linux_dsm_epyc7002/drivers/gpu/drm/i915/i915_gem_context.c

842 lines
24 KiB
C
Raw Normal View History

drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
/*
* Copyright © 2011-2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
*
*/
/*
* This file implements HW context support. On gen5+ a HW context consists of an
* opaque GPU object which is referenced at times of context saves and restores.
* With RC6 enabled, the context is also referenced as the GPU enters and exists
* from RC6 (GPU has it's own internal power context, except on gen5). Though
* something like a context does exist for the media ring, the code only
* supports contexts for the render ring.
*
* In software, there is a distinction between contexts created by the user,
* and the default HW context. The default HW context is used by GPU clients
* that do not request setup of their own hardware context. The default
* context's state is never restored to help prevent programming errors. This
* would happen if a client ran and piggy-backed off another clients GPU state.
* The default context only exists to give the GPU some offset to load as the
* current to invoke a save of the context we actually care about. In fact, the
* code could likely be constructed, albeit in a more complicated fashion, to
* never use the default context, though that limits the driver's ability to
* swap out, and/or destroy other contexts.
*
* All other contexts are created as a request by the GPU client. These contexts
* store GPU state, and thus allow GPU clients to not re-emit state (and
* potentially query certain state) at any time. The kernel driver makes
* certain that the appropriate commands are inserted.
*
* The context life cycle is semi-complicated in that context BOs may live
* longer than the context itself because of the way the hardware, and object
* tracking works. Below is a very crude representation of the state machine
* describing the context life.
* refcount pincount active
* S0: initial state 0 0 0
* S1: context created 1 0 0
* S2: context is currently running 2 1 X
* S3: GPU referenced, but not current 2 0 1
* S4: context is current, but destroyed 1 1 0
* S5: like S3, but destroyed 1 0 1
*
* The most common (but not all) transitions:
* S0->S1: client creates a context
* S1->S2: client submits execbuf with context
* S2->S3: other clients submits execbuf with context
* S3->S1: context object was retired
* S3->S2: clients submits another execbuf
* S2->S4: context destroy called with current context
* S3->S5->S0: destroy path
* S4->S5->S0: destroy path on current context
*
* There are two confusing terms used above:
* The "current context" means the context which is currently running on the
* GPU. The GPU has loaded its state already and has stored away the gtt
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
* offset of the BO. The GPU is not actively referencing the data at this
* offset, but it will on the next context switch. The only way to avoid this
* is to do a GPU reset.
*
* An "active context' is one which was previously the "current context" and is
* on the active list waiting for the next context switch to occur. Until this
* happens, the object must remain at the same gtt offset. It is therefore
* possible to destroy a context, but it is still active.
*
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
#include "i915_drv.h"
/* This is a HW constraint. The value below is the largest known requirement
* I've seen in a spec to date, and that was a workaround for a non-shipping
* part. It should be safe to decrease this, but it's more future proof as is.
*/
#define GEN6_CONTEXT_ALIGN (64<<10)
#define GEN7_CONTEXT_ALIGN 4096
static int do_switch(struct intel_ring_buffer *ring,
struct i915_hw_context *to);
static void do_ppgtt_cleanup(struct i915_hw_ppgtt *ppgtt)
{
struct drm_device *dev = ppgtt->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *vm = &ppgtt->base;
if (ppgtt == dev_priv->mm.aliasing_ppgtt ||
(list_empty(&vm->active_list) && list_empty(&vm->inactive_list))) {
ppgtt->base.cleanup(&ppgtt->base);
return;
}
/*
* Make sure vmas are unbound before we take down the drm_mm
*
* FIXME: Proper refcounting should take care of this, this shouldn't be
* needed at all.
*/
if (!list_empty(&vm->active_list)) {
struct i915_vma *vma;
list_for_each_entry(vma, &vm->active_list, mm_list)
if (WARN_ON(list_empty(&vma->vma_link) ||
list_is_singular(&vma->vma_link)))
break;
i915_gem_evict_vm(&ppgtt->base, true);
} else {
i915_gem_retire_requests(dev);
i915_gem_evict_vm(&ppgtt->base, false);
}
ppgtt->base.cleanup(&ppgtt->base);
}
static void ppgtt_release(struct kref *kref)
{
struct i915_hw_ppgtt *ppgtt =
container_of(kref, struct i915_hw_ppgtt, ref);
do_ppgtt_cleanup(ppgtt);
kfree(ppgtt);
}
static size_t get_context_alignment(struct drm_device *dev)
{
if (IS_GEN6(dev))
return GEN6_CONTEXT_ALIGN;
return GEN7_CONTEXT_ALIGN;
}
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
static int get_context_size(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
u32 reg;
switch (INTEL_INFO(dev)->gen) {
case 6:
reg = I915_READ(CXT_SIZE);
ret = GEN6_CXT_TOTAL_SIZE(reg) * 64;
break;
case 7:
reg = I915_READ(GEN7_CXT_SIZE);
if (IS_HASWELL(dev))
ret = HSW_CXT_TOTAL_SIZE;
else
ret = GEN7_CXT_TOTAL_SIZE(reg) * 64;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
break;
case 8:
ret = GEN8_CXT_TOTAL_SIZE;
break;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
default:
BUG();
}
return ret;
}
void i915_gem_context_free(struct kref *ctx_ref)
{
struct i915_hw_context *ctx = container_of(ctx_ref,
typeof(*ctx), ref);
struct i915_hw_ppgtt *ppgtt = NULL;
/* We refcount even the aliasing PPGTT to keep the code symmetric */
if (USES_PPGTT(ctx->obj->base.dev))
ppgtt = ctx_to_ppgtt(ctx);
/* XXX: Free up the object before tearing down the address space, in
* case we're bound in the PPGTT */
drm_gem_object_unreference(&ctx->obj->base);
if (ppgtt)
kref_put(&ppgtt->ref, ppgtt_release);
list_del(&ctx->link);
kfree(ctx);
}
static struct i915_hw_ppgtt *
create_vm_for_ctx(struct drm_device *dev, struct i915_hw_context *ctx)
{
struct i915_hw_ppgtt *ppgtt;
int ret;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
ret = i915_gem_init_ppgtt(dev, ppgtt);
if (ret) {
kfree(ppgtt);
return ERR_PTR(ret);
}
ppgtt->ctx = ctx;
return ppgtt;
}
static struct i915_hw_context *
__create_hw_context(struct drm_device *dev,
struct drm_i915_file_private *file_priv)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_context *ctx;
int ret;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (ctx == NULL)
return ERR_PTR(-ENOMEM);
kref_init(&ctx->ref);
ctx->obj = i915_gem_alloc_object(dev, dev_priv->hw_context_size);
INIT_LIST_HEAD(&ctx->link);
if (ctx->obj == NULL) {
kfree(ctx);
DRM_DEBUG_DRIVER("Context object allocated failed\n");
return ERR_PTR(-ENOMEM);
}
if (INTEL_INFO(dev)->gen >= 7) {
ret = i915_gem_object_set_cache_level(ctx->obj,
I915_CACHE_L3_LLC);
/* Failure shouldn't ever happen this early */
if (WARN_ON(ret))
goto err_out;
}
list_add_tail(&ctx->link, &dev_priv->context_list);
/* Default context will never have a file_priv */
if (file_priv == NULL)
return ctx;
ret = idr_alloc(&file_priv->context_idr, ctx, DEFAULT_CONTEXT_ID, 0,
GFP_KERNEL);
if (ret < 0)
goto err_out;
ctx->file_priv = file_priv;
ctx->id = ret;
drm/i915: Do remaps for all contexts On both Ivybridge and Haswell, row remapping information is saved and restored with context. This means, we never actually properly supported the l3 remapping because our sysfs interface is asynchronous (and not tied to any context), and the known faulty HW would be reused by the next context to run. Not that due to the asynchronous nature of the sysfs entry, there is no point modifying the registers for the existing context. Instead we set a flag for all contexts to load the correct remapping information on the next run. Interested clients can use debugfs to determine whether or not the row has been remapped. One could propose at this point that we just do the remapping in the kernel. I guess since we have to maintain the sysfs interface anyway, I'm not sure how useful it is, and I do like keeping the policy in userspace; (it wasn't my original decision to make the interface the way it is, so I'm not attached). v2: Force a context switch when we have a remap on the next switch. (Ville) Don't let userspace use the interface with disabled contexts. v3: Don't force a context switch, just let it nop Improper context slice remap initialization, 1<<1 instead of 1<<i, but I rewrote it to avoid a second round of confusion. Error print moved to error path (All Ville) Added a comment on why the slice remap initialization happens. CC: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-19 09:03:18 +07:00
/* NB: Mark all slices as needing a remap so that when the context first
* loads it will restore whatever remap state already exists. If there
* is no remap info, it will be a NOP. */
ctx->remap_slice = (1 << NUM_L3_SLICES(dev)) - 1;
return ctx;
err_out:
i915_gem_context_unreference(ctx);
return ERR_PTR(ret);
}
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
/**
* The default context needs to exist per ring that uses contexts. It stores the
* context state of the GPU for applications that don't utilize HW contexts, as
* well as an idle case.
