, p32, JME_PHY_REG_NR);
}
static int
jme_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
ecmd->tx_coalesce_usecs = PCC_TX_TO;
ecmd->tx_max_coalesced_frames = PCC_TX_CNT;
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
ecmd->use_adaptive_rx_coalesce = false;
ecmd->rx_coalesce_usecs = 0;
ecmd->rx_max_coalesced_frames = 0;
return 0;
}
ecmd->use_adaptive_rx_coalesce = true;
switch (jme->dpi.cur) {
case PCC_P1:
ecmd->rx_coalesce_usecs = PCC_P1_TO;
ecmd->rx_max_coalesced_frames = PCC_P1_CNT;
break;
case PCC_P2:
ecmd->rx_coalesce_usecs = PCC_P2_TO;
ecmd->rx_max_coalesced_frames = PCC_P2_CNT;
break;
case PCC_P3:
ecmd->rx_coalesce_usecs = PCC_P3_TO;
ecmd->rx_max_coalesced_frames = PCC_P3_CNT;
break;
default:
break;
}
return 0;
}
static int
jme_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
struct dynpcc_info *dpi = &(jme->dpi);
if (netif_running(netdev))
return -EBUSY;
if (ecmd->use_adaptive_rx_coalesce &&
test_bit(JME_FLAG_POLL, &jme->flags)) {
clear_bit(JME_FLAG_POLL, &jme->flags);
jme->jme_rx = netif_rx;
dpi->cur = PCC_P1;
dpi->attempt = PCC_P1;
dpi->cnt = 0;
jme_set_rx_pcc(jme, PCC_P1);
jme_interrupt_mode(jme);
} else if (!(ecmd->use_adaptive_rx_coalesce) &&
!(test_bit(JME_FLAG_POLL, &jme->flags))) {
set_bit(JME_FLAG_POLL, &jme->flags);
jme->jme_rx = netif_receive_skb;
jme_interrupt_mode(jme);
}
return 0;
}
static void
jme_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
ecmd->tx_pause = (jme->reg_txpfc & TXPFC_PF_EN) != 0;
ecmd->rx_pause = (jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0;
spin_lock_bh(&jme->phy_lock);
val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE);
spin_unlock_bh(&jme->phy_lock);
ecmd->autoneg =
(val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0;
}
static int
jme_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
if (((jme->reg_txpfc & TXPFC_PF_EN) != 0) ^
(ecmd->tx_pause != 0)) {
if (ecmd->tx_pause)
jme->reg_txpfc |= TXPFC_PF_EN;
else
jme->reg_txpfc &= ~TXPFC_PF_EN;
jwrite32(jme, JME_TXPFC, jme->reg_txpfc);
}
spin_lock_bh(&jme->rxmcs_lock);
if (((jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0) ^
(ecmd->rx_pause != 0)) {
if (ecmd->rx_pause)
jme->reg_rxmcs |= RXMCS_FLOWCTRL;
else
jme->reg_rxmcs &= ~RXMCS_FLOWCTRL;
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
}
spin_unlock_bh(&jme->rxmcs_lock);
spin_lock_bh(&jme->phy_lock);
val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE);
if (((val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0) ^
(ecmd->autoneg != 0)) {
if (ecmd->autoneg)
val |= (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
else
val &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
jme_mdio_write(jme->dev, jme->mii_if.phy_id,
MII_ADVERTISE, val);
}
spin_unlock_bh(&jme->phy_lock);
return 0;
}
static void
jme_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct jme_adapter *jme = netdev_priv(netdev);
wol->supported = WAKE_MAGIC | WAKE_PHY;
wol->wolopts = 0;
if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN))
wol->wolopts |= WAKE_PHY;
if (jme->reg_pmcs & PMCS_MFEN)
wol->wolopts |= WAKE_MAGIC;
}
static int
jme_set_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (wol->wolopts & (WAKE_MAGICSECURE |
WAKE_UCAST |
WAKE_MCAST |
WAKE_BCAST |
WAKE_ARP))
return -EOPNOTSUPP;
jme->reg_pmcs = 0;
if (wol->wolopts & WAKE_PHY)
jme->reg_pmcs |= PMCS_LFEN | PMCS_LREN;
if (wol->wolopts & WAKE_MAGIC)
jme->reg_pmcs |= PMCS_MFEN;
return 0;
}
static int
jme_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
spin_lock_bh(&jme->phy_lock);
mii_ethtool_get_link_ksettings(&jme->mii_if, cmd);
spin_unlock_bh(&jme->phy_lock);
return 0;
}
static int
jme_set_link_ksettings(struct net_device *netdev,
const struct ethtool_link_ksettings *cmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc, fdc = 0;
if (cmd->base.speed == SPEED_1000 &&
cmd->base.autoneg != AUTONEG_ENABLE)
return -EINVAL;
/*
* Check If user changed duplex only while force_media.
