linux_dsm_epyc7002/drivers/s390/scsi/zfcp_qdio.c

438 lines
11 KiB
C
Raw Normal View History

/*
* zfcp device driver
*
* Setup and helper functions to access QDIO.
*
* Copyright IBM Corporation 2002, 2010
*/
#define KMSG_COMPONENT "zfcp"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include "zfcp_ext.h"
#include "zfcp_qdio.h"
#define QBUFF_PER_PAGE (PAGE_SIZE / sizeof(struct qdio_buffer))
static int zfcp_qdio_buffers_enqueue(struct qdio_buffer **sbal)
{
int pos;
for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos += QBUFF_PER_PAGE) {
sbal[pos] = (struct qdio_buffer *) get_zeroed_page(GFP_KERNEL);
if (!sbal[pos])
return -ENOMEM;
}
for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos++)
if (pos % QBUFF_PER_PAGE)
sbal[pos] = sbal[pos - 1] + 1;
return 0;
}
static void zfcp_qdio_handler_error(struct zfcp_qdio *qdio, char *id)
{
struct zfcp_adapter *adapter = qdio->adapter;
dev_warn(&adapter->ccw_device->dev, "A QDIO problem occurred\n");
zfcp_erp_adapter_reopen(adapter,
ZFCP_STATUS_ADAPTER_LINK_UNPLUGGED |
ZFCP_STATUS_COMMON_ERP_FAILED, id, NULL);
}
static void zfcp_qdio_zero_sbals(struct qdio_buffer *sbal[], int first, int cnt)
{
int i, sbal_idx;
for (i = first; i < first + cnt; i++) {
sbal_idx = i % QDIO_MAX_BUFFERS_PER_Q;
memset(sbal[sbal_idx], 0, sizeof(struct qdio_buffer));
}
}
/* this needs to be called prior to updating the queue fill level */
static inline void zfcp_qdio_account(struct zfcp_qdio *qdio)
{
unsigned long long now, span;
int used;
spin_lock(&qdio->stat_lock);
now = get_clock_monotonic();
span = (now - qdio->req_q_time) >> 12;
used = QDIO_MAX_BUFFERS_PER_Q - atomic_read(&qdio->req_q_free);
qdio->req_q_util += used * span;
qdio->req_q_time = now;
spin_unlock(&qdio->stat_lock);
}
static void zfcp_qdio_int_req(struct ccw_device *cdev, unsigned int qdio_err,
int queue_no, int idx, int count,
unsigned long parm)
{
struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
if (unlikely(qdio_err)) {
zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, idx, count);
zfcp_qdio_handler_error(qdio, "qdireq1");
return;
}
/* cleanup all SBALs being program-owned now */
zfcp_qdio_zero_sbals(qdio->req_q, idx, count);
zfcp_qdio_account(qdio);
atomic_add(count, &qdio->req_q_free);
wake_up(&qdio->req_q_wq);
}
static void zfcp_qdio_int_resp(struct ccw_device *cdev, unsigned int qdio_err,
int queue_no, int idx, int count,
unsigned long parm)
{
struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
int sbal_idx, sbal_no;
if (unlikely(qdio_err)) {
zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, idx, count);
zfcp_qdio_handler_error(qdio, "qdires1");
return;
}
/*
* go through all SBALs from input queue currently
* returned by QDIO layer
*/
for (sbal_no = 0; sbal_no < count; sbal_no++) {
sbal_idx = (idx + sbal_no) % QDIO_MAX_BUFFERS_PER_Q;
/* go through all SBALEs of SBAL */
zfcp_fsf_reqid_check(qdio, sbal_idx);
}
/*
* put SBALs back to response queue
*/
if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, idx, count))
zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdires2", NULL);
}
static struct qdio_buffer_element *
zfcp_qdio_sbal_chain(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
{
struct qdio_buffer_element *sbale;
/* set last entry flag in current SBALE of current SBAL */
sbale = zfcp_qdio_sbale_curr(qdio, q_req);
sbale->flags |= SBAL_FLAGS_LAST_ENTRY;
/* don't exceed last allowed SBAL */
if (q_req->sbal_last == q_req->sbal_limit)
return NULL;
/* set chaining flag in first SBALE of current SBAL */
sbale = zfcp_qdio_sbale_req(qdio, q_req);
sbale->flags |= SBAL_FLAGS0_MORE_SBALS;
/* calculate index of next SBAL */
q_req->sbal_last++;