*/
static struct i915_hw_context *
i915_gem_create_context(struct drm_device *dev,
struct drm_i915_file_private *file_priv,
bool create_vm)
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
{
drm/i915: Always pin the default context Through a twisty and circuituous path it is possible to currently trick the code into creating a default context and forgetting to pin it immediately into the GGTT. (This requires a system using contexts without an aliasing ppgtt, which is currently restricted to Baytrails machines manually specifying a module parameter to force enable contexts, or on Sandybridge and later that manually disable the aliasing ppgtt.) The consequence is that during module unload we attempt to unpin the default context twice and encounter a BUG remonstrating that we attempt to unpin an unbound object. [ 161.002869] Kernel BUG at f84861f8 [verbose debug info unavailable] [ 161.002875] invalid opcode: 0000 [#1] SMP [ 161.002882] Modules linked in: coretemp kvm_intel kvm crc32_pclmul aesni_intel aes_i586 xts lrw gf128mul ablk_helper cryptd hid_sensor_accel_3d hid_sensor_gyro_3d hid_sensor_magn_3d hid_sensor_trigger industrialio_triggered_buffer kfifo_buf industrialio hid_sensor_iio_common snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_page_alloc snd_seq_midi snd_seq_midi_event dm_multipath scsi_dh asix ppdev usbnet snd_rawmidi mii hid_sensor_hub microcode snd_seq rfcomm bnep snd_seq_device bluetooth snd_timer snd parport_pc binfmt_misc soundcore dw_dmac_pci dw_dmac_core mac_hid lp parport dm_mirror dm_region_hash dm_log hid_generic usbhid hid i915(O-) drm_kms_helper(O) igb dca ptp pps_core i2c_algo_bit drm(O) ahci libahci video [ 161.002991] CPU: 0 PID: 2114 Comm: rmmod Tainted: G W O 3.13.0-rc8+ #2 [ 161.002997] Hardware name: NEXCOM VTC1010/Aptio CRB, BIOS 5.6.5 09/24/2013 [ 161.003004] task: dbdd6800 ti: dbe0e000 task.ti: dbe0e000 [ 161.003010] EIP: 0060:[<f84861f8>] EFLAGS: 00010246 CPU: 0 [ 161.003044] EIP is at i915_gem_object_ggtt_unpin+0x88/0x90 [i915] [ 161.003050] EAX: dfce3840 EBX: 00000000 ECX: dfafd690 EDX: dfce3874 [ 161.003056] ESI: c0086b40 EDI: df962e00 EBP: dbe0fe1c ESP: dbe0fe0c [ 161.003062] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 [ 161.003068] CR0: 8005003b CR2: b7718000 CR3: 1bec0000 CR4: 001007f0 [ 161.003076] Stack: [ 161.003081] 00afc014 00000004 c0086b40 dfafc000 dbe0fe38 f8487e5a dfaa5400 c0086b40 [ 161.003099] dfafc000 dfaa5400 dfaa5414 dbe0fe58 f84741aa 00000000 f89c34b9 dfaa5414 [ 161.003117] dfaa5400 dfaa5400 f644b000 dbe0fe6c f89a5443 dfaa5400 f8505000 f644b000 [ 161.003134] Call Trace: [ 161.003169] [<f8487e5a>] i915_gem_context_fini+0xba/0x1c0 [i915] [ 161.003202] [<f84741aa>] i915_driver_unload+0x1fa/0x2f0 [i915] [ 161.003232] [<f89a5443>] drm_dev_unregister+0x23/0x90 [drm] [ 161.003259] [<f89a54ed>] drm_put_dev+0x3d/0x70 [drm] [ 161.003294] [<f8470615>] i915_pci_remove+0x15/0x20 [i915] [ 161.003306] [<c1338a6f>] pci_device_remove+0x2f/0xa0 [ 161.003317] [<c140c871>] __device_release_driver+0x61/0xc0 [ 161.003328] [<c140d12f>] driver_detach+0x8f/0xa0 [ 161.003341] [<c140c54f>] bus_remove_driver+0x4f/0xc0 [ 161.003353] [<c140d708>] driver_unregister+0x28/0x60 [ 161.003362] [<c10cee42>] ? stop_cpus+0x32/0x40 [ 161.003372] [<c10bd510>] ? module_refcount+0x90/0x90 [ 161.003383] [<c13378c5>] pci_unregister_driver+0x15/0x60 [ 161.003413] [<f89a739f>] drm_pci_exit+0x9f/0xb0 [drm] [ 161.003458] [<f84e624a>] i915_exit+0x1b/0x1d [i915] [ 161.003468] [<c10bf8a8>] SyS_delete_module+0x158/0x1f0 [ 161.003480] [<c1173d5d>] ? ____fput+0xd/0x10 [ 161.003488] [<c106f0fe>] ? task_work_run+0x7e/0xb0 [ 161.003499] [<c165a68d>] sysenter_do_call+0x12/0x28 [ 161.003505] Code: 0f b6 4d f3 8d 51 0f 83 e1 f0 83 e2 0f 09 d1 84 d2 88 48 54 75 07 80 a7 91 00 00 00 7f 83 c4 04 5b 5e 5f 5d c3 8d b6 00 00 00 00 <0f> 0b 8d b6 00 00 00 00 55 89 e5 57 56 53 83 ec 64 3e 8d 74 26 [ 161.003586] EIP: [<f84861f8>] i915_gem_object_ggtt_unpin+0x88/0x90 [i915] SS:ESP 0068:dbe0fe0c v2: Rename the local variable (is_default_ctx) to avoid confusion with the function is_default_ctx(). And correct Jesse's email address. Reported-by: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73985 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ben Widawsky <benjamin.widawsky@intel.com> Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com> [danvet: Fix up the rebase fail from my first attempt, thankfully pointed out by Ville.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-01-24 02:40:02 +07:00
const bool is_global_default_ctx = file_priv == NULL;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_context *ctx;
int ret = 0;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
ctx = __create_hw_context(dev, file_priv);
if (IS_ERR(ctx))
return ctx;
drm/i915: Always pin the default context Through a twisty and circuituous path it is possible to currently trick the code into creating a default context and forgetting to pin it immediately into the GGTT. (This requires a system using contexts without an aliasing ppgtt, which is currently restricted to Baytrails machines manually specifying a module parameter to force enable contexts, or on Sandybridge and later that manually disable the aliasing ppgtt.) The consequence is that during module unload we attempt to unpin the default context twice and encounter a BUG remonstrating that we attempt to unpin an unbound object. [ 161.002869] Kernel BUG at f84861f8 [verbose debug info unavailable] [ 161.002875] invalid opcode: 0000 [#1] SMP [ 161.002882] Modules linked in: coretemp kvm_intel kvm crc32_pclmul aesni_intel aes_i586 xts lrw gf128mul ablk_helper cryptd hid_sensor_accel_3d hid_sensor_gyro_3d hid_sensor_magn_3d hid_sensor_trigger industrialio_triggered_buffer kfifo_buf industrialio hid_sensor_iio_common snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_page_alloc snd_seq_midi snd_seq_midi_event dm_multipath scsi_dh asix ppdev usbnet snd_rawmidi mii hid_sensor_hub microcode snd_seq rfcomm bnep snd_seq_device bluetooth snd_timer snd parport_pc binfmt_misc soundcore dw_dmac_pci dw_dmac_core mac_hid lp parport dm_mirror dm_region_hash dm_log hid_generic usbhid hid i915(O-) drm_kms_helper(O) igb dca ptp pps_core i2c_algo_bit drm(O) ahci libahci video [ 161.002991] CPU: 0 PID: 2114 Comm: rmmod Tainted: G W O 3.13.0-rc8+ #2 [ 161.002997] Hardware name: NEXCOM VTC1010/Aptio CRB, BIOS 5.6.5 09/24/2013 [ 161.003004] task: dbdd6800 ti: dbe0e000 task.ti: dbe0e000 [ 161.003010] EIP: 0060:[<f84861f8>] EFLAGS: 00010246 CPU: 0 [ 161.003044] EIP is at i915_gem_object_ggtt_unpin+0x88/0x90 [i915] [ 161.003050] EAX: dfce3840 EBX: 00000000 ECX: dfafd690 EDX: dfce3874 [ 161.003056] ESI: c0086b40 EDI: df962e00 EBP: dbe0fe1c ESP: dbe0fe0c [ 161.003062] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 [ 161.003068] CR0: 8005003b CR2: b7718000 CR3: 1bec0000 CR4: 001007f0 [ 161.003076] Stack: [ 161.003081] 00afc014 00000004 c0086b40 dfafc000 dbe0fe38 f8487e5a dfaa5400 c0086b40 [ 161.003099] dfafc000 dfaa5400 dfaa5414 dbe0fe58 f84741aa 00000000 f89c34b9 dfaa5414 [ 161.003117] dfaa5400 dfaa5400 f644b000 dbe0fe6c f89a5443 dfaa5400 f8505000 f644b000 [ 161.003134] Call Trace: [ 161.003169] [<f8487e5a>] i915_gem_context_fini+0xba/0x1c0 [i915] [ 161.003202] [<f84741aa>] i915_driver_unload+0x1fa/0x2f0 [i915] [ 161.003232] [<f89a5443>] drm_dev_unregister+0x23/0x90 [drm] [ 161.003259] [<f89a54ed>] drm_put_dev+0x3d/0x70 [drm] [ 161.003294] [<f8470615>] i915_pci_remove+0x15/0x20 [i915] [ 161.003306] [<c1338a6f>] pci_device_remove+0x2f/0xa0 [ 161.003317] [<c140c871>] __device_release_driver+0x61/0xc0 [ 161.003328] [<c140d12f>] driver_detach+0x8f/0xa0 [ 161.003341] [<c140c54f>] bus_remove_driver+0x4f/0xc0 [ 161.003353] [<c140d708>] driver_unregister+0x28/0x60 [ 161.003362] [<c10cee42>] ? stop_cpus+0x32/0x40 [ 161.003372] [<c10bd510>] ? module_refcount+0x90/0x90 [ 161.003383] [<c13378c5>] pci_unregister_driver+0x15/0x60 [ 161.003413] [<f89a739f>] drm_pci_exit+0x9f/0xb0 [drm] [ 161.003458] [<f84e624a>] i915_exit+0x1b/0x1d [i915] [ 161.003468] [<c10bf8a8>] SyS_delete_module+0x158/0x1f0 [ 161.003480] [<c1173d5d>] ? ____fput+0xd/0x10 [ 161.003488] [<c106f0fe>] ? task_work_run+0x7e/0xb0 [ 161.003499] [<c165a68d>] sysenter_do_call+0x12/0x28 [ 161.003505] Code: 0f b6 4d f3 8d 51 0f 83 e1 f0 83 e2 0f 09 d1 84 d2 88 48 54 75 07 80 a7 91 00 00 00 7f 83 c4 04 5b 5e 5f 5d c3 8d b6 00 00 00 00 <0f> 0b 8d b6 00 00 00 00 55 89 e5 57 56 53 83 ec 64 3e 8d 74 26 [ 161.003586] EIP: [<f84861f8>] i915_gem_object_ggtt_unpin+0x88/0x90 [i915] SS:ESP 0068:dbe0fe0c v2: Rename the local variable (is_default_ctx) to avoid confusion with the function is_default_ctx(). And correct Jesse's email address. Reported-by: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73985 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ben Widawsky <benjamin.widawsky@intel.com> Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com> [danvet: Fix up the rebase fail from my first attempt, thankfully pointed out by Ville.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-01-24 02:40:02 +07:00
if (is_global_default_ctx) {
/* We may need to do things with the shrinker which
* require us to immediately switch back to the default
* context. This can cause a problem as pinning the
* default context also requires GTT space which may not
* be available. To avoid this we always pin the default
* context.