* Hardware would not generate link change interrupt.
*/
if (jme->mii_if.force_media &&
cmd->base.autoneg != AUTONEG_ENABLE &&
(jme->mii_if.full_duplex != cmd->base.duplex))
fdc = 1;
spin_lock_bh(&jme->phy_lock);
rc = mii_ethtool_set_link_ksettings(&jme->mii_if, cmd);
spin_unlock_bh(&jme->phy_lock);
if (!rc) {
if (fdc)
jme_reset_link(jme);
jme->old_cmd = *cmd;
set_bit(JME_FLAG_SSET, &jme->flags);
}
return rc;
}
static int
jme_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
int rc;
struct jme_adapter *jme = netdev_priv(netdev);
struct mii_ioctl_data *mii_data = if_mii(rq);
unsigned int duplex_chg;
if (cmd == SIOCSMIIREG) {
u16 val = mii_data->val_in;
if (!(val & (BMCR_RESET|BMCR_ANENABLE)) &&
(val & BMCR_SPEED1000))
return -EINVAL;
}
spin_lock_bh(&jme->phy_lock);
rc = generic_mii_ioctl(&jme->mii_if, mii_data, cmd, &duplex_chg);
spin_unlock_bh(&jme->phy_lock);
if (!rc && (cmd == SIOCSMIIREG)) {
if (duplex_chg)
jme_reset_link(jme);
jme_get_link_ksettings(netdev, &jme->old_cmd);
set_bit(JME_FLAG_SSET, &jme->flags);
}
return rc;
}
static u32
jme_get_link(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jread32(jme, JME_PHY_LINK) & PHY_LINK_UP;
}
static u32
jme_get_msglevel(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jme->msg_enable;
}
static void
jme_set_msglevel(struct net_device *netdev, u32 value)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme->msg_enable = value;
}
static netdev_features_t
jme_fix_features(struct net_device *netdev, netdev_features_t features)
{
if (netdev->mtu > 1900)
features &= ~(NETIF_F_ALL_TSO | NETIF_F_CSUM_MASK);
return features;
}
static int
jme_set_features(struct net_device *netdev, netdev_features_t features)
{
struct jme_adapter *jme = netdev_priv(netdev);
spin_lock_bh(&jme->rxmcs_lock);
if (features & NETIF_F_RXCSUM)
jme->reg_rxmcs |= RXMCS_CHECKSUM;
else
jme->reg_rxmcs &= ~RXMCS_CHECKSUM;
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
spin_unlock_bh(&jme->rxmcs_lock);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void jme_netpoll(struct net_device *dev)
{
unsigned long flags;
local_irq_save(flags);
jme_intr(dev->irq, dev);
local_irq_restore(flags);
}
#endif
static int
jme_nway_reset(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme_restart_an(jme);
return 0;
}
static u8
jme_smb_read(struct jme_adapter *jme, unsigned int addr)
{
u32 val;
int to;
val = jread32(jme, JME_SMBCSR);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBCSR_BUSY) && --to) {
msleep(1);
val = jread32(jme, JME_SMBCSR);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return 0xFF;
}
jwrite32(jme, JME_SMBINTF,
((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) |
SMBINTF_HWRWN_READ |
SMBINTF_HWCMD);
val = jread32(jme, JME_SMBINTF);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBINTF_HWCMD) && --to) {
msleep(1);
val = jread32(jme, JME_SMBINTF);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return 0xFF;
}
return (val & SMBINTF_HWDATR) >> SMBINTF_HWDATR_SHIFT;
}
static void
jme_smb_write(struct jme_adapter *jme, unsigned int addr, u8 data)
{
u32 val;
int to;
val = jread32(jme, JME_SMBCSR);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBCSR_BUSY) && --to) {
msleep(1);
val = jread32(jme, JME_SMBCSR);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return;
}
jwrite32(jme, JME_SMBINTF,
((data << SMBINTF_HWDATW_SHIFT) & SMBINTF_HWDATW) |
((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) |
SMBINTF_HWRWN_WRITE |
SMBINTF_HWCMD);
val = jread32(jme, JME_SMBINTF);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBINTF_HWCMD) && --to) {
