linux_dsm_epyc7002/arch/arm64/include/asm/simd.h

49 lines
1.3 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
*/
#ifndef __ASM_SIMD_H
#define __ASM_SIMD_H
2017-08-03 23:23:23 +07:00
#include <linux/compiler.h>
#include <linux/irqflags.h>
2017-08-03 23:23:23 +07:00
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/types.h>
arm64/fpsimd: Don't disable softirq when touching FPSIMD/SVE state When the kernel is compiled with CONFIG_KERNEL_MODE_NEON, some part of the kernel may be able to use FPSIMD/SVE. This is for instance the case for crypto code. Any use of FPSIMD/SVE in the kernel are clearly marked by using the function kernel_neon_{begin, end}. Furthermore, this can only be used when may_use_simd() returns true. The current implementation of may_use_simd() allows softirq to use FPSIMD/SVE unless it is currently in use (i.e kernel_neon_busy is true). When in use, softirqs usually fall back to a software method. At the moment, as a softirq may use FPSIMD/SVE, softirqs are disabled when touching the FPSIMD/SVE context. This has the drawback to disable all softirqs even if they are not using FPSIMD/SVE. Since a softirq is supposed to check may_use_simd() anyway before attempting to use FPSIMD/SVE, there is limited reason to keep softirq disabled when touching the FPSIMD/SVE context. Instead, we can simply disable preemption and mark the FPSIMD/SVE context as in use by setting CPU's fpsimd_context_busy flag. Two new helpers {get, put}_cpu_fpsimd_context are introduced to mark the area using FPSIMD/SVE context and they are used to replace local_bh_{disable, enable}. The functions kernel_neon_{begin, end} are also re-implemented to use the new helpers. Additionally, double-underscored versions of the helpers are provided to called when preemption is already disabled. These are only relevant on paths where irqs are disabled anyway, so they are not needed for correctness in the current code. Let's use them anyway though: this marks critical sections clearly and will help to avoid mistakes during future maintenance. The change has been benchmarked on Linux 5.1-rc4 with defconfig. On Juno2: * hackbench 100 process 1000 (10 times) * .7% quicker On ThunderX 2: * hackbench 1000 process 1000 (20 times) * 3.4% quicker Reviewed-by: Dave Martin <dave.martin@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Julien Grall <julien.grall@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-05-22 00:21:39 +07:00
DECLARE_PER_CPU(bool, fpsimd_context_busy);
2017-08-03 23:23:23 +07:00
arm64/fpsimd: Don't disable softirq when touching FPSIMD/SVE state When the kernel is compiled with CONFIG_KERNEL_MODE_NEON, some part of the kernel may be able to use FPSIMD/SVE. This is for instance the case for crypto code. Any use of FPSIMD/SVE in the kernel are clearly marked by using the function kernel_neon_{begin, end}. Furthermore, this can only be used when may_use_simd() returns true. The current implementation of may_use_simd() allows softirq to use FPSIMD/SVE unless it is currently in use (i.e kernel_neon_busy is true). When in use, softirqs usually fall back to a software method. At the moment, as a softirq may use FPSIMD/SVE, softirqs are disabled when touching the FPSIMD/SVE context. This has the drawback to disable all softirqs even if they are not using FPSIMD/SVE. Since a softirq is supposed to check may_use_simd() anyway before attempting to use FPSIMD/SVE, there is limited reason to keep softirq disabled when touching the FPSIMD/SVE context. Instead, we can simply disable preemption and mark the FPSIMD/SVE context as in use by setting CPU's fpsimd_context_busy flag. Two new helpers {get, put}_cpu_fpsimd_context are introduced to mark the area using FPSIMD/SVE context and they are used to replace local_bh_{disable, enable}. The functions kernel_neon_{begin, end} are also re-implemented to use the new helpers. Additionally, double-underscored versions of the helpers are provided to called when preemption is already disabled. These are only relevant on paths where irqs are disabled anyway, so they are not needed for correctness in the current code. Let's use them anyway though: this marks critical sections clearly and will help to avoid mistakes during future maintenance. The change has been benchmarked on Linux 5.1-rc4 with defconfig. On Juno2: * hackbench 100 process 1000 (10 times) * .7% quicker On ThunderX 2: * hackbench 1000 process 1000 (20 times) * 3.4% quicker Reviewed-by: Dave Martin <dave.martin@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Julien Grall <julien.grall@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-05-22 00:21:39 +07:00
#ifdef CONFIG_KERNEL_MODE_NEON
2017-08-03 23:23:23 +07:00
/*
* may_use_simd - whether it is allowable at this time to issue SIMD
* instructions or access the SIMD register file
2017-08-03 23:23:23 +07:00
*
* Callers must not assume that the result remains true beyond the next
* preempt_enable() or return from softirq context.