*/
ret = i915_gem_obj_ggtt_pin(ctx->obj,
get_context_alignment(dev), 0);
drm/i915: Always pin the default context Through a twisty and circuituous path it is possible to currently trick the code into creating a default context and forgetting to pin it immediately into the GGTT. (This requires a system using contexts without an aliasing ppgtt, which is currently restricted to Baytrails machines manually specifying a module parameter to force enable contexts, or on Sandybridge and later that manually disable the aliasing ppgtt.) The consequence is that during module unload we attempt to unpin the default context twice and encounter a BUG remonstrating that we attempt to unpin an unbound object. [ 161.002869] Kernel BUG at f84861f8 [verbose debug info unavailable] [ 161.002875] invalid opcode: 0000 [#1] SMP [ 161.002882] Modules linked in: coretemp kvm_intel kvm crc32_pclmul aesni_intel aes_i586 xts lrw gf128mul ablk_helper cryptd hid_sensor_accel_3d hid_sensor_gyro_3d hid_sensor_magn_3d hid_sensor_trigger industrialio_triggered_buffer kfifo_buf industrialio hid_sensor_iio_common snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_page_alloc snd_seq_midi snd_seq_midi_event dm_multipath scsi_dh asix ppdev usbnet snd_rawmidi mii hid_sensor_hub microcode snd_seq rfcomm bnep snd_seq_device bluetooth snd_timer snd parport_pc binfmt_misc soundcore dw_dmac_pci dw_dmac_core mac_hid lp parport dm_mirror dm_region_hash dm_log hid_generic usbhid hid i915(O-) drm_kms_helper(O) igb dca ptp pps_core i2c_algo_bit drm(O) ahci libahci video [ 161.002991] CPU: 0 PID: 2114 Comm: rmmod Tainted: G W O 3.13.0-rc8+ #2 [ 161.002997] Hardware name: NEXCOM VTC1010/Aptio CRB, BIOS 5.6.5 09/24/2013 [ 161.003004] task: dbdd6800 ti: dbe0e000 task.ti: dbe0e000 [ 161.003010] EIP: 0060:[<f84861f8>] EFLAGS: 00010246 CPU: 0 [ 161.003044] EIP is at i915_gem_object_ggtt_unpin+0x88/0x90 [i915] [ 161.003050] EAX: dfce3840 EBX: 00000000 ECX: dfafd690 EDX: dfce3874 [ 161.003056] ESI: c0086b40 EDI: df962e00 EBP: dbe0fe1c ESP: dbe0fe0c [ 161.003062] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 [ 161.003068] CR0: 8005003b CR2: b7718000 CR3: 1bec0000 CR4: 001007f0 [ 161.003076] Stack: [ 161.003081] 00afc014 00000004 c0086b40 dfafc000 dbe0fe38 f8487e5a dfaa5400 c0086b40 [ 161.003099] dfafc000 dfaa5400 dfaa5414 dbe0fe58 f84741aa 00000000 f89c34b9 dfaa5414 [ 161.003117] dfaa5400 dfaa5400 f644b000 dbe0fe6c f89a5443 dfaa5400 f8505000 f644b000 [ 161.003134] Call Trace: [ 161.003169] [<f8487e5a>] i915_gem_context_fini+0xba/0x1c0 [i915] [ 161.003202] [<f84741aa>] i915_driver_unload+0x1fa/0x2f0 [i915] [ 161.003232] [<f89a5443>] drm_dev_unregister+0x23/0x90 [drm] [ 161.003259] [<f89a54ed>] drm_put_dev+0x3d/0x70 [drm] [ 161.003294] [<f8470615>] i915_pci_remove+0x15/0x20 [i915] [ 161.003306] [<c1338a6f>] pci_device_remove+0x2f/0xa0 [ 161.003317] [<c140c871>] __device_release_driver+0x61/0xc0 [ 161.003328] [<c140d12f>] driver_detach+0x8f/0xa0 [ 161.003341] [<c140c54f>] bus_remove_driver+0x4f/0xc0 [ 161.003353] [<c140d708>] driver_unregister+0x28/0x60 [ 161.003362] [<c10cee42>] ? stop_cpus+0x32/0x40 [ 161.003372] [<c10bd510>] ? module_refcount+0x90/0x90 [ 161.003383] [<c13378c5>] pci_unregister_driver+0x15/0x60 [ 161.003413] [<f89a739f>] drm_pci_exit+0x9f/0xb0 [drm] [ 161.003458] [<f84e624a>] i915_exit+0x1b/0x1d [i915] [ 161.003468] [<c10bf8a8>] SyS_delete_module+0x158/0x1f0 [ 161.003480] [<c1173d5d>] ? ____fput+0xd/0x10 [ 161.003488] [<c106f0fe>] ? task_work_run+0x7e/0xb0 [ 161.003499] [<c165a68d>] sysenter_do_call+0x12/0x28 [ 161.003505] Code: 0f b6 4d f3 8d 51 0f 83 e1 f0 83 e2 0f 09 d1 84 d2 88 48 54 75 07 80 a7 91 00 00 00 7f 83 c4 04 5b 5e 5f 5d c3 8d b6 00 00 00 00 <0f> 0b 8d b6 00 00 00 00 55 89 e5 57 56 53 83 ec 64 3e 8d 74 26 [ 161.003586] EIP: [<f84861f8>] i915_gem_object_ggtt_unpin+0x88/0x90 [i915] SS:ESP 0068:dbe0fe0c v2: Rename the local variable (is_default_ctx) to avoid confusion with the function is_default_ctx(). And correct Jesse's email address. Reported-by: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73985 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ben Widawsky <benjamin.widawsky@intel.com> Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com> [danvet: Fix up the rebase fail from my first attempt, thankfully pointed out by Ville.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-01-24 02:40:02 +07:00
if (ret) {
DRM_DEBUG_DRIVER("Couldn't pin %d\n", ret);
goto err_destroy;
}
}
if (create_vm) {
struct i915_hw_ppgtt *ppgtt = create_vm_for_ctx(dev, ctx);
if (IS_ERR_OR_NULL(ppgtt)) {
DRM_DEBUG_DRIVER("PPGTT setup failed (%ld)\n",
PTR_ERR(ppgtt));
ret = PTR_ERR(ppgtt);
drm/i915: Always pin the default context Through a twisty and circuituous path it is possible to currently trick the code into creating a default context and forgetting to pin it immediately into the GGTT. (This requires a system using contexts without an aliasing ppgtt, which is currently restricted to Baytrails machines manually specifying a module parameter to force enable contexts, or on Sandybridge and later that manually disable the aliasing ppgtt.) The consequence is that during module unload we attempt to unpin the default context twice and encounter a BUG remonstrating that we attempt to unpin an unbound object. [ 161.002869] Kernel BUG at f84861f8 [verbose debug info unavailable] [ 161.002875] invalid opcode: 0000 [#1] SMP [ 161.002882] Modules linked in: coretemp kvm_intel kvm crc32_pclmul aesni_intel aes_i586 xts lrw gf128mul ablk_helper cryptd hid_sensor_accel_3d hid_sensor_gyro_3d hid_sensor_magn_3d hid_sensor_trigger industrialio_triggered_buffer kfifo_buf industrialio hid_sensor_iio_common snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_page_alloc snd_seq_midi snd_seq_midi_event dm_multipath scsi_dh asix ppdev usbnet snd_rawmidi mii hid_sensor_hub microcode snd_seq rfcomm bnep snd_seq_device bluetooth snd_timer snd parport_pc binfmt_misc soundcore dw_dmac_pci dw_dmac_core mac_hid lp parport dm_mirror dm_region_hash dm_log hid_generic usbhid hid i915(O-) drm_kms_helper(O) igb dca ptp pps_core i2c_algo_bit drm(O) ahci libahci video [ 161.002991] CPU: 0 PID: 2114 Comm: rmmod Tainted: G W O 3.13.0-rc8+ #2 [ 161.002997] Hardware name: NEXCOM VTC1010/Aptio CRB, BIOS 5.6.5 09/24/2013 [ 161.003004] task: dbdd6800 ti: dbe0e000 task.ti: dbe0e000 [ 161.003010] EIP: 0060:[<f84861f8>] EFLAGS: 00010246 CPU: 0 [ 161.003044] EIP is at i915_gem_object_ggtt_unpin+0x88/0x90 [i915] [ 161.003050] EAX: dfce3840 EBX: 00000000 ECX: dfafd690 EDX: dfce3874 [ 161.003056] ESI: c0086b40 EDI: df962e00 EBP: dbe0fe1c ESP: dbe0fe0c [ 161.003062] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 [ 161.003068] CR0: 8005003b CR2: b7718000 CR3: 1bec0000 CR4: 001007f0 [ 161.003076] Stack: [ 161.003081] 00afc014 00000004 c0086b40 dfafc000 dbe0fe38 f8487e5a dfaa5400 c0086b40 [ 161.003099] dfafc000 dfaa5400 dfaa5414 dbe0fe58 f84741aa 00000000 f89c34b9 dfaa5414 [ 161.003117] dfaa5400 dfaa5400 f644b000 dbe0fe6c f89a5443 dfaa5400 f8505000 f644b000 [ 161.003134] Call Trace: [ 161.003169] [<f8487e5a>] i915_gem_context_fini+0xba/0x1c0 [i915] [ 161.003202] [<f84741aa>] i915_driver_unload+0x1fa/0x2f0 [i915] [ 161.003232] [<f89a5443>] drm_dev_unregister+0x23/0x90 [drm] [ 161.003259] [<f89a54ed>] drm_put_dev+0x3d/0x70 [drm] [ 161.003294] [<f8470615>] i915_pci_remove+0x15/0x20 [i915] [ 161.003306] [<c1338a6f>] pci_device_remove+0x2f/0xa0 [ 161.003317] [<c140c871>] __device_release_driver+0x61/0xc0 [ 161.003328] [<c140d12f>] driver_detach+0x8f/0xa0 [ 161.003341] [<c140c54f>] bus_remove_driver+0x4f/0xc0 [ 161.003353] [<c140d708>] driver_unregister+0x28/0x60 [ 161.003362] [<c10cee42>] ? stop_cpus+0x32/0x40 [ 161.003372] [<c10bd510>] ? module_refcount+0x90/0x90 [ 161.003383] [<c13378c5>] pci_unregister_driver+0x15/0x60 [ 161.003413] [<f89a739f>] drm_pci_exit+0x9f/0xb0 [drm] [ 161.003458] [<f84e624a>] i915_exit+0x1b/0x1d [i915] [ 161.003468] [<c10bf8a8>] SyS_delete_module+0x158/0x1f0 [ 161.003480] [<c1173d5d>] ? ____fput+0xd/0x10 [ 161.003488] [<c106f0fe>] ? task_work_run+0x7e/0xb0 [ 161.003499] [<c165a68d>] sysenter_do_call+0x12/0x28 [ 161.003505] Code: 0f b6 4d f3 8d 51 0f 83 e1 f0 83 e2 0f 09 d1 84 d2 88 48 54 75 07 80 a7 91 00 00 00 7f 83 c4 04 5b 5e 5f 5d c3 8d b6 00 00 00 00 <0f> 0b 8d b6 00 00 00 00 55 89 e5 57 56 53 83 ec 64 3e 8d 74 26 [ 161.003586] EIP: [<f84861f8>] i915_gem_object_ggtt_unpin+0x88/0x90 [i915] SS:ESP 0068:dbe0fe0c v2: Rename the local variable (is_default_ctx) to avoid confusion with the function is_default_ctx(). And correct Jesse's email address. Reported-by: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73985 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ben Widawsky <benjamin.widawsky@intel.com> Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com> [danvet: Fix up the rebase fail from my first attempt, thankfully pointed out by Ville.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-01-24 02:40:02 +07:00
