linux_dsm_epyc7002/drivers/crypto/mediatek/mtk-aes.c

1328 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Cryptographic API.
*
* Driver for EIP97 AES acceleration.
*
* Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
*
* Some ideas are from atmel-aes.c drivers.
*/
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include <crypto/internal/skcipher.h>
#include "mtk-platform.h"
#define AES_QUEUE_SIZE 512
#define AES_BUF_ORDER 2
#define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \
& ~(AES_BLOCK_SIZE - 1))
#define AES_MAX_STATE_BUF_SIZE SIZE_IN_WORDS(AES_KEYSIZE_256 + \
AES_BLOCK_SIZE * 2)
#define AES_MAX_CT_SIZE 6
#define AES_CT_CTRL_HDR cpu_to_le32(0x00220000)
/* AES-CBC/ECB/CTR/OFB/CFB command token */
#define AES_CMD0 cpu_to_le32(0x05000000)
#define AES_CMD1 cpu_to_le32(0x2d060000)
#define AES_CMD2 cpu_to_le32(0xe4a63806)
/* AES-GCM command token */
#define AES_GCM_CMD0 cpu_to_le32(0x0b000000)
#define AES_GCM_CMD1 cpu_to_le32(0xa0800000)
#define AES_GCM_CMD2 cpu_to_le32(0x25000010)
#define AES_GCM_CMD3 cpu_to_le32(0x0f020000)
#define AES_GCM_CMD4 cpu_to_le32(0x21e60000)
#define AES_GCM_CMD5 cpu_to_le32(0x40e60000)
#define AES_GCM_CMD6 cpu_to_le32(0xd0070000)
/* AES transform information word 0 fields */
#define AES_TFM_BASIC_OUT cpu_to_le32(0x4 << 0)
#define AES_TFM_BASIC_IN cpu_to_le32(0x5 << 0)
#define AES_TFM_GCM_OUT cpu_to_le32(0x6 << 0)
#define AES_TFM_GCM_IN cpu_to_le32(0xf << 0)
#define AES_TFM_SIZE(x) cpu_to_le32((x) << 8)
#define AES_TFM_128BITS cpu_to_le32(0xb << 16)
#define AES_TFM_192BITS cpu_to_le32(0xd << 16)
#define AES_TFM_256BITS cpu_to_le32(0xf << 16)
#define AES_TFM_GHASH_DIGEST cpu_to_le32(0x2 << 21)
#define AES_TFM_GHASH cpu_to_le32(0x4 << 23)
/* AES transform information word 1 fields */
#define AES_TFM_ECB cpu_to_le32(0x0 << 0)
#define AES_TFM_CBC cpu_to_le32(0x1 << 0)
#define AES_TFM_OFB cpu_to_le32(0x4 << 0)
#define AES_TFM_CFB128 cpu_to_le32(0x5 << 0)
#define AES_TFM_CTR_INIT cpu_to_le32(0x2 << 0) /* init counter to 1 */
#define AES_TFM_CTR_LOAD cpu_to_le32(0x6 << 0) /* load/reuse counter */
#define AES_TFM_3IV cpu_to_le32(0x7 << 5) /* using IV 0-2 */
#define AES_TFM_FULL_IV cpu_to_le32(0xf << 5) /* using IV 0-3 */
#define AES_TFM_IV_CTR_MODE cpu_to_le32(0x1 << 10)
#define AES_TFM_ENC_HASH cpu_to_le32(0x1 << 17)
/* AES flags */
#define AES_FLAGS_CIPHER_MSK GENMASK(4, 0)
#define AES_FLAGS_ECB BIT(0)
#define AES_FLAGS_CBC BIT(1)
#define AES_FLAGS_CTR BIT(2)
#define AES_FLAGS_OFB BIT(3)
#define AES_FLAGS_CFB128 BIT(4)
#define AES_FLAGS_GCM BIT(5)
#define AES_FLAGS_ENCRYPT BIT(6)
#define AES_FLAGS_BUSY BIT(7)
#define AES_AUTH_TAG_ERR cpu_to_le32(BIT(26))
/**
* mtk_aes_info - hardware information of AES
* @cmd: command token, hardware instruction
* @tfm: transform state of cipher algorithm.
* @state: contains keys and initial vectors.
*
* Memory layout of GCM buffer:
* /-----------\
* | AES KEY | 128/196/256 bits
* |-----------|
* | HASH KEY | a string 128 zero bits encrypted using the block cipher
* |-----------|
* | IVs | 4 * 4 bytes
* \-----------/
*
* The engine requires all these info to do:
* - Commands decoding and control of the engine's data path.
* - Coordinating hardware data fetch and store operations.
* - Result token construction and output.