msleep(1);
val = jread32(jme, JME_SMBINTF);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return;
}
mdelay(2);
}
static int
jme_get_eeprom_len(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
val = jread32(jme, JME_SMBCSR);
return (val & SMBCSR_EEPROMD) ? JME_SMB_LEN : 0;
}
static int
jme_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, offset = eeprom->offset, len = eeprom->len;
/*
* ethtool will check the boundary for us
*/
eeprom->magic = JME_EEPROM_MAGIC;
for (i = 0 ; i < len ; ++i)
data[i] = jme_smb_read(jme, i + offset);
return 0;
}
static int
jme_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, offset = eeprom->offset, len = eeprom->len;
if (eeprom->magic != JME_EEPROM_MAGIC)
return -EINVAL;
/*
* ethtool will check the boundary for us
*/
for (i = 0 ; i < len ; ++i)
jme_smb_write(jme, i + offset, data[i]);
return 0;
}
static const struct ethtool_ops jme_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_MAX_FRAMES |
ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
.get_drvinfo = jme_get_drvinfo,
.get_regs_len = jme_get_regs_len,
.get_regs = jme_get_regs,
.get_coalesce = jme_get_coalesce,
.set_coalesce = jme_set_coalesce,
.get_pauseparam = jme_get_pauseparam,
.set_pauseparam = jme_set_pauseparam,
.get_wol = jme_get_wol,
.set_wol = jme_set_wol,
.get_link = jme_get_link,
.get_msglevel = jme_get_msglevel,
.set_msglevel = jme_set_msglevel,
.nway_reset = jme_nway_reset,
.get_eeprom_len = jme_get_eeprom_len,
.get_eeprom = jme_get_eeprom,
.set_eeprom = jme_set_eeprom,
.get_link_ksettings = jme_get_link_ksettings,
.set_link_ksettings = jme_set_link_ksettings,
};
static int
jme_pci_dma64(struct pci_dev *pdev)
{
if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250 &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))
return 1;
if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250 &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)))
return 1;
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
return 0;
return -1;
}
static inline void
jme_phy_init(struct jme_adapter *jme)
{
u16 reg26;
reg26 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 26);
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 26, reg26 | 0x1000);
}
static inline void
jme_check_hw_ver(struct jme_adapter *jme)
{
u32 chipmode;
chipmode = jread32(jme, JME_CHIPMODE);
jme->fpgaver = (chipmode & CM_FPGAVER_MASK) >> CM_FPGAVER_SHIFT;
jme->chiprev = (chipmode & CM_CHIPREV_MASK) >> CM_CHIPREV_SHIFT;
jme->chip_main_rev = jme->chiprev & 0xF;
jme->chip_sub_rev = (jme->chiprev >> 4) & 0xF;
}
static const struct net_device_ops jme_netdev_ops = {
.ndo_open = jme_open,
.ndo_stop = jme_close,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = jme_ioctl,
.ndo_start_xmit = jme_start_xmit,
.ndo_set_mac_address = jme_set_macaddr,
.ndo_set_rx_mode = jme_set_multi,
.ndo_change_mtu = jme_change_mtu,
.ndo_tx_timeout = jme_tx_timeout,
.ndo_fix_features = jme_fix_features,
.ndo_set_features = jme_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = jme_netpoll,
#endif
};
static int
jme_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rc = 0, using_dac, i;
struct net_device *netdev;
struct jme_adapter *jme;
u16 bmcr, bmsr;
u32 apmc;
/*
* set up PCI device basics
*/
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
PCIE_LINK_STATE_CLKPM);
rc = pci_enable_device(pdev);
if (rc) {
pr_err("Cannot enable PCI device\n");
goto err_out;
}
using_dac = jme_pci_dma64(pdev);
if (using_dac < 0) {
pr_err("Cannot set PCI DMA Mask\n");
rc = -EIO;