goto err_unpin;
} else
ctx->vm = &ppgtt->base;
/* This case is reserved for the global default context and
* should only happen once. */
drm/i915: Always pin the default context Through a twisty and circuituous path it is possible to currently trick the code into creating a default context and forgetting to pin it immediately into the GGTT. (This requires a system using contexts without an aliasing ppgtt, which is currently restricted to Baytrails machines manually specifying a module parameter to force enable contexts, or on Sandybridge and later that manually disable the aliasing ppgtt.) The consequence is that during module unload we attempt to unpin the default context twice and encounter a BUG remonstrating that we attempt to unpin an unbound object. [ 161.002869] Kernel BUG at f84861f8 [verbose debug info unavailable] [ 161.002875] invalid opcode: 0000 [#1] SMP [ 161.002882] Modules linked in: coretemp kvm_intel kvm crc32_pclmul aesni_intel aes_i586 xts lrw gf128mul ablk_helper cryptd hid_sensor_accel_3d hid_sensor_gyro_3d hid_sensor_magn_3d hid_sensor_trigger industrialio_triggered_buffer kfifo_buf industrialio hid_sensor_iio_common snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_page_alloc snd_seq_midi snd_seq_midi_event dm_multipath scsi_dh asix ppdev usbnet snd_rawmidi mii hid_sensor_hub microcode snd_seq rfcomm bnep snd_seq_device bluetooth snd_timer snd parport_pc binfmt_misc soundcore dw_dmac_pci dw_dmac_core mac_hid lp parport dm_mirror dm_region_hash dm_log hid_generic usbhid hid i915(O-) drm_kms_helper(O) igb dca ptp pps_core i2c_algo_bit drm(O) ahci libahci video [ 161.002991] CPU: 0 PID: 2114 Comm: rmmod Tainted: G W O 3.13.0-rc8+ #2 [ 161.002997] Hardware name: NEXCOM VTC1010/Aptio CRB, BIOS 5.6.5 09/24/2013 [ 161.003004] task: dbdd6800 ti: dbe0e000 task.ti: dbe0e000 [ 161.003010] EIP: 0060:[<f84861f8>] EFLAGS: 00010246 CPU: 0 [ 161.003044] EIP is at i915_gem_object_ggtt_unpin+0x88/0x90 [i915] [ 161.003050] EAX: dfce3840 EBX: 00000000 ECX: dfafd690 EDX: dfce3874 [ 161.003056] ESI: c0086b40 EDI: df962e00 EBP: dbe0fe1c ESP: dbe0fe0c [ 161.003062] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 [ 161.003068] CR0: 8005003b CR2: b7718000 CR3: 1bec0000 CR4: 001007f0 [ 161.003076] Stack: [ 161.003081] 00afc014 00000004 c0086b40 dfafc000 dbe0fe38 f8487e5a dfaa5400 c0086b40 [ 161.003099] dfafc000 dfaa5400 dfaa5414 dbe0fe58 f84741aa 00000000 f89c34b9 dfaa5414 [ 161.003117] dfaa5400 dfaa5400 f644b000 dbe0fe6c f89a5443 dfaa5400 f8505000 f644b000 [ 161.003134] Call Trace: [ 161.003169] [<f8487e5a>] i915_gem_context_fini+0xba/0x1c0 [i915] [ 161.003202] [<f84741aa>] i915_driver_unload+0x1fa/0x2f0 [i915] [ 161.003232] [<f89a5443>] drm_dev_unregister+0x23/0x90 [drm] [ 161.003259] [<f89a54ed>] drm_put_dev+0x3d/0x70 [drm] [ 161.003294] [<f8470615>] i915_pci_remove+0x15/0x20 [i915] [ 161.003306] [<c1338a6f>] pci_device_remove+0x2f/0xa0 [ 161.003317] [<c140c871>] __device_release_driver+0x61/0xc0 [ 161.003328] [<c140d12f>] driver_detach+0x8f/0xa0 [ 161.003341] [<c140c54f>] bus_remove_driver+0x4f/0xc0 [ 161.003353] [<c140d708>] driver_unregister+0x28/0x60 [ 161.003362] [<c10cee42>] ? stop_cpus+0x32/0x40 [ 161.003372] [<c10bd510>] ? module_refcount+0x90/0x90 [ 161.003383] [<c13378c5>] pci_unregister_driver+0x15/0x60 [ 161.003413] [<f89a739f>] drm_pci_exit+0x9f/0xb0 [drm] [ 161.003458] [<f84e624a>] i915_exit+0x1b/0x1d [i915] [ 161.003468] [<c10bf8a8>] SyS_delete_module+0x158/0x1f0 [ 161.003480] [<c1173d5d>] ? ____fput+0xd/0x10 [ 161.003488] [<c106f0fe>] ? task_work_run+0x7e/0xb0 [ 161.003499] [<c165a68d>] sysenter_do_call+0x12/0x28 [ 161.003505] Code: 0f b6 4d f3 8d 51 0f 83 e1 f0 83 e2 0f 09 d1 84 d2 88 48 54 75 07 80 a7 91 00 00 00 7f 83 c4 04 5b 5e 5f 5d c3 8d b6 00 00 00 00 <0f> 0b 8d b6 00 00 00 00 55 89 e5 57 56 53 83 ec 64 3e 8d 74 26 [ 161.003586] EIP: [<f84861f8>] i915_gem_object_ggtt_unpin+0x88/0x90 [i915] SS:ESP 0068:dbe0fe0c v2: Rename the local variable (is_default_ctx) to avoid confusion with the function is_default_ctx(). And correct Jesse's email address. Reported-by: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73985 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ben Widawsky <benjamin.widawsky@intel.com> Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com> [danvet: Fix up the rebase fail from my first attempt, thankfully pointed out by Ville.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-01-24 02:40:02 +07:00
if (is_global_default_ctx) {
if (WARN_ON(dev_priv->mm.aliasing_ppgtt)) {
ret = -EEXIST;
drm/i915: Always pin the default context Through a twisty and circuituous path it is possible to currently trick the code into creating a default context and forgetting to pin it immediately into the GGTT. (This requires a system using contexts without an aliasing ppgtt, which is currently restricted to Baytrails machines manually specifying a module parameter to force enable contexts, or on Sandybridge and later that manually disable the aliasing ppgtt.) The consequence is that during module unload we attempt to unpin the default context twice and encounter a BUG remonstrating that we attempt to unpin an unbound object. [ 161.002869] Kernel BUG at f84861f8 [verbose debug info unavailable] [ 161.002875] invalid opcode: 0000 [#1] SMP [ 161.002882] Modules linked in: coretemp kvm_intel kvm crc32_pclmul aesni_intel aes_i586 xts lrw gf128mul ablk_helper cryptd hid_sensor_accel_3d hid_sensor_gyro_3d hid_sensor_magn_3d hid_sensor_trigger industrialio_triggered_buffer kfifo_buf industrialio hid_sensor_iio_common snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_page_alloc snd_seq_midi snd_seq_midi_event dm_multipath scsi_dh asix ppdev usbnet snd_rawmidi mii hid_sensor_hub microcode snd_seq rfcomm bnep snd_seq_device bluetooth snd_timer snd parport_pc binfmt_misc soundcore dw_dmac_pci dw_dmac_core mac_hid lp parport dm_mirror dm_region_hash dm_log hid_generic usbhid hid i915(O-) drm_kms_helper(O) igb dca ptp pps_core i2c_algo_bit drm(O) ahci libahci video [ 161.002991] CPU: 0 PID: 2114 Comm: rmmod Tainted: G W O 3.13.0-rc8+ #2 [ 161.002997] Hardware name: NEXCOM VTC1010/Aptio CRB, BIOS 5.6.5 09/24/2013 [ 161.003004] task: dbdd6800 ti: dbe0e000 task.ti: dbe0e000 [ 161.003010] EIP: 0060:[<f84861f8>] EFLAGS: 00010246 CPU: 0 [ 161.003044] EIP is at i915_gem_object_ggtt_unpin+0x88/0x90 [i915] [ 161.003050] EAX: dfce3840 EBX: 00000000 ECX: dfafd690 EDX: dfce3874 [ 161.003056] ESI: c0086b40 EDI: df962e00 EBP: dbe0fe1c ESP: dbe0fe0c [ 161.003062] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 [ 161.003068] CR0: 8005003b CR2: b7718000 CR3: 1bec0000 CR4: 001007f0 [ 161.003076] Stack: [ 161.003081] 00afc014 00000004 c0086b40 dfafc000 dbe0fe38 f8487e5a dfaa5400 c0086b40 [ 161.003099] dfafc000 dfaa5400 dfaa5414 dbe0fe58 f84741aa 00000000 f89c34b9 dfaa5414 [ 161.003117] dfaa5400 dfaa5400 f644b000 dbe0fe6c f89a5443 dfaa5400 f8505000 f644b000 [ 161.003134] Call Trace: [ 161.003169] [<f8487e5a>] i915_gem_context_fini+0xba/0x1c0 [i915] [ 161.003202] [<f84741aa>] i915_driver_unload+0x1fa/0x2f0 [i915] [ 161.003232] [<f89a5443>] drm_dev_unregister+0x23/0x90 [drm] [ 161.003259] [<f89a54ed>] drm_put_dev+0x3d/0x70 [drm] [ 161.003294] [<f8470615>] i915_pci_remove+0x15/0x20 [i915] [ 161.003306] [<c1338a6f>] pci_device_remove+0x2f/0xa0 [ 161.003317] [<c140c871>] __device_release_driver+0x61/0xc0 [ 161.003328] [<c140d12f>] driver_detach+0x8f/0xa0 [ 161.003341] [<c140c54f>] bus_remove_driver+0x4f/0xc0 [ 161.003353] [<c140d708>] driver_unregister+0x28/0x60 [ 161.003362] [<c10cee42>] ? stop_cpus+0x32/0x40 [ 161.003372] [<c10bd510>] ? module_refcount+0x90/0x90 [ 161.003383] [<c13378c5>] pci_unregister_driver+0x15/0x60 [ 161.003413] [<f89a739f>] drm_pci_exit+0x9f/0xb0 [drm] [ 161.003458] [<f84e624a>] i915_exit+0x1b/0x1d [i915] [ 161.003468] [<c10bf8a8>] SyS_delete_module+0x158/0x1f0 [ 161.003480] [<c1173d5d>] ? ____fput+0xd/0x10 [ 161.003488] [<c106f0fe>] ? task_work_run+0x7e/0xb0 [ 161.003499] [<c165a68d>] sysenter_do_call+0x12/0x28 [ 161.003505] Code: 0f b6 4d f3 8d 51 0f 83 e1 f0 83 e2 0f 09 d1 84 d2 88 48 54 75 07 80 a7 91 00 00 00 7f 83 c4 04 5b 5e 5f 5d c3 8d b6 00 00 00 00 <0f> 0b 8d b6 00 00 00 00 55 89 e5 57 56 53 83 ec 64 3e 8d 74 26 [ 161.003586] EIP: [<f84861f8>] i915_gem_object_ggtt_unpin+0x88/0x90 [i915] SS:ESP 0068:dbe0fe0c v2: Rename the local variable (is_default_ctx) to avoid confusion with the function is_default_ctx(). And correct Jesse's email address. Reported-by: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73985 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ben Widawsky <benjamin.widawsky@intel.com> Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com> [danvet: Fix up the rebase fail from my first attempt, thankfully pointed out by Ville.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-01-24 02:40:02 +07:00