q_req->sbal_last %= QDIO_MAX_BUFFERS_PER_Q;
/* keep this requests number of SBALs up-to-date */
q_req->sbal_number++;
BUG_ON(q_req->sbal_number > ZFCP_QDIO_MAX_SBALS_PER_REQ);
/* start at first SBALE of new SBAL */
q_req->sbale_curr = 0;
/* set storage-block type for new SBAL */
sbale = zfcp_qdio_sbale_curr(qdio, q_req);
sbale->flags |= q_req->sbtype;
return sbale;
}
static struct qdio_buffer_element *
zfcp_qdio_sbale_next(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
{
if (q_req->sbale_curr == ZFCP_QDIO_LAST_SBALE_PER_SBAL)
return zfcp_qdio_sbal_chain(qdio, q_req);
q_req->sbale_curr++;
return zfcp_qdio_sbale_curr(qdio, q_req);
}
/**
* zfcp_qdio_sbals_from_sg - fill SBALs from scatter-gather list
* @qdio: pointer to struct zfcp_qdio
* @q_req: pointer to struct zfcp_qdio_req
* @sg: scatter-gather list
* @max_sbals: upper bound for number of SBALs to be used
* Returns: number of bytes, or error (negativ)
*/
int zfcp_qdio_sbals_from_sg(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
struct scatterlist *sg)
{
struct qdio_buffer_element *sbale;
int bytes = 0;
/* set storage-block type for this request */
sbale = zfcp_qdio_sbale_req(qdio, q_req);
sbale->flags |= q_req->sbtype;
for (; sg; sg = sg_next(sg)) {
sbale = zfcp_qdio_sbale_next(qdio, q_req);
if (!sbale) {
atomic_inc(&qdio->req_q_full);
zfcp_qdio_zero_sbals(qdio->req_q, q_req->sbal_first,
q_req->sbal_number);
return -EINVAL;
}
sbale->addr = sg_virt(sg);
sbale->length = sg->length;
bytes += sg->length;
}
/* assume that no other SBALEs are to follow in the same SBAL */
sbale = zfcp_qdio_sbale_curr(qdio, q_req);
sbale->flags |= SBAL_FLAGS_LAST_ENTRY;
return bytes;
}
static int zfcp_qdio_sbal_check(struct zfcp_qdio *qdio)
{
spin_lock_bh(&qdio->req_q_lock);
if (atomic_read(&qdio->req_q_free) ||
!(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
return 1;
spin_unlock_bh(&qdio->req_q_lock);
return 0;
}
/**
* zfcp_qdio_sbal_get - get free sbal in request queue, wait if necessary
* @qdio: pointer to struct zfcp_qdio
*
* The req_q_lock must be held by the caller of this function, and
* this function may only be called from process context; it will
* sleep when waiting for a free sbal.
*
* Returns: 0 on success, -EIO if there is no free sbal after waiting.
*/
int zfcp_qdio_sbal_get(struct zfcp_qdio *qdio)
{
long ret;
spin_unlock_bh(&qdio->req_q_lock);
ret = wait_event_interruptible_timeout(qdio->req_q_wq,
zfcp_qdio_sbal_check(qdio), 5 * HZ);
if (!(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
return -EIO;
if (ret > 0)
return 0;
if (!ret) {
atomic_inc(&qdio->req_q_full);
/* assume hanging outbound queue, try queue recovery */
zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdsbg_1", NULL);
}
spin_lock_bh(&qdio->req_q_lock);
return -EIO;
}
/**
* zfcp_qdio_send - set PCI flag in first SBALE and send req to QDIO
* @qdio: pointer to struct zfcp_qdio
* @q_req: pointer to struct zfcp_qdio_req
* Returns: 0 on success, error otherwise
*/
int zfcp_qdio_send(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
{
int retval;
u8 sbal_number = q_req->sbal_number;
zfcp_qdio_account(qdio);
retval = do_QDIO(qdio->adapter->ccw_device, QDIO_FLAG_SYNC_OUTPUT, 0,
q_req->sbal_first, sbal_number);
if (unlikely(retval)) {
zfcp_qdio_zero_sbals(qdio->req_q, q_req->sbal_first,
sbal_number);
return retval;
}
/* account for transferred buffers */
atomic_sub(sbal_number, &qdio->req_q_free);
qdio->req_q_idx += sbal_number;
qdio->req_q_idx %= QDIO_MAX_BUFFERS_PER_Q;
return 0;
}
static void zfcp_qdio_setup_init_data(struct qdio_initialize *id,
struct zfcp_qdio *qdio)
{
id->cdev = qdio->adapter->ccw_device;
id->q_format = QDIO_ZFCP_QFMT;
memcpy(id->adapter_name, dev_name(&id->cdev->dev), 8);