goto err_out_disable_pdev;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
pr_err("No PCI resource region found\n");
rc = -ENOMEM;
goto err_out_disable_pdev;
}
rc = pci_request_regions(pdev, DRV_NAME);
if (rc) {
pr_err("Cannot obtain PCI resource region\n");
goto err_out_disable_pdev;
}
pci_set_master(pdev);
/*
* alloc and init net device
*/
netdev = alloc_etherdev(sizeof(*jme));
if (!netdev) {
rc = -ENOMEM;
goto err_out_release_regions;
}
netdev->netdev_ops = &jme_netdev_ops;
netdev->ethtool_ops = &jme_ethtool_ops;
netdev->watchdog_timeo = TX_TIMEOUT;
netdev->hw_features = NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXCSUM;
netdev->features = NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
if (using_dac)
netdev->features |= NETIF_F_HIGHDMA;
ethernet: use net core MTU range checking in more drivers Somehow, I missed a healthy number of ethernet drivers in the last pass. Most of these drivers either were in need of an updated max_mtu to make jumbo frames possible to enable again. In a few cases, also setting a different min_mtu to match previous lower bounds. There are also a few drivers that had no upper bounds checking, so they're getting a brand new ETH_MAX_MTU that is identical to IP_MAX_MTU, but accessible by includes all ethernet and ethernet-like drivers all have already. acenic: - min_mtu = 0, max_mtu = 9000 amazon/ena: - min_mtu = 128, max_mtu = adapter->max_mtu amd/xgbe: - min_mtu = 0, max_mtu = 9000 sb1250: - min_mtu = 0, max_mtu = 1518 cxgb3: - min_mtu = 81, max_mtu = 65535 cxgb4: - min_mtu = 81, max_mtu = 9600 cxgb4vf: - min_mtu = 81, max_mtu = 65535 benet: - min_mtu = 256, max_mtu = 9000 ibmveth: - min_mtu = 68, max_mtu = 65535 ibmvnic: - min_mtu = adapter->min_mtu, max_mtu = adapter->max_mtu - remove now redundant ibmvnic_change_mtu jme: - min_mtu = 1280, max_mtu = 9202 mv643xx_eth: - min_mtu = 64, max_mtu = 9500 mlxsw: - min_mtu = 0, max_mtu = 65535 - Basically bypassing the core checks, and instead relying on dynamic checks in the respective switch drivers' ndo_change_mtu functions ns83820: - min_mtu = 0 - remove redundant ns83820_change_mtu, only checked for mtu > 1500 netxen: - min_mtu = 0, max_mtu = 8000 (P2), max_mtu = 9600 (P3) qlge: - min_mtu = 1500, max_mtu = 9000 - driver only supports setting mtu to 1500 or 9000, so the core check only rules out < 1500 and > 9000, qlge_change_mtu still needs to check that the value is 1500 or 9000 qualcomm/emac: - min_mtu = 46, max_mtu = 9194 xilinx_axienet: - min_mtu = 64, max_mtu = 9000 Fixes: 61e84623ace3 ("net: centralize net_device min/max MTU checking") CC: netdev@vger.kernel.org CC: Jes Sorensen <jes@trained-monkey.org> CC: Netanel Belgazal <netanel@annapurnalabs.com> CC: Tom Lendacky <thomas.lendacky@amd.com> CC: Santosh Raspatur <santosh@chelsio.com> CC: Hariprasad S <hariprasad@chelsio.com> CC: Sathya Perla <sathya.perla@broadcom.com> CC: Ajit Khaparde <ajit.khaparde@broadcom.com> CC: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> CC: Somnath Kotur <somnath.kotur@broadcom.com> CC: Thomas Falcon <tlfalcon@linux.vnet.ibm.com> CC: John Allen <jallen@linux.vnet.ibm.com> CC: Guo-Fu Tseng <cooldavid@cooldavid.org> CC: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> CC: Jiri Pirko <jiri@mellanox.com> CC: Ido Schimmel <idosch@mellanox.com> CC: Manish Chopra <manish.chopra@qlogic.com> CC: Sony Chacko <sony.chacko@qlogic.com> CC: Rajesh Borundia <rajesh.borundia@qlogic.com> CC: Timur Tabi <timur@codeaurora.org> CC: Anirudha Sarangi <anirudh@xilinx.com> CC: John Linn <John.Linn@xilinx.com> Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-21 00:55:16 +07:00