goto err_unpin;
}
dev_priv->mm.aliasing_ppgtt = ppgtt;
}
} else if (USES_PPGTT(dev)) {
/* For platforms which only have aliasing PPGTT, we fake the
* address space and refcounting. */
ctx->vm = &dev_priv->mm.aliasing_ppgtt->base;
kref_get(&dev_priv->mm.aliasing_ppgtt->ref);
} else
ctx->vm = &dev_priv->gtt.base;
return ctx;
drm/i915: Always pin the default context Through a twisty and circuituous path it is possible to currently trick the code into creating a default context and forgetting to pin it immediately into the GGTT. (This requires a system using contexts without an aliasing ppgtt, which is currently restricted to Baytrails machines manually specifying a module parameter to force enable contexts, or on Sandybridge and later that manually disable the aliasing ppgtt.) The consequence is that during module unload we attempt to unpin the default context twice and encounter a BUG remonstrating that we attempt to unpin an unbound object. [ 161.002869] Kernel BUG at f84861f8 [verbose debug info unavailable] [ 161.002875] invalid opcode: 0000 [#1] SMP [ 161.002882] Modules linked in: coretemp kvm_intel kvm crc32_pclmul aesni_intel aes_i586 xts lrw gf128mul ablk_helper cryptd hid_sensor_accel_3d hid_sensor_gyro_3d hid_sensor_magn_3d hid_sensor_trigger industrialio_triggered_buffer kfifo_buf industrialio hid_sensor_iio_common snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_page_alloc snd_seq_midi snd_seq_midi_event dm_multipath scsi_dh asix ppdev usbnet snd_rawmidi mii hid_sensor_hub microcode snd_seq rfcomm bnep snd_seq_device bluetooth snd_timer snd parport_pc binfmt_misc soundcore dw_dmac_pci dw_dmac_core mac_hid lp parport dm_mirror dm_region_hash dm_log hid_generic usbhid hid i915(O-) drm_kms_helper(O) igb dca ptp pps_core i2c_algo_bit drm(O) ahci libahci video [ 161.002991] CPU: 0 PID: 2114 Comm: rmmod Tainted: G W O 3.13.0-rc8+ #2 [ 161.002997] Hardware name: NEXCOM VTC1010/Aptio CRB, BIOS 5.6.5 09/24/2013 [ 161.003004] task: dbdd6800 ti: dbe0e000 task.ti: dbe0e000 [ 161.003010] EIP: 0060:[<f84861f8>] EFLAGS: 00010246 CPU: 0 [ 161.003044] EIP is at i915_gem_object_ggtt_unpin+0x88/0x90 [i915] [ 161.003050] EAX: dfce3840 EBX: 00000000 ECX: dfafd690 EDX: dfce3874 [ 161.003056] ESI: c0086b40 EDI: df962e00 EBP: dbe0fe1c ESP: dbe0fe0c [ 161.003062] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 [ 161.003068] CR0: 8005003b CR2: b7718000 CR3: 1bec0000 CR4: 001007f0 [ 161.003076] Stack: [ 161.003081] 00afc014 00000004 c0086b40 dfafc000 dbe0fe38 f8487e5a dfaa5400 c0086b40 [ 161.003099] dfafc000 dfaa5400 dfaa5414 dbe0fe58 f84741aa 00000000 f89c34b9 dfaa5414 [ 161.003117] dfaa5400 dfaa5400 f644b000 dbe0fe6c f89a5443 dfaa5400 f8505000 f644b000 [ 161.003134] Call Trace: [ 161.003169] [<f8487e5a>] i915_gem_context_fini+0xba/0x1c0 [i915] [ 161.003202] [<f84741aa>] i915_driver_unload+0x1fa/0x2f0 [i915] [ 161.003232] [<f89a5443>] drm_dev_unregister+0x23/0x90 [drm] [ 161.003259] [<f89a54ed>] drm_put_dev+0x3d/0x70 [drm] [ 161.003294] [<f8470615>] i915_pci_remove+0x15/0x20 [i915] [ 161.003306] [<c1338a6f>] pci_device_remove+0x2f/0xa0 [ 161.003317] [<c140c871>] __device_release_driver+0x61/0xc0 [ 161.003328] [<c140d12f>] driver_detach+0x8f/0xa0 [ 161.003341] [<c140c54f>] bus_remove_driver+0x4f/0xc0 [ 161.003353] [<c140d708>] driver_unregister+0x28/0x60 [ 161.003362] [<c10cee42>] ? stop_cpus+0x32/0x40 [ 161.003372] [<c10bd510>] ? module_refcount+0x90/0x90 [ 161.003383] [<c13378c5>] pci_unregister_driver+0x15/0x60 [ 161.003413] [<f89a739f>] drm_pci_exit+0x9f/0xb0 [drm] [ 161.003458] [<f84e624a>] i915_exit+0x1b/0x1d [i915] [ 161.003468] [<c10bf8a8>] SyS_delete_module+0x158/0x1f0 [ 161.003480] [<c1173d5d>] ? ____fput+0xd/0x10 [ 161.003488] [<c106f0fe>] ? task_work_run+0x7e/0xb0 [ 161.003499] [<c165a68d>] sysenter_do_call+0x12/0x28 [ 161.003505] Code: 0f b6 4d f3 8d 51 0f 83 e1 f0 83 e2 0f 09 d1 84 d2 88 48 54 75 07 80 a7 91 00 00 00 7f 83 c4 04 5b 5e 5f 5d c3 8d b6 00 00 00 00 <0f> 0b 8d b6 00 00 00 00 55 89 e5 57 56 53 83 ec 64 3e 8d 74 26 [ 161.003586] EIP: [<f84861f8>] i915_gem_object_ggtt_unpin+0x88/0x90 [i915] SS:ESP 0068:dbe0fe0c v2: Rename the local variable (is_default_ctx) to avoid confusion with the function is_default_ctx(). And correct Jesse's email address. Reported-by: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73985 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ben Widawsky <benjamin.widawsky@intel.com> Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Ben Widawsky <benjamin.widawsky@intel.com> [danvet: Fix up the rebase fail from my first attempt, thankfully pointed out by Ville.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-01-24 02:40:02 +07:00
err_unpin:
if (is_global_default_ctx)
i915_gem_object_ggtt_unpin(ctx->obj);
err_destroy:
i915_gem_context_unreference(ctx);
return ERR_PTR(ret);
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
}
void i915_gem_context_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
if (!HAS_HW_CONTEXTS(dev))
return;
/* Prevent the hardware from restoring the last context (which hung) on
* the next switch */
for (i = 0; i < I915_NUM_RINGS; i++) {
struct i915_hw_context *dctx;
if (!(INTEL_INFO(dev)->ring_mask & (1<<i)))
continue;
/* Do a fake switch to the default context */
ring = &dev_priv->ring[i];
dctx = ring->default_context;
if (WARN_ON(!dctx))
continue;
if (!ring->last_context)
continue;
if (ring->last_context == dctx)
continue;
if (i == RCS) {
WARN_ON(i915_gem_obj_ggtt_pin(dctx->obj,
get_context_alignment(dev), 0));
/* Fake a finish/inactive */
dctx->obj->base.write_domain = 0;
dctx->obj->active = 0;
}
i915_gem_context_unreference(ring->last_context);
i915_gem_context_reference(dctx);
ring->last_context = dctx;
}
}
int i915_gem_context_init(struct drm_device *dev)
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
if (!HAS_HW_CONTEXTS(dev))
return 0;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
/* Init should only be called once per module load. Eventually the
* restriction on the context_disabled check can be loosened. */
if (WARN_ON(dev_priv->ring[RCS].default_context))
return 0;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
dev_priv->hw_context_size = round_up(get_context_size(dev), 4096);
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
if (dev_priv->hw_context_size > (1<<20)) {
DRM_DEBUG_DRIVER("Disabling HW Contexts; invalid size\n");
return -E2BIG;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
}
dev_priv->ring[RCS].default_context =
i915_gem_create_context(dev, NULL, USES_PPGTT(dev));
if (IS_ERR_OR_NULL(dev_priv->ring[RCS].default_context)) {
DRM_DEBUG_DRIVER("Disabling HW Contexts; create failed %ld\n",
PTR_ERR(dev_priv->ring[RCS].default_context));
return PTR_ERR(dev_priv->ring[RCS].default_context);
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
}
for (i = RCS + 1; i < I915_NUM_RINGS; i++) {
if (!(INTEL_INFO(dev)->ring_mask & (1<<i)))
continue;
ring = &dev_priv->ring[i];
/* NB: RCS will hold a ref for all rings */
ring->default_context = dev_priv->ring[RCS].default_context;
}
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
DRM_DEBUG_DRIVER("HW context support initialized\n");
return 0;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
}
void i915_gem_context_fini(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_context *dctx = dev_priv->ring[RCS].default_context;
int i;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
if (!HAS_HW_CONTEXTS(dev))
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
return;
/* The only known way to stop the gpu from accessing the hw context is
* to reset it. Do this as the very last operation to avoid confusing
* other code, leading to spurious errors. */
intel_gpu_reset(dev);
/* When default context is created and switched to, base object refcount
* will be 2 (+1 from object creation and +1 from do_switch()).
