linux_dsm_epyc7002/drivers/media/platform/vsp1/vsp1_wpf.c

252 lines
6.8 KiB
C
Raw Normal View History

/*
* vsp1_wpf.c -- R-Car VSP1 Write Pixel Formatter
*
* Copyright (C) 2013-2014 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <media/v4l2-subdev.h>
#include "vsp1.h"
#include "vsp1_dl.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
#include "vsp1_video.h"
#define WPF_GEN2_MAX_WIDTH 2048U
#define WPF_GEN2_MAX_HEIGHT 2048U
#define WPF_GEN3_MAX_WIDTH 8190U
#define WPF_GEN3_MAX_HEIGHT 8190U
/* -----------------------------------------------------------------------------
* Device Access
*/
static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf,
struct vsp1_dl_list *dl, u32 reg, u32 data)
{
vsp1_dl_list_write(dl, reg + wpf->entity.index * VI6_WPF_OFFSET, data);
}
/* -----------------------------------------------------------------------------
* V4L2 Subdevice Core Operations
*/
static int wpf_s_stream(struct v4l2_subdev *subdev, int enable)
{
struct vsp1_rwpf *wpf = to_rwpf(subdev);
struct vsp1_device *vsp1 = wpf->entity.vsp1;
if (enable)
return 0;
/* Write to registers directly when stopping the stream as there will be
* no pipeline run to apply the display list.
*/
vsp1_write(vsp1, VI6_WPF_IRQ_ENB(wpf->entity.index), 0);
vsp1_write(vsp1, wpf->entity.index * VI6_WPF_OFFSET +
VI6_WPF_SRCRPF, 0);
return 0;
}
/* -----------------------------------------------------------------------------
* V4L2 Subdevice Operations
*/
static const struct v4l2_subdev_video_ops wpf_video_ops = {
.s_stream = wpf_s_stream,
};
static const struct v4l2_subdev_ops wpf_ops = {
.video = &wpf_video_ops,
.pad = &vsp1_rwpf_pad_ops,
};
/* -----------------------------------------------------------------------------
* VSP1 Entity Operations
*/
static void vsp1_wpf_destroy(struct vsp1_entity *entity)
{
struct vsp1_rwpf *wpf = entity_to_rwpf(entity);
vsp1_dlm_destroy(wpf->dlm);
}
static void wpf_set_memory(struct vsp1_entity *entity, struct vsp1_dl_list *dl)
{
struct vsp1_rwpf *wpf = entity_to_rwpf(entity);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_Y, wpf->mem.addr[0]);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C0, wpf->mem.addr[1]);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_ADDR_C1, wpf->mem.addr[2]);
}
static void wpf_configure(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
[media] v4l: vsp1: Support runtime modification of controls Controls are applied to the hardware in the configure operation of the VSP entities, which is only called when starting the video stream. To enable runtime modification of controls we need to call the configure operations for every frame. Doing so is currently not safe, as most parameters shouldn't be modified during streaming. Furthermore the configure operation can sleep, preventing it from being called from the frame completion interrupt handler for the next frame. Fix this by adding an argument to the configure operation to tell entities whether to perform a full configuration (as done now) or a partial runtime configuration. In the latter case the operation will only configure the subset of parameters related to runtime-configurable controls, and won't be allowed to sleep when doing so. Because partial reconfiguration can depend on parameters computed when performing a full configuration, the core guarantees that the configure operation will always be called with full and partial modes in that order at stream start. Entities thus don't have to duplicate configuration steps in the full and partial code paths. This change affects the VSP driver core only, all entities return immediately from the configure operation when called for a partial runtime configuration. Entities will be modified one by one in further commits. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-06-11 14:07:56 +07:00
struct vsp1_dl_list *dl, bool full)
{
struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
struct vsp1_device *vsp1 = wpf->entity.vsp1;
const struct v4l2_mbus_framefmt *source_format;
const struct v4l2_mbus_framefmt *sink_format;
const struct v4l2_rect *crop;
unsigned int i;
u32 outfmt = 0;
u32 srcrpf = 0;
if (!full) {
vsp1_wpf_write(wpf, dl, VI6_WPF_OUTFMT, wpf->outfmt |
(wpf->alpha << VI6_WPF_OUTFMT_PDV_SHIFT));
[media] v4l: vsp1: Support runtime modification of controls Controls are applied to the hardware in the configure operation of the VSP entities, which is only called when starting the video stream. To enable runtime modification of controls we need to call the configure operations for every frame. Doing so is currently not safe, as most parameters shouldn't be modified during streaming. Furthermore the configure operation can sleep, preventing it from being called from the frame completion interrupt handler for the next frame. Fix this by adding an argument to the configure operation to tell entities whether to perform a full configuration (as done now) or a partial runtime configuration. In the latter case the operation will only configure the subset of parameters related to runtime-configurable controls, and won't be allowed to sleep when doing so. Because partial reconfiguration can depend on parameters computed when performing a full configuration, the core guarantees that the configure operation will always be called with full and partial modes in that order at stream start. Entities thus don't have to duplicate configuration steps in the full and partial code paths. This change affects the VSP driver core only, all entities return immediately from the configure operation when called for a partial runtime configuration. Entities will be modified one by one in further commits. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-06-11 14:07:56 +07:00