/* MTU range: 1280 - 9202*/
netdev->min_mtu = IPV6_MIN_MTU;
netdev->max_mtu = MAX_ETHERNET_JUMBO_PACKET_SIZE - ETH_HLEN;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
/*
* init adapter info
*/
jme = netdev_priv(netdev);
jme->pdev = pdev;
jme->dev = netdev;
jme->jme_rx = netif_rx;
jme->old_mtu = netdev->mtu = 1500;
jme->phylink = 0;
jme->tx_ring_size = 1 << 10;
jme->tx_ring_mask = jme->tx_ring_size - 1;
jme->tx_wake_threshold = 1 << 9;
jme->rx_ring_size = 1 << 9;
jme->rx_ring_mask = jme->rx_ring_size - 1;
jme->msg_enable = JME_DEF_MSG_ENABLE;
jme->regs = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!(jme->regs)) {
pr_err("Mapping PCI resource region error\n");
rc = -ENOMEM;
goto err_out_free_netdev;
}
if (no_pseudohp) {
apmc = jread32(jme, JME_APMC) & ~JME_APMC_PSEUDO_HP_EN;
jwrite32(jme, JME_APMC, apmc);
} else if (force_pseudohp) {
apmc = jread32(jme, JME_APMC) | JME_APMC_PSEUDO_HP_EN;
jwrite32(jme, JME_APMC, apmc);
}
NETIF_NAPI_SET(netdev, &jme->napi, jme_poll, NAPI_POLL_WEIGHT)
spin_lock_init(&jme->phy_lock);
spin_lock_init(&jme->macaddr_lock);
spin_lock_init(&jme->rxmcs_lock);
atomic_set(&jme->link_changing, 1);
atomic_set(&jme->rx_cleaning, 1);
atomic_set(&jme->tx_cleaning, 1);
atomic_set(&jme->rx_empty, 1);
tasklet_init(&jme->pcc_task,
jme_pcc_tasklet,
(unsigned long) jme);
jme->dpi.cur = PCC_P1;
jme->reg_ghc = 0;
jme->reg_rxcs = RXCS_DEFAULT;
jme->reg_rxmcs = RXMCS_DEFAULT;
jme->reg_txpfc = 0;
jme->reg_pmcs = PMCS_MFEN;
jme->reg_gpreg1 = GPREG1_DEFAULT;
if (jme->reg_rxmcs & RXMCS_CHECKSUM)
netdev->features |= NETIF_F_RXCSUM;
/*
* Get Max Read Req Size from PCI Config Space
*/
pci_read_config_byte(pdev, PCI_DCSR_MRRS, &jme->mrrs);
jme->mrrs &= PCI_DCSR_MRRS_MASK;
switch (jme->mrrs) {
case MRRS_128B:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_128B;
break;
case MRRS_256B:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_256B;
break;
default:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_512B;
break;
}
/*
* Must check before reset_mac_processor
*/
jme_check_hw_ver(jme);
jme->mii_if.dev = netdev;
if (jme->fpgaver) {
jme->mii_if.phy_id = 0;
for (i = 1 ; i < 32 ; ++i) {
bmcr = jme_mdio_read(netdev, i, MII_BMCR);
bmsr = jme_mdio_read(netdev, i, MII_BMSR);
if (bmcr != 0xFFFFU && (bmcr != 0 || bmsr != 0)) {
jme->mii_if.phy_id = i;
break;
}
}
if (!jme->mii_if.phy_id) {
rc = -EIO;
pr_err("Can not find phy_id\n");
goto err_out_unmap;
}
jme->reg_ghc |= GHC_LINK_POLL;
} else {
jme->mii_if.phy_id = 1;
}
if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250)
jme->mii_if.supports_gmii = true;
else
jme->mii_if.supports_gmii = false;
jme->mii_if.phy_id_mask = 0x1F;
jme->mii_if.reg_num_mask = 0x1F;
jme->mii_if.mdio_read = jme_mdio_read;
jme->mii_if.mdio_write = jme_mdio_write;
jme_clear_pm_disable_wol(jme);
device_init_wakeup(&pdev->dev, true);
jme_set_phyfifo_5level(jme);
jme->pcirev = pdev->revision;
if (!jme->fpgaver)
jme_phy_init(jme);
jme_phy_off(jme);
/*
* Reset MAC processor and reload EEPROM for MAC Address
*/
jme_reset_mac_processor(jme);
rc = jme_reload_eeprom(jme);
if (rc) {
pr_err("Reload eeprom for reading MAC Address error\n");
goto err_out_unmap;
}
jme_load_macaddr(netdev);
/*
* Tell stack that we are not ready to work until open()
*/
netif_carrier_off(netdev);
rc = register_netdev(netdev);
if (rc) {
pr_err("Cannot register net device\n");
goto err_out_unmap;
}
netif_info(jme, probe, jme->dev, "%s%s chiprev:%x pcirev:%x macaddr:%pM\n",
(jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC250) ?