*/
static __must_check inline bool may_use_simd(void)
{
2017-08-03 23:23:23 +07:00
/*
arm64/fpsimd: Don't disable softirq when touching FPSIMD/SVE state When the kernel is compiled with CONFIG_KERNEL_MODE_NEON, some part of the kernel may be able to use FPSIMD/SVE. This is for instance the case for crypto code. Any use of FPSIMD/SVE in the kernel are clearly marked by using the function kernel_neon_{begin, end}. Furthermore, this can only be used when may_use_simd() returns true. The current implementation of may_use_simd() allows softirq to use FPSIMD/SVE unless it is currently in use (i.e kernel_neon_busy is true). When in use, softirqs usually fall back to a software method. At the moment, as a softirq may use FPSIMD/SVE, softirqs are disabled when touching the FPSIMD/SVE context. This has the drawback to disable all softirqs even if they are not using FPSIMD/SVE. Since a softirq is supposed to check may_use_simd() anyway before attempting to use FPSIMD/SVE, there is limited reason to keep softirq disabled when touching the FPSIMD/SVE context. Instead, we can simply disable preemption and mark the FPSIMD/SVE context as in use by setting CPU's fpsimd_context_busy flag. Two new helpers {get, put}_cpu_fpsimd_context are introduced to mark the area using FPSIMD/SVE context and they are used to replace local_bh_{disable, enable}. The functions kernel_neon_{begin, end} are also re-implemented to use the new helpers. Additionally, double-underscored versions of the helpers are provided to called when preemption is already disabled. These are only relevant on paths where irqs are disabled anyway, so they are not needed for correctness in the current code. Let's use them anyway though: this marks critical sections clearly and will help to avoid mistakes during future maintenance. The change has been benchmarked on Linux 5.1-rc4 with defconfig. On Juno2: * hackbench 100 process 1000 (10 times) * .7% quicker On ThunderX 2: * hackbench 1000 process 1000 (20 times) * 3.4% quicker Reviewed-by: Dave Martin <dave.martin@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Julien Grall <julien.grall@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-05-22 00:21:39 +07:00
* fpsimd_context_busy is only set while preemption is disabled,
* and is clear whenever preemption is enabled. Since
arm64/fpsimd: Don't disable softirq when touching FPSIMD/SVE state When the kernel is compiled with CONFIG_KERNEL_MODE_NEON, some part of the kernel may be able to use FPSIMD/SVE. This is for instance the case for crypto code. Any use of FPSIMD/SVE in the kernel are clearly marked by using the function kernel_neon_{begin, end}. Furthermore, this can only be used when may_use_simd() returns true. The current implementation of may_use_simd() allows softirq to use FPSIMD/SVE unless it is currently in use (i.e kernel_neon_busy is true). When in use, softirqs usually fall back to a software method. At the moment, as a softirq may use FPSIMD/SVE, softirqs are disabled when touching the FPSIMD/SVE context. This has the drawback to disable all softirqs even if they are not using FPSIMD/SVE. Since a softirq is supposed to check may_use_simd() anyway before attempting to use FPSIMD/SVE, there is limited reason to keep softirq disabled when touching the FPSIMD/SVE context. Instead, we can simply disable preemption and mark the FPSIMD/SVE context as in use by setting CPU's fpsimd_context_busy flag. Two new helpers {get, put}_cpu_fpsimd_context are introduced to mark the area using FPSIMD/SVE context and they are used to replace local_bh_{disable, enable}. The functions kernel_neon_{begin, end} are also re-implemented to use the new helpers. Additionally, double-underscored versions of the helpers are provided to called when preemption is already disabled. These are only relevant on paths where irqs are disabled anyway, so they are not needed for correctness in the current code. Let's use them anyway though: this marks critical sections clearly and will help to avoid mistakes during future maintenance. The change has been benchmarked on Linux 5.1-rc4 with defconfig. On Juno2: * hackbench 100 process 1000 (10 times) * .7% quicker On ThunderX 2: * hackbench 1000 process 1000 (20 times) * 3.4% quicker Reviewed-by: Dave Martin <dave.martin@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Julien Grall <julien.grall@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-05-22 00:21:39 +07:00
* this_cpu_read() is atomic w.r.t. preemption, fpsimd_context_busy
* cannot change under our feet -- if it's set we cannot be
* migrated, and if it's clear we cannot be migrated to a CPU
* where it is set.
2017-08-03 23:23:23 +07:00
*/
return !in_irq() && !irqs_disabled() && !in_nmi() &&
arm64/fpsimd: Don't disable softirq when touching FPSIMD/SVE state When the kernel is compiled with CONFIG_KERNEL_MODE_NEON, some part of the kernel may be able to use FPSIMD/SVE. This is for instance the case for crypto code. Any use of FPSIMD/SVE in the kernel are clearly marked by using the function kernel_neon_{begin, end}. Furthermore, this can only be used when may_use_simd() returns true. The current implementation of may_use_simd() allows softirq to use FPSIMD/SVE unless it is currently in use (i.e kernel_neon_busy is true). When in use, softirqs usually fall back to a software method. At the moment, as a softirq may use FPSIMD/SVE, softirqs are disabled when touching the FPSIMD/SVE context. This has the drawback to disable all softirqs even if they are not using FPSIMD/SVE. Since a softirq is supposed to check may_use_simd() anyway before attempting to use FPSIMD/SVE, there is limited reason to keep softirq disabled when touching the FPSIMD/SVE context. Instead, we can simply disable preemption and mark the FPSIMD/SVE context as in use by setting CPU's fpsimd_context_busy flag. Two new helpers {get, put}_cpu_fpsimd_context are introduced to mark the area using FPSIMD/SVE context and they are used to replace local_bh_{disable, enable}. The functions kernel_neon_{begin, end} are also re-implemented to use the new helpers. Additionally, double-underscored versions of the helpers are provided to called when preemption is already disabled. These are only relevant on paths where irqs are disabled anyway, so they are not needed for correctness in the current code. Let's use them anyway though: this marks critical sections clearly and will help to avoid mistakes during future maintenance. The change has been benchmarked on Linux 5.1-rc4 with defconfig. On Juno2: * hackbench 100 process 1000 (10 times) * .7% quicker On ThunderX 2: * hackbench 1000 process 1000 (20 times) * 3.4% quicker Reviewed-by: Dave Martin <dave.martin@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Julien Grall <julien.grall@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-05-22 00:21:39 +07:00
!this_cpu_read(fpsimd_context_busy);
}
2017-08-03 23:23:23 +07:00
#else /* ! CONFIG_KERNEL_MODE_NEON */
static __must_check inline bool may_use_simd(void) {
return false;
}
#endif /* ! CONFIG_KERNEL_MODE_NEON */
#endif