return;
}
[media] v4l: vsp1: Support runtime modification of controls Controls are applied to the hardware in the configure operation of the VSP entities, which is only called when starting the video stream. To enable runtime modification of controls we need to call the configure operations for every frame. Doing so is currently not safe, as most parameters shouldn't be modified during streaming. Furthermore the configure operation can sleep, preventing it from being called from the frame completion interrupt handler for the next frame. Fix this by adding an argument to the configure operation to tell entities whether to perform a full configuration (as done now) or a partial runtime configuration. In the latter case the operation will only configure the subset of parameters related to runtime-configurable controls, and won't be allowed to sleep when doing so. Because partial reconfiguration can depend on parameters computed when performing a full configuration, the core guarantees that the configure operation will always be called with full and partial modes in that order at stream start. Entities thus don't have to duplicate configuration steps in the full and partial code paths. This change affects the VSP driver core only, all entities return immediately from the configure operation when called for a partial runtime configuration. Entities will be modified one by one in further commits. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-06-11 14:07:56 +07:00
/* Cropping */
crop = vsp1_rwpf_get_crop(wpf, wpf->entity.config);
vsp1_wpf_write(wpf, dl, VI6_WPF_HSZCLIP, VI6_WPF_SZCLIP_EN |
(crop->left << VI6_WPF_SZCLIP_OFST_SHIFT) |
(crop->width << VI6_WPF_SZCLIP_SIZE_SHIFT));
vsp1_wpf_write(wpf, dl, VI6_WPF_VSZCLIP, VI6_WPF_SZCLIP_EN |
(crop->top << VI6_WPF_SZCLIP_OFST_SHIFT) |
(crop->height << VI6_WPF_SZCLIP_SIZE_SHIFT));
/* Format */
sink_format = vsp1_entity_get_pad_format(&wpf->entity,
wpf->entity.config,
RWPF_PAD_SINK);
source_format = vsp1_entity_get_pad_format(&wpf->entity,
wpf->entity.config,
RWPF_PAD_SOURCE);
if (!pipe->lif) {
const struct v4l2_pix_format_mplane *format = &wpf->format;
const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT;
if (fmtinfo->alpha)
outfmt |= VI6_WPF_OUTFMT_PXA;
if (fmtinfo->swap_yc)
outfmt |= VI6_WPF_OUTFMT_SPYCS;
if (fmtinfo->swap_uv)
outfmt |= VI6_WPF_OUTFMT_SPUVS;
/* Destination stride and byte swapping. */
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_Y,
format->plane_fmt[0].bytesperline);
if (format->num_planes > 1)
vsp1_wpf_write(wpf, dl, VI6_WPF_DSTM_STRIDE_C,
format->plane_fmt[1].bytesperline);
vsp1_wpf_write(wpf, dl, VI6_WPF_DSWAP, fmtinfo->swap);
}
if (sink_format->code != source_format->code)
outfmt |= VI6_WPF_OUTFMT_CSC;
wpf->outfmt = outfmt;
vsp1_dl_list_write(dl, VI6_DPR_WPF_FPORCH(wpf->entity.index),
VI6_DPR_WPF_FPORCH_FP_WPFN);
vsp1_dl_list_write(dl, VI6_WPF_WRBCK_CTRL, 0);
/* Sources. If the pipeline has a single input and BRU is not used,
* configure it as the master layer. Otherwise configure all
* inputs as sub-layers and select the virtual RPF as the master
* layer.
*/
for (i = 0; i < vsp1->info->rpf_count; ++i) {
struct vsp1_rwpf *input = pipe->inputs[i];
if (!input)
continue;
srcrpf |= (!pipe->bru && pipe->num_inputs == 1)
? VI6_WPF_SRCRPF_RPF_ACT_MST(input->entity.index)
: VI6_WPF_SRCRPF_RPF_ACT_SUB(input->entity.index);
}
if (pipe->bru || pipe->num_inputs > 1)
srcrpf |= VI6_WPF_SRCRPF_VIRACT_MST;
vsp1_wpf_write(wpf, dl, VI6_WPF_SRCRPF, srcrpf);
/* Enable interrupts */
vsp1_dl_list_write(dl, VI6_WPF_IRQ_STA(wpf->entity.index), 0);
vsp1_dl_list_write(dl, VI6_WPF_IRQ_ENB(wpf->entity.index),
VI6_WFP_IRQ_ENB_FREE);
}
static const struct vsp1_entity_operations wpf_entity_ops = {
.destroy = vsp1_wpf_destroy,
.set_memory = wpf_set_memory,
.configure = wpf_configure,
};
/* -----------------------------------------------------------------------------
* Initialization and Cleanup
*/
struct vsp1_rwpf *vsp1_wpf_create(struct vsp1_device *vsp1, unsigned int index)
{
struct vsp1_rwpf *wpf;
char name[6];
int ret;
wpf = devm_kzalloc(vsp1->dev, sizeof(*wpf), GFP_KERNEL);
if (wpf == NULL)
return ERR_PTR(-ENOMEM);
if (vsp1->info->gen == 2) {
wpf->max_width = WPF_GEN2_MAX_WIDTH;
wpf->max_height = WPF_GEN2_MAX_HEIGHT;
} else {
wpf->max_width = WPF_GEN3_MAX_WIDTH;
wpf->max_height = WPF_GEN3_MAX_HEIGHT;
}
wpf->entity.ops = &wpf_entity_ops;
wpf->entity.type = VSP1_ENTITY_WPF;
wpf->entity.index = index;
sprintf(name, "wpf.%u", index);
ret = vsp1_entity_init(vsp1, &wpf->entity, name, 2, &wpf_ops,
MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
if (ret < 0)
return ERR_PTR(ret);
/* Initialize the display list manager. */
wpf->dlm = vsp1_dlm_create(vsp1, index, 4);
if (!wpf->dlm) {
ret = -ENOMEM;
goto error;
}
/* Initialize the control handler. */
ret = vsp1_rwpf_init_ctrls(wpf);
if (ret < 0) {
dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
index);
goto error;
}
v4l2_ctrl_handler_setup(&wpf->ctrls);
return wpf;
error:
vsp1_entity_destroy(&wpf->entity);
return ERR_PTR(ret);
}