"JMC250 Gigabit Ethernet" :
(jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC260) ?
"JMC260 Fast Ethernet" : "Unknown",
(jme->fpgaver != 0) ? " (FPGA)" : "",
(jme->fpgaver != 0) ? jme->fpgaver : jme->chiprev,
jme->pcirev, netdev->dev_addr);
return 0;
err_out_unmap:
iounmap(jme->regs);
err_out_free_netdev:
free_netdev(netdev);
err_out_release_regions:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
err_out:
return rc;
}
static void
jme_remove_one(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
unregister_netdev(netdev);
iounmap(jme->regs);
free_netdev(netdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static void
jme_shutdown(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
jme_powersave_phy(jme);
pci_pme_active(pdev, true);
}
#ifdef CONFIG_PM_SLEEP
static int
jme_suspend(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct jme_adapter *jme = netdev_priv(netdev);
if (!netif_running(netdev))
return 0;
atomic_dec(&jme->link_changing);
netif_device_detach(netdev);
netif_stop_queue(netdev);
jme_stop_irq(jme);
tasklet_disable(&jme->txclean_task);
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
if (netif_carrier_ok(netdev)) {
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_polling_mode(jme);
jme_stop_pcc_timer(jme);
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
netif_carrier_off(netdev);
jme->phylink = 0;
}
tasklet_enable(&jme->txclean_task);
tasklet_enable(&jme->rxclean_task);
tasklet_enable(&jme->rxempty_task);
jme_powersave_phy(jme);
return 0;
}
static int
jme_resume(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct jme_adapter *jme = netdev_priv(netdev);
if (!netif_running(netdev))
return 0;
jme_clear_pm_disable_wol(jme);
jme_phy_on(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_link_ksettings(netdev, &jme->old_cmd);
else
jme_reset_phy_processor(jme);
jme_phy_calibration(jme);
jme_phy_setEA(jme);
netif_device_attach(netdev);
atomic_inc(&jme->link_changing);
jme_reset_link(jme);
jme_start_irq(jme);
return 0;
}
static SIMPLE_DEV_PM_OPS(jme_pm_ops, jme_suspend, jme_resume);
#define JME_PM_OPS (&jme_pm_ops)
#else
#define JME_PM_OPS NULL
#endif
static const struct pci_device_id jme_pci_tbl[] = {
{ PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC250) },
{ PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC260) },
{ }
};
static struct pci_driver jme_driver = {
.name = DRV_NAME,
.id_table = jme_pci_tbl,
.probe = jme_init_one,
.remove = jme_remove_one,
.shutdown = jme_shutdown,
.driver.pm = JME_PM_OPS,
};
static int __init
jme_init_module(void)
{
pr_info("JMicron JMC2XX ethernet driver version %s\n", DRV_VERSION);
return pci_register_driver(&jme_driver);
}
static void __exit
jme_cleanup_module(void)
{
pci_unregister_driver(&jme_driver);
}
module_init(jme_init_module);
module_exit(jme_cleanup_module);
MODULE_AUTHOR("Guo-Fu Tseng <cooldavid@cooldavid.org>");
MODULE_DESCRIPTION("JMicron JMC2x0 PCI Express Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, jme_pci_tbl);