* i915_gem_context_fini() will be called after gpu_idle() has switched
* to default context. So we need to unreference the base object once
* to offset the do_switch part, so that i915_gem_context_unreference()
* can then free the base object correctly. */
WARN_ON(!dev_priv->ring[RCS].last_context);
if (dev_priv->ring[RCS].last_context == dctx) {
/* Fake switch to NULL context */
WARN_ON(dctx->obj->active);
i915_gem_object_ggtt_unpin(dctx->obj);
i915_gem_context_unreference(dctx);
dev_priv->ring[RCS].last_context = NULL;
}
for (i = 0; i < I915_NUM_RINGS; i++) {
struct intel_ring_buffer *ring = &dev_priv->ring[i];
if (!(INTEL_INFO(dev)->ring_mask & (1<<i)))
continue;
if (ring->last_context)
i915_gem_context_unreference(ring->last_context);
ring->default_context = NULL;
ring->last_context = NULL;
}
i915_gem_object_ggtt_unpin(dctx->obj);
i915_gem_context_unreference(dctx);
dev_priv->mm.aliasing_ppgtt = NULL;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
}
int i915_gem_context_enable(struct drm_i915_private *dev_priv)
{
struct intel_ring_buffer *ring;
int ret, i;
if (!HAS_HW_CONTEXTS(dev_priv->dev))
return 0;
/* This is the only place the aliasing PPGTT gets enabled, which means
* it has to happen before we bail on reset */
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
ppgtt->enable(ppgtt);
}
/* FIXME: We should make this work, even in reset */
if (i915_reset_in_progress(&dev_priv->gpu_error))
return 0;
BUG_ON(!dev_priv->ring[RCS].default_context);
for_each_ring(ring, dev_priv, i) {
ret = do_switch(ring, ring->default_context);
if (ret)
return ret;
}
return 0;
}
static int context_idr_cleanup(int id, void *p, void *data)
{
struct i915_hw_context *ctx = p;
/* Ignore the default context because close will handle it */
if (i915_gem_context_is_default(ctx))
return 0;
i915_gem_context_unreference(ctx);
return 0;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
}
int i915_gem_context_open(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_HW_CONTEXTS(dev)) {
/* Cheat for hang stats */
file_priv->private_default_ctx =
kzalloc(sizeof(struct i915_hw_context), GFP_KERNEL);
if (file_priv->private_default_ctx == NULL)
return -ENOMEM;
file_priv->private_default_ctx->vm = &dev_priv->gtt.base;
return 0;
}
idr_init(&file_priv->context_idr);
mutex_lock(&dev->struct_mutex);
file_priv->private_default_ctx =
i915_gem_create_context(dev, file_priv, USES_FULL_PPGTT(dev));
mutex_unlock(&dev->struct_mutex);
if (IS_ERR(file_priv->private_default_ctx)) {
idr_destroy(&file_priv->context_idr);
return PTR_ERR(file_priv->private_default_ctx);
}
return 0;
}
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
void i915_gem_context_close(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
if (!HAS_HW_CONTEXTS(dev)) {
kfree(file_priv->private_default_ctx);
return;
}
idr_for_each(&file_priv->context_idr, context_idr_cleanup, NULL);
i915_gem_context_unreference(file_priv->private_default_ctx);
idr_destroy(&file_priv->context_idr);
}
drm/i915: Get context early in execbuf We need to have the address space when reserving space for the objects. Since the address space and context are tied together, and reserve occurs before context switch (for good reason), we must lookup our context earlier in the process. This leaves some room for optimizations where we no longer need to use ctx_id in certain places. This will be addressed in a subsequent patch. Important tricky bit: Because slow relocations during execbuffer drop struct_mutex Perhaps it would be best to acquire the reference when we get the context, but I'll save that for another day (note I have written the patch before, and I found the changes required to be uglier than this). Note that since we currently access everything via context id, and not the data structure this is fine, though not desirable. The next change attempts to get the context only once via the context ID idr lookup, and as such, the following can happen: CTX-A is created, refcount = 1 CTX-A execbuf, mutex dropped close IOCTL called on CTX-A, refcount = 0 CTX-A resumes in execbuf. v2: Rebased on top of commit b6359918b885da7c7b58c050674278dbd06020ab Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Wed Oct 30 15:44:16 2013 +0200 drm/i915: add i915_get_reset_stats_ioctl v3: Rebased on top of commit 25b3dfc87bff80317d67ddd2cd4cfb91e6fe7d79 Author: Mika Westerberg <mika.westerberg@linux.intel.com> Date: Tue Nov 12 11:57:30 2013 +0200 Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Tue Nov 26 16:14:33 2013 +0200 drm/i915: check context reset stats before relocations Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-07 05:11:21 +07:00
struct i915_hw_context *
i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id)
{
struct i915_hw_context *ctx;
drm/i915: Get context early in execbuf We need to have the address space when reserving space for the objects. Since the address space and context are tied together, and reserve occurs before context switch (for good reason), we must lookup our context earlier in the process. This leaves some room for optimizations where we no longer need to use ctx_id in certain places. This will be addressed in a subsequent patch. Important tricky bit: Because slow relocations during execbuffer drop struct_mutex Perhaps it would be best to acquire the reference when we get the context, but I'll save that for another day (note I have written the patch before, and I found the changes required to be uglier than this). Note that since we currently access everything via context id, and not the data structure this is fine, though not desirable. The next change attempts to get the context only once via the context ID idr lookup, and as such, the following can happen: CTX-A is created, refcount = 1 CTX-A execbuf, mutex dropped close IOCTL called on CTX-A, refcount = 0 CTX-A resumes in execbuf. v2: Rebased on top of commit b6359918b885da7c7b58c050674278dbd06020ab Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Wed Oct 30 15:44:16 2013 +0200 drm/i915: add i915_get_reset_stats_ioctl v3: Rebased on top of commit 25b3dfc87bff80317d67ddd2cd4cfb91e6fe7d79 Author: Mika Westerberg <mika.westerberg@linux.intel.com> Date: Tue Nov 12 11:57:30 2013 +0200 Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Tue Nov 26 16:14:33 2013 +0200 drm/i915: check context reset stats before relocations Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-07 05:11:21 +07:00
if (!HAS_HW_CONTEXTS(file_priv->dev_priv->dev))
return file_priv->private_default_ctx;
ctx = (struct i915_hw_context *)idr_find(&file_priv->context_idr, id);
if (!ctx)
return ERR_PTR(-ENOENT);
return ctx;
drm/i915: preliminary context support Very basic code for context setup/destruction in the driver. Adds the file i915_gem_context.c This file implements HW context support. On gen5+ a HW context consists of an opaque GPU object which is referenced at times of context saves and restores. With RC6 enabled, the context is also referenced as the GPU enters and exists from RC6 (GPU has it's own internal power context, except on gen5). Though something like a context does exist for the media ring, the code only supports contexts for the render ring. In software, there is a distinction between contexts created by the user, and the default HW context. The default HW context is used by GPU clients that do not request setup of their own hardware context. The default context's state is never restored to help prevent programming errors. This would happen if a client ran and piggy-backed off another clients GPU state. The default context only exists to give the GPU some offset to load as the current to invoke a save of the context we actually care about. In fact, the code could likely be constructed, albeit in a more complicated fashion, to never use the default context, though that limits the driver's ability to swap out, and/or destroy other contexts. All other contexts are created as a request by the GPU client. These contexts store GPU state, and thus allow GPU clients to not re-emit state (and potentially query certain state) at any time. The kernel driver makes certain that the appropriate commands are inserted. There are 4 entry points into the contexts, init, fini, open, close. The names are self-explanatory except that init can be called during reset, and also during pm thaw/resume. As we expect our context to be preserved across these events, we do not reinitialize in this case. As Adam Jackson pointed out, The cutoff of 1MB where a HW context is considered too big is arbitrary. The reason for this is even though context sizes are increasing with every generation, they have yet to eclipse even 32k. If we somehow read back way more than that, it probably means BIOS has done something strange, or we're running on a platform that wasn't designed for this. v2: rename load/unload to init/fini (daniel) remove ILK support for get_size() (indirectly daniel) add HAS_HW_CONTEXTS macro to clarify supported platforms (daniel) added comments (Ben) Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
2012-06-05 04:42:42 +07:00
}
static inline int
mi_set_context(struct intel_ring_buffer *ring,
struct i915_hw_context *new_context,
u32 hw_flags)
{
int ret;
/* w/a: If Flush TLB Invalidation Mode is enabled, driver must do a TLB
* invalidation prior to MI_SET_CONTEXT. On GEN6 we don't set the value
* explicitly, so we rely on the value at ring init, stored in
* itlb_before_ctx_switch.
*/
if (IS_GEN6(ring->dev) && ring->itlb_before_ctx_switch) {
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, 0);
if (ret)
return ret;
}
ret = intel_ring_begin(ring, 6);
if (ret)
return ret;
/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw */
if (IS_GEN7(ring->dev))
intel_ring_emit(ring, MI_ARB_ON_OFF | MI_ARB_DISABLE);
else
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_SET_CONTEXT);
intel_ring_emit(ring, i915_gem_obj_ggtt_offset(new_context->obj) |
MI_MM_SPACE_GTT |
MI_SAVE_EXT_STATE_EN |
MI_RESTORE_EXT_STATE_EN |
hw_flags);
/*
* w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
* WaMiSetContext_Hang:snb,ivb,vlv
*/
intel_ring_emit(ring, MI_NOOP);
if (IS_GEN7(ring->dev))
intel_ring_emit(ring, MI_ARB_ON_OFF | MI_ARB_ENABLE);
else
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return ret;
}
static int do_switch(struct intel_ring_buffer *ring,
struct i915_hw_context *to)
{
drm/i915: Create bind/unbind abstraction for VMAs To sum up what goes on here, we abstract the vma binding, similarly to the previous object binding. This helps for distinguishing legacy binding, versus modern binding. To keep the code churn as minimal as possible, I am leaving in insert_entries(). It serves as the per platform pte writing basically. bind_vma and insert_entries do share a lot of similarities, and I did have designs to combine the two, but as mentioned already... too much churn in an already massive patchset. What follows are the 3 commits which existed discretely in the original submissions. Upon rebasing on Broadwell support, it became clear that separation was not good, and only made for more error prone code. Below are the 3 commit messages with all their history. drm/i915: Add bind/unbind object functions to VMA drm/i915: Use the new vm [un]bind functions drm/i915: reduce vm->insert_entries() usage drm/i915: Add bind/unbind object functions to VMA As we plumb the code with more VM information, it has become more obvious that the easiest way to deal with bind and unbind is to simply put the function pointers in the vm, and let those choose the correct way to handle the page table updates. This change allows many places in the code to simply be vm->bind, and not have to worry about distinguishing PPGTT vs GGTT. Notice that this patch has no impact on functionality. I've decided to save the actual change until the next patch because I think it's easier to review that way. I'm happy to squash the two, or let Daniel do it on merge. v2: Make ggtt handle the quirky aliasing ppgtt Add flags to bind object to support above Don't ever call bind/unbind directly for PPGTT until we have real, full PPGTT (use NULLs to assert this) Make sure we rebind the ggtt if there already is a ggtt binding. This happens on set cache levels. Use VMA for bind/unbind (Daniel, Ben) v3: Reorganize ggtt_vma_bind to be more concise and easier to read (Ville). Change logic in unbind to only unbind ggtt when there is a global mapping, and to remove a redundant check if the aliasing ppgtt exists. v4: Make the bind function a bit smarter about the cache levels to avoid unnecessary multiple remaps. "I accept it is a wart, I think unifying the pin_vma / bind_vma could be unified later" (Chris) Removed the git notes, and put version info here. (Daniel) v5: Update the comment to not suck (Chris) v6: Move bind/unbind to the VMA. It makes more sense in the VMA structure (always has, but I was previously lazy). With this change, it will allow us to keep a distinct insert_entries. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> drm/i915: Use the new vm [un]bind functions Building on the last patch which created the new function pointers in the VM for bind/unbind, here we actually put those new function pointers to use. Split out as a separate patch to aid in review. I'm fine with squashing into the previous patch if people request it. v2: Updated to address the smart ggtt which can do aliasing as needed Make sure we bind to global gtt when mappable and fenceable. I thought we could get away without this initialy, but we cannot. v3: Make the global GTT binding explicitly use the ggtt VM for bind_vma(). While at it, use the new ggtt_vma helper (Chris) At this point the original mailing list thread diverges. ie. v4^: use target_obj instead of obj for gen6 relocate_entry vma->bind_vma() can be called safely during pin. So simply do that instead of the complicated conditionals. Don't restore PPGTT bound objects on resume path Bug fix in resume path for globally bound Bos Properly handle secure dispatch Rebased on vma bind/unbind conversion Signed-off-by: Ben Widawsky <ben@bwidawsk.net> drm/i915: reduce vm->insert_entries() usage FKA: drm/i915: eliminate vm->insert_entries() With bind/unbind function pointers in place, we no longer need insert_entries. We could, and want, to remove clear_range, however it's not totally easy at this point. Since it's used in a couple of place still that don't only deal in objects: setup, ppgtt init, and restore gtt mappings. v2: Don't actually remove insert_entries, just limit its usage. It will be useful when we introduce gen8. It will always be called from the vma bind/unbind. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> (v1) Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-07 05:10:56 +07:00