ASCEBC(id->adapter_name, 8);
id->qib_param_field_format = 0;
id->qib_param_field = NULL;
id->input_slib_elements = NULL;
id->output_slib_elements = NULL;
id->no_input_qs = 1;
id->no_output_qs = 1;
id->input_handler = zfcp_qdio_int_resp;
id->output_handler = zfcp_qdio_int_req;
id->int_parm = (unsigned long) qdio;
id->input_sbal_addr_array = (void **) (qdio->res_q);
id->output_sbal_addr_array = (void **) (qdio->req_q);
}
/**
* zfcp_qdio_allocate - allocate queue memory and initialize QDIO data
* @adapter: pointer to struct zfcp_adapter
* Returns: -ENOMEM on memory allocation error or return value from
* qdio_allocate
*/
static int zfcp_qdio_allocate(struct zfcp_qdio *qdio)
{
struct qdio_initialize init_data;
if (zfcp_qdio_buffers_enqueue(qdio->req_q) ||
zfcp_qdio_buffers_enqueue(qdio->res_q))
return -ENOMEM;
zfcp_qdio_setup_init_data(&init_data, qdio);
return qdio_allocate(&init_data);
}
/**
* zfcp_close_qdio - close qdio queues for an adapter
* @qdio: pointer to structure zfcp_qdio
*/
void zfcp_qdio_close(struct zfcp_qdio *qdio)
{
struct zfcp_adapter *adapter = qdio->adapter;
int idx, count;
if (!(atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
return;
/* clear QDIOUP flag, thus do_QDIO is not called during qdio_shutdown */
spin_lock_bh(&qdio->req_q_lock);
atomic_clear_mask(ZFCP_STATUS_ADAPTER_QDIOUP, &adapter->status);
spin_unlock_bh(&qdio->req_q_lock);
wake_up(&qdio->req_q_wq);
qdio_shutdown(adapter->ccw_device, QDIO_FLAG_CLEANUP_USING_CLEAR);
/* cleanup used outbound sbals */
count = atomic_read(&qdio->req_q_free);
if (count < QDIO_MAX_BUFFERS_PER_Q) {
idx = (qdio->req_q_idx + count) % QDIO_MAX_BUFFERS_PER_Q;
count = QDIO_MAX_BUFFERS_PER_Q - count;
zfcp_qdio_zero_sbals(qdio->req_q, idx, count);
}
qdio->req_q_idx = 0;
atomic_set(&qdio->req_q_free, 0);
}
/**
* zfcp_qdio_open - prepare and initialize response queue
* @qdio: pointer to struct zfcp_qdio
* Returns: 0 on success, otherwise -EIO
*/
int zfcp_qdio_open(struct zfcp_qdio *qdio)
{
struct qdio_buffer_element *sbale;
struct qdio_initialize init_data;
struct zfcp_adapter *adapter = qdio->adapter;
struct ccw_device *cdev = adapter->ccw_device;
int cc;
if (atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)
return -EIO;
zfcp_qdio_setup_init_data(&init_data, qdio);
if (qdio_establish(&init_data))
goto failed_establish;
if (qdio_activate(cdev))
goto failed_qdio;
for (cc = 0; cc < QDIO_MAX_BUFFERS_PER_Q; cc++) {
sbale = &(qdio->res_q[cc]->element[0]);
sbale->length = 0;
sbale->flags = SBAL_FLAGS_LAST_ENTRY;
sbale->addr = NULL;
}
if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, 0, QDIO_MAX_BUFFERS_PER_Q))
goto failed_qdio;
/* set index of first avalable SBALS / number of available SBALS */
qdio->req_q_idx = 0;
atomic_set(&qdio->req_q_free, QDIO_MAX_BUFFERS_PER_Q);
return 0;
failed_qdio:
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
failed_establish:
dev_err(&cdev->dev,
"Setting up the QDIO connection to the FCP adapter failed\n");
return -EIO;
}
void zfcp_qdio_destroy(struct zfcp_qdio *qdio)
{
int p;
if (!qdio)
return;
if (qdio->adapter->ccw_device)
qdio_free(qdio->adapter->ccw_device);
for (p = 0; p < QDIO_MAX_BUFFERS_PER_Q; p += QBUFF_PER_PAGE) {
free_page((unsigned long) qdio->req_q[p]);
free_page((unsigned long) qdio->res_q[p]);
}
kfree(qdio);
}
int zfcp_qdio_setup(struct zfcp_adapter *adapter)
{
struct zfcp_qdio *qdio;
qdio = kzalloc(sizeof(struct zfcp_qdio), GFP_KERNEL);
if (!qdio)
return -ENOMEM;
qdio->adapter = adapter;
if (zfcp_qdio_allocate(qdio)) {
zfcp_qdio_destroy(qdio);
return -ENOMEM;
}
spin_lock_init(&qdio->req_q_lock);
spin_lock_init(&qdio->stat_lock);
adapter->qdio = qdio;
return 0;
}