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct i915_hw_context *from = ring->last_context;
struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(to);
u32 hw_flags = 0;
drm/i915: Do remaps for all contexts On both Ivybridge and Haswell, row remapping information is saved and restored with context. This means, we never actually properly supported the l3 remapping because our sysfs interface is asynchronous (and not tied to any context), and the known faulty HW would be reused by the next context to run. Not that due to the asynchronous nature of the sysfs entry, there is no point modifying the registers for the existing context. Instead we set a flag for all contexts to load the correct remapping information on the next run. Interested clients can use debugfs to determine whether or not the row has been remapped. One could propose at this point that we just do the remapping in the kernel. I guess since we have to maintain the sysfs interface anyway, I'm not sure how useful it is, and I do like keeping the policy in userspace; (it wasn't my original decision to make the interface the way it is, so I'm not attached). v2: Force a context switch when we have a remap on the next switch. (Ville) Don't let userspace use the interface with disabled contexts. v3: Don't force a context switch, just let it nop Improper context slice remap initialization, 1<<1 instead of 1<<i, but I rewrote it to avoid a second round of confusion. Error print moved to error path (All Ville) Added a comment on why the slice remap initialization happens. CC: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-19 09:03:18 +07:00
int ret, i;
if (from != NULL && ring == &dev_priv->ring[RCS]) {
BUG_ON(from->obj == NULL);
BUG_ON(!i915_gem_obj_is_pinned(from->obj));
}
if (from == to && from->last_ring == ring && !to->remap_slice)
return 0;
/* Trying to pin first makes error handling easier. */
if (ring == &dev_priv->ring[RCS]) {
ret = i915_gem_obj_ggtt_pin(to->obj,
get_context_alignment(ring->dev), 0);
if (ret)
return ret;
}
drm/i915: Fix use-after-free in do_switch So apparently under ridiculous amounts of memory pressure we can get into trouble in do_switch when we try to move the old hw context backing storage object onto the active lists. With list debugging enabled that usually results in us chasing a poisoned pointer - which means we've hit upon a vma that has been removed from all lrus with list_del (and then deallocated, so it's a real use-after free). Ian Lister has done some great callchain chasing and noticed that we can reenter do_switch: i915_gem_do_execbuffer() i915_switch_context() do_switch() from = ring->last_context; i915_gem_object_pin() i915_gem_object_bind_to_gtt() ret = drm_mm_insert_node_in_range_generic(); // If the above call fails then it will try i915_gem_evict_something() // If that fails it will call i915_gem_evict_everything() ... i915_gem_evict_everything() i915_gpu_idle() i915_switch_context(DEFAULT_CONTEXT) Like with everything else where the shrinker or eviction code can invalidate pointers we need to reload relevant state. Note that there's no need to recheck whether a context switch is still required because: - Doing a switch to the same context is harmless (besides wasting a bit of energy). - This can only happen with the default context. But since that one's pinned we'll never call down into evict_everything under normal circumstances. Note that there's a little driver bringup fun involved namely that we could recourse into do_switch for the initial switch. Atm we're fine since we assign the context pointer only after the call to do_switch at driver load or resume time. And in the gpu reset case we skip the entire setup sequence (which might be a bug on its own, but definitely not this one here). Cc'ing stable since apparently ChromeOS guys are seeing this in the wild (and not just on artificial stress tests), see the reference. Note that in upstream code doesn't calle evict_everything directly from evict_something, that's an extension in this product branch. But we can still hit upon this bug (and apparently we do, see the linked backtraces). I've noticed this while trying to construct a testcase for this bug and utterly failed to provoke it. It looks like we need to driver the system squarly into the lowmem wall and provoke the shrinker to evict the context object by doing the last-ditch evict_everything call. Aside: There's currently no means to get a badly-fragmenting hw context object away from a bad spot in the upstream code. We should fix this by at least adding some code to evict_something to handle hw contexts. References: https://code.google.com/p/chromium/issues/detail?id=248191 Reported-by: Ian Lister <ian.lister@intel.com> Cc: Ian Lister <ian.lister@intel.com> Cc: stable@vger.kernel.org Cc: Ben Widawsky <benjamin.widawsky@intel.com> Cc: Stéphane Marchesin <marcheu@chromium.org> Cc: Bloomfield, Jon <jon.bloomfield@intel.com> Tested-by: Rafael Barbalho <rafael.barbalho@intel.com> Reviewed-by: Ian Lister <ian.lister@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-05 21:42:34 +07:00
/*
* Pin can switch back to the default context if we end up calling into
* evict_everything - as a last ditch gtt defrag effort that also
* switches to the default context. Hence we need to reload from here.
*/
from = ring->last_context;
if (USES_FULL_PPGTT(ring->dev)) {
ret = ppgtt->switch_mm(ppgtt, ring, false);
if (ret)
goto unpin_out;
}
if (ring != &dev_priv->ring[RCS]) {
if (from)
i915_gem_context_unreference(from);
goto done;
}
drm/i915: Fix use-after-free in do_switch So apparently under ridiculous amounts of memory pressure we can get into trouble in do_switch when we try to move the old hw context backing storage object onto the active lists. With list debugging enabled that usually results in us chasing a poisoned pointer - which means we've hit upon a vma that has been removed from all lrus with list_del (and then deallocated, so it's a real use-after free). Ian Lister has done some great callchain chasing and noticed that we can reenter do_switch: i915_gem_do_execbuffer() i915_switch_context() do_switch() from = ring->last_context; i915_gem_object_pin() i915_gem_object_bind_to_gtt() ret = drm_mm_insert_node_in_range_generic(); // If the above call fails then it will try i915_gem_evict_something() // If that fails it will call i915_gem_evict_everything() ... i915_gem_evict_everything() i915_gpu_idle() i915_switch_context(DEFAULT_CONTEXT) Like with everything else where the shrinker or eviction code can invalidate pointers we need to reload relevant state. Note that there's no need to recheck whether a context switch is still required because: - Doing a switch to the same context is harmless (besides wasting a bit of energy). - This can only happen with the default context. But since that one's pinned we'll never call down into evict_everything under normal circumstances. Note that there's a little driver bringup fun involved namely that we could recourse into do_switch for the initial switch. Atm we're fine since we assign the context pointer only after the call to do_switch at driver load or resume time. And in the gpu reset case we skip the entire setup sequence (which might be a bug on its own, but definitely not this one here). Cc'ing stable since apparently ChromeOS guys are seeing this in the wild (and not just on artificial stress tests), see the reference. Note that in upstream code doesn't calle evict_everything directly from evict_something, that's an extension in this product branch. But we can still hit upon this bug (and apparently we do, see the linked backtraces). I've noticed this while trying to construct a testcase for this bug and utterly failed to provoke it. It looks like we need to driver the system squarly into the lowmem wall and provoke the shrinker to evict the context object by doing the last-ditch evict_everything call. Aside: There's currently no means to get a badly-fragmenting hw context object away from a bad spot in the upstream code. We should fix this by at least adding some code to evict_something to handle hw contexts. References: https://code.google.com/p/chromium/issues/detail?id=248191 Reported-by: Ian Lister <ian.lister@intel.com> Cc: Ian Lister <ian.lister@intel.com> Cc: stable@vger.kernel.org Cc: Ben Widawsky <benjamin.widawsky@intel.com> Cc: Stéphane Marchesin <marcheu@chromium.org> Cc: Bloomfield, Jon <jon.bloomfield@intel.com> Tested-by: Rafael Barbalho <rafael.barbalho@intel.com> Reviewed-by: Ian Lister <ian.lister@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-05 21:42:34 +07:00
/*
* Clear this page out of any CPU caches for coherent swap-in/out. Note
* that thanks to write = false in this call and us not setting any gpu
* write domains when putting a context object onto the active list
* (when switching away from it), this won't block.
drm/i915: Fix use-after-free in do_switch So apparently under ridiculous amounts of memory pressure we can get into trouble in do_switch when we try to move the old hw context backing storage object onto the active lists. With list debugging enabled that usually results in us chasing a poisoned pointer - which means we've hit upon a vma that has been removed from all lrus with list_del (and then deallocated, so it's a real use-after free). Ian Lister has done some great callchain chasing and noticed that we can reenter do_switch: i915_gem_do_execbuffer() i915_switch_context() do_switch() from = ring->last_context; i915_gem_object_pin() i915_gem_object_bind_to_gtt() ret = drm_mm_insert_node_in_range_generic(); // If the above call fails then it will try i915_gem_evict_something() // If that fails it will call i915_gem_evict_everything() ... i915_gem_evict_everything() i915_gpu_idle() i915_switch_context(DEFAULT_CONTEXT) Like with everything else where the shrinker or eviction code can invalidate pointers we need to reload relevant state. Note that there's no need to recheck whether a context switch is still required because: - Doing a switch to the same context is harmless (besides wasting a bit of energy). - This can only happen with the default context. But since that one's pinned we'll never call down into evict_everything under normal circumstances. Note that there's a little driver bringup fun involved namely that we could recourse into do_switch for the initial switch. Atm we're fine since we assign the context pointer only after the call to do_switch at driver load or resume time. And in the gpu reset case we skip the entire setup sequence (which might be a bug on its own, but definitely not this one here). Cc'ing stable since apparently ChromeOS guys are seeing this in the wild (and not just on artificial stress tests), see the reference. Note that in upstream code doesn't calle evict_everything directly from evict_something, that's an extension in this product branch. But we can still hit upon this bug (and apparently we do, see the linked backtraces). I've noticed this while trying to construct a testcase for this bug and utterly failed to provoke it. It looks like we need to driver the system squarly into the lowmem wall and provoke the shrinker to evict the context object by doing the last-ditch evict_everything call. Aside: There's currently no means to get a badly-fragmenting hw context object away from a bad spot in the upstream code. We should fix this by at least adding some code to evict_something to handle hw contexts. References: https://code.google.com/p/chromium/issues/detail?id=248191 Reported-by: Ian Lister <ian.lister@intel.com> Cc: Ian Lister <ian.lister@intel.com> Cc: stable@vger.kernel.org Cc: Ben Widawsky <benjamin.widawsky@intel.com> Cc: Stéphane Marchesin <marcheu@chromium.org> Cc: Bloomfield, Jon <jon.bloomfield@intel.com> Tested-by: Rafael Barbalho <rafael.barbalho@intel.com> Reviewed-by: Ian Lister <ian.lister@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-05 21:42:34 +07:00
*
* XXX: We need a real interface to do this instead of trickery.
*/
ret = i915_gem_object_set_to_gtt_domain(to->obj, false);
if (ret)
goto unpin_out;
drm/i915: Create bind/unbind abstraction for VMAs To sum up what goes on here, we abstract the vma binding, similarly to the previous object binding. This helps for distinguishing legacy binding, versus modern binding. To keep the code churn as minimal as possible, I am leaving in insert_entries(). It serves as the per platform pte writing basically. bind_vma and insert_entries do share a lot of similarities, and I did have designs to combine the two, but as mentioned already... too much churn in an already massive patchset. What follows are the 3 commits which existed discretely in the original submissions. Upon rebasing on Broadwell support, it became clear that separation was not good, and only made for more error prone code. Below are the 3 commit messages with all their history. drm/i915: Add bind/unbind object functions to VMA drm/i915: Use the new vm [un]bind functions drm/i915: reduce vm->insert_entries() usage drm/i915: Add bind/unbind object functions to VMA As we plumb the code with more VM information, it has become more obvious that the easiest way to deal with bind and unbind is to simply put the function pointers in the vm, and let those choose the correct way to handle the page table updates. This change allows many places in the code to simply be vm->bind, and not have to worry about distinguishing PPGTT vs GGTT. Notice that this patch has no impact on functionality. I've decided to save the actual change until the next patch because I think it's easier to review that way. I'm happy to squash the two, or let Daniel do it on merge. v2: Make ggtt handle the quirky aliasing ppgtt Add flags to bind object to support above Don't ever call bind/unbind directly for PPGTT until we have real, full PPGTT (use NULLs to assert this) Make sure we rebind the ggtt if there already is a ggtt binding. This happens on set cache levels. Use VMA for bind/unbind (Daniel, Ben) v3: Reorganize ggtt_vma_bind to be more concise and easier to read (Ville). Change logic in unbind to only unbind ggtt when there is a global mapping, and to remove a redundant check if the aliasing ppgtt exists. v4: Make the bind function a bit smarter about the cache levels to avoid unnecessary multiple remaps. "I accept it is a wart, I think unifying the pin_vma / bind_vma could be unified later" (Chris) Removed the git notes, and put version info here. (Daniel) v5: Update the comment to not suck (Chris) v6: Move bind/unbind to the VMA. It makes more sense in the VMA structure (always has, but I was previously lazy). With this change, it will allow us to keep a distinct insert_entries. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> drm/i915: Use the new vm [un]bind functions Building on the last patch which created the new function pointers in the VM for bind/unbind, here we actually put those new function pointers to use. Split out as a separate patch to aid in review. I'm fine with squashing into the previous patch if people request it. v2: Updated to address the smart ggtt which can do aliasing as needed Make sure we bind to global gtt when mappable and fenceable. I thought we could get away without this initialy, but we cannot. v3: Make the global GTT binding explicitly use the ggtt VM for bind_vma(). While at it, use the new ggtt_vma helper (Chris) At this point the original mailing list thread diverges. ie. v4^: use target_obj instead of obj for gen6 relocate_entry vma->bind_vma() can be called safely during pin. So simply do that instead of the complicated conditionals. Don't restore PPGTT bound objects on resume path Bug fix in resume path for globally bound Bos Properly handle secure dispatch Rebased on vma bind/unbind conversion Signed-off-by: Ben Widawsky <ben@bwidawsk.net> drm/i915: reduce vm->insert_entries() usage FKA: drm/i915: eliminate vm->insert_entries() With bind/unbind function pointers in place, we no longer need insert_entries. We could, and want, to remove clear_range, however it's not totally easy at this point. Since it's used in a couple of place still that don't only deal in objects: setup, ppgtt init, and restore gtt mappings. v2: Don't actually remove insert_entries, just limit its usage. It will be useful when we introduce gen8. It will always be called from the vma bind/unbind. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> (v1) Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-07 05:10:56 +07:00
if (!to->obj->has_global_gtt_mapping) {
struct i915_vma *vma = i915_gem_obj_to_vma(to->obj,
&dev_priv->gtt.base);
vma->bind_vma(vma, to->obj->cache_level, GLOBAL_BIND);
}
if (!to->is_initialized || i915_gem_context_is_default(to))
hw_flags |= MI_RESTORE_INHIBIT;
ret = mi_set_context(ring, to, hw_flags);
if (ret)
goto unpin_out;
drm/i915: Do remaps for all contexts On both Ivybridge and Haswell, row remapping information is saved and restored with context. This means, we never actually properly supported the l3 remapping because our sysfs interface is asynchronous (and not tied to any context), and the known faulty HW would be reused by the next context to run. Not that due to the asynchronous nature of the sysfs entry, there is no point modifying the registers for the existing context. Instead we set a flag for all contexts to load the correct remapping information on the next run. Interested clients can use debugfs to determine whether or not the row has been remapped. One could propose at this point that we just do the remapping in the kernel. I guess since we have to maintain the sysfs interface anyway, I'm not sure how useful it is, and I do like keeping the policy in userspace; (it wasn't my original decision to make the interface the way it is, so I'm not attached). v2: Force a context switch when we have a remap on the next switch. (Ville) Don't let userspace use the interface with disabled contexts. v3: Don't force a context switch, just let it nop Improper context slice remap initialization, 1<<1 instead of 1<<i, but I rewrote it to avoid a second round of confusion. Error print moved to error path (All Ville) Added a comment on why the slice remap initialization happens. CC: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-19 09:03:18 +07:00
for (i = 0; i < MAX_L3_SLICES; i++) {
if (!(to->remap_slice & (1<<i)))
continue;
ret = i915_gem_l3_remap(ring, i);
/* If it failed, try again next round */
if (ret)
DRM_DEBUG_DRIVER("L3 remapping failed\n");
else
to->remap_slice &= ~(1<<i);
}
/* The backing object for the context is done after switching to the
* *next* context. Therefore we cannot retire the previous context until
* the next context has already started running. In fact, the below code
* is a bit suboptimal because the retiring can occur simply after the
* MI_SET_CONTEXT instead of when the next seqno has completed.
*/
if (from != NULL) {
from->obj->base.read_domains = I915_GEM_DOMAIN_INSTRUCTION;
i915_vma_move_to_active(i915_gem_obj_to_ggtt(from->obj), ring);
/* As long as MI_SET_CONTEXT is serializing, ie. it flushes the
* whole damn pipeline, we don't need to explicitly mark the
* object dirty. The only exception is that the context must be
* correct in case the object gets swapped out. Ideally we'd be
* able to defer doing this until we know the object would be
* swapped, but there is no way to do that yet.
*/
from->obj->dirty = 1;
BUG_ON(from->obj->ring != ring);
drm/i915: Do not add an interrupt for a context switch We use the request to ensure we hold a reference to the context for the duration that it remains in use by the ring. Each request only holds a reference to the current context, hence we emit a request after switching contexts with the final reference to the old context. However, the extra interrupt caused by that request is not useful (no timing critical function will wait for the context object), instead the overhead of servicing the IRQ shows up in some (lightweight) benchmarks. In order to keep the useful property of using the request to manage the context lifetime, we want to add a dummy request that is associated with the interrupt from the subsequent real request following the batch. The extra interrupt was added as a side-effect of using i915_add_request() in commit 112522f6789581824903f6f72082b5b841a7f0f9 Author: Chris Wilson <chris@chris-wilson.co.uk> Date: Thu May 2 16:48:07 2013 +0300 drm/i915: put context upon switching v2: Daniel convinced me that the request here was solely for context lifetime tracking and that we have the active ref to keep the object alive whilst the MI_SET_CONTEXT. So the only concern then is which context should get the blame for MI_SET_CONTEXT failing. The old scheme added a request for the old context so that any hang upto and including the switch away would mark the old context as guilty. Now any hang here implicates the new context. However since we have already gone through a complete flush with the last context in its last request, and all that lies in no-man's-land is an invalidate flush and the MI_SET_CONTEXT, we should be safe in not unduly placing blame on the new context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Ben Widawsky <ben@bwidawsk.net> Cc: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-08-27 05:50:53 +07:00
/* obj is kept alive until the next request by its active ref */
i915_gem_object_ggtt_unpin(from->obj);
i915_gem_context_unreference(from);
}
to->is_initialized = true;
done:
i915_gem_context_reference(to);
ring->last_context = to;
to->last_ring = ring;
return 0;
unpin_out:
if (ring->id == RCS)
i915_gem_object_ggtt_unpin(to->obj);
return ret;
}
/**
* i915_switch_context() - perform a GPU context switch.
* @ring: ring for which we'll execute the context switch
* @file_priv: file_priv associated with the context, may be NULL
* @to: the context to switch to
*
* The context life cycle is simple. The context refcount is incremented and
* decremented by 1 and create and destroy. If the context is in use by the GPU,
* it will have a refoucnt > 1. This allows us to destroy the context abstract
* object while letting the normal object tracking destroy the backing BO.
*/
int i915_switch_context(struct intel_ring_buffer *ring,
struct drm_file *file,
drm/i915: Get context early in execbuf We need to have the address space when reserving space for the objects. Since the address space and context are tied together, and reserve occurs before context switch (for good reason), we must lookup our context earlier in the process. This leaves some room for optimizations where we no longer need to use ctx_id in certain places. This will be addressed in a subsequent patch. Important tricky bit: Because slow relocations during execbuffer drop struct_mutex Perhaps it would be best to acquire the reference when we get the context, but I'll save that for another day (note I have written the patch before, and I found the changes required to be uglier than this). Note that since we currently access everything via context id, and not the data structure this is fine, though not desirable. The next change attempts to get the context only once via the context ID idr lookup, and as such, the following can happen: CTX-A is created, refcount = 1 CTX-A execbuf, mutex dropped close IOCTL called on CTX-A, refcount = 0 CTX-A resumes in execbuf. v2: Rebased on top of commit b6359918b885da7c7b58c050674278dbd06020ab Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Wed Oct 30 15:44:16 2013 +0200 drm/i915: add i915_get_reset_stats_ioctl v3: Rebased on top of commit 25b3dfc87bff80317d67ddd2cd4cfb91e6fe7d79 Author: Mika Westerberg <mika.westerberg@linux.intel.com> Date: Tue Nov 12 11:57:30 2013 +0200 Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Tue Nov 26 16:14:33 2013 +0200 drm/i915: check context reset stats before relocations Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-07 05:11:21 +07:00
struct i915_hw_context *to)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
WARN_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
drm/i915: Get context early in execbuf We need to have the address space when reserving space for the objects. Since the address space and context are tied together, and reserve occurs before context switch (for good reason), we must lookup our context earlier in the process. This leaves some room for optimizations where we no longer need to use ctx_id in certain places. This will be addressed in a subsequent patch. Important tricky bit: Because slow relocations during execbuffer drop struct_mutex Perhaps it would be best to acquire the reference when we get the context, but I'll save that for another day (note I have written the patch before, and I found the changes required to be uglier than this). Note that since we currently access everything via context id, and not the data structure this is fine, though not desirable. The next change attempts to get the context only once via the context ID idr lookup, and as such, the following can happen: CTX-A is created, refcount = 1 CTX-A execbuf, mutex dropped close IOCTL called on CTX-A, refcount = 0 CTX-A resumes in execbuf. v2: Rebased on top of commit b6359918b885da7c7b58c050674278dbd06020ab Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Wed Oct 30 15:44:16 2013 +0200 drm/i915: add i915_get_reset_stats_ioctl v3: Rebased on top of commit 25b3dfc87bff80317d67ddd2cd4cfb91e6fe7d79 Author: Mika Westerberg <mika.westerberg@linux.intel.com> Date: Tue Nov 12 11:57:30 2013 +0200 Author: Mika Kuoppala <mika.kuoppala@linux.intel.com> Date: Tue Nov 26 16:14:33 2013 +0200 drm/i915: check context reset stats before relocations Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-12-07 05:11:21 +07:00
BUG_ON(file && to == NULL);
/* We have the fake context */
if (!HAS_HW_CONTEXTS(ring->dev)) {
ring->last_context = to;
return 0;
}
return do_switch(ring, to);
}
int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_context_create *args = data;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_hw_context *ctx;
int ret;
if (!HAS_HW_CONTEXTS(dev))
return -ENODEV;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
ctx = i915_gem_create_context(dev, file_priv, USES_FULL_PPGTT(dev));
mutex_unlock(&dev->struct_mutex);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
args->ctx_id = ctx->id;
DRM_DEBUG_DRIVER("HW context %d created\n", args->ctx_id);
return 0;
}
int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_context_destroy *args = data;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_hw_context *ctx;
int ret;
if (args->ctx_id == DEFAULT_CONTEXT_ID)
return -ENOENT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
ctx = i915_gem_context_get(file_priv, args->ctx_id);
if (IS_ERR(ctx)) {
mutex_unlock(&dev->struct_mutex);
return PTR_ERR(ctx);
}
idr_remove(&ctx->file_priv->context_idr, ctx->id);
i915_gem_context_unreference(ctx);
mutex_unlock(&dev->struct_mutex);
DRM_DEBUG_DRIVER("HW context %d destroyed\n", args->ctx_id);
return 0;
}