*/
struct mtk_aes_info {
__le32 cmd[AES_MAX_CT_SIZE];
__le32 tfm[2];
__le32 state[AES_MAX_STATE_BUF_SIZE];
};
struct mtk_aes_reqctx {
u64 mode;
};
struct mtk_aes_base_ctx {
struct mtk_cryp *cryp;
u32 keylen;
__le32 key[12];
__le32 keymode;
mtk_aes_fn start;
struct mtk_aes_info info;
dma_addr_t ct_dma;
dma_addr_t tfm_dma;
__le32 ct_hdr;
u32 ct_size;
};
struct mtk_aes_ctx {
struct mtk_aes_base_ctx base;
};
struct mtk_aes_ctr_ctx {
struct mtk_aes_base_ctx base;
u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
size_t offset;
struct scatterlist src[2];
struct scatterlist dst[2];
};
struct mtk_aes_gcm_ctx {
struct mtk_aes_base_ctx base;
u32 authsize;
size_t textlen;
struct crypto_skcipher *ctr;
};
struct mtk_aes_drv {
struct list_head dev_list;
/* Device list lock */
spinlock_t lock;
};
static struct mtk_aes_drv mtk_aes = {
.dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
};
static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
{
return readl_relaxed(cryp->base + offset);
}
static inline void mtk_aes_write(struct mtk_cryp *cryp,
u32 offset, u32 value)
{
writel_relaxed(value, cryp->base + offset);
}
static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
{
struct mtk_cryp *cryp = NULL;
struct mtk_cryp *tmp;
spin_lock_bh(&mtk_aes.lock);
if (!ctx->cryp) {
list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
cryp = tmp;
break;
}
ctx->cryp = cryp;
} else {
cryp = ctx->cryp;
}
spin_unlock_bh(&mtk_aes.lock);
return cryp;
}
static inline size_t mtk_aes_padlen(size_t len)
{
len &= AES_BLOCK_SIZE - 1;
return len ? AES_BLOCK_SIZE - len : 0;
}
static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
struct mtk_aes_dma *dma)
{
int nents;
if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
return false;
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return false;
if (len <= sg->length) {
if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
return false;
dma->nents = nents + 1;
dma->remainder = sg->length - len;
sg->length = len;
return true;
}
if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
return false;
len -= sg->length;
}
return false;
}
static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes,
const struct mtk_aes_reqctx *rctx)
{
/* Clear all but persistent flags and set request flags. */
aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode;
}
static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
{
struct scatterlist *sg = dma->sg;
int nents = dma->nents;
if (!dma->remainder)
return;
while (--nents > 0 && sg)
sg = sg_next(sg);
if (!sg)
return;
sg->length += dma->remainder;
}
static inline void mtk_aes_write_state_le(__le32 *dst, const u32 *src, u32 size)
{
int i;
for (i = 0; i < SIZE_IN_WORDS(size); i++)
dst[i] = cpu_to_le32(src[i]);
}
static inline void mtk_aes_write_state_be(__be32 *dst, const u32 *src, u32 size)
{
int i;
for (i = 0; i < SIZE_IN_WORDS(size); i++)
dst[i] = cpu_to_be32(src[i]);
}
static inline int mtk_aes_complete(struct mtk_cryp *cryp,
struct mtk_aes_rec *aes,
int err)
{
aes->flags &= ~AES_FLAGS_BUSY;
aes->areq->complete(aes->areq, err);
/* Handle new request */
tasklet_schedule(&aes->queue_task);
return err;
}
/*
* Write descriptors for processing. This will configure the engine, load
* the transform information and then start the packet processing.
*/
static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
struct mtk_ring *ring = cryp->ring[aes->id];
struct mtk_desc *cmd = NULL, *res = NULL;
struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
int nents;
/* Write command descriptors */
for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
cmd = ring->cmd_next;
cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
cmd->buf = cpu_to_le32(sg_dma_address(ssg));
if (nents == 0) {
cmd->hdr |= MTK_DESC_FIRST |
MTK_DESC_CT_LEN(aes->ctx->ct_size);
cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
cmd->ct_hdr = aes->ctx->ct_hdr;
cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
}
/* Shift ring buffer and check boundary */
if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM)
ring->cmd_next = ring->cmd_base;
}
cmd->hdr |= MTK_DESC_LAST;
/* Prepare result descriptors */
for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
res = ring->res_next;
res->hdr = MTK_DESC_BUF_LEN(dsg->length);
res->buf = cpu_to_le32(sg_dma_address(dsg));
if (nents == 0)
res->hdr |= MTK_DESC_FIRST;
/* Shift ring buffer and check boundary */
if (++ring->res_next == ring->res_base + MTK_DESC_NUM)
ring->res_next = ring->res_base;
}
res->hdr |= MTK_DESC_LAST;
/* Pointer to current result descriptor */
ring->res_prev = res;
/* Prepare enough space for authenticated tag */
if (aes->flags & AES_FLAGS_GCM)
res->hdr += AES_BLOCK_SIZE;
/*
* Make sure that all changes to the DMA ring are done before we
* start engine.
*/
wmb();
/* Start DMA transfer */
mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));
return -EINPROGRESS;
}
static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
struct mtk_aes_base_ctx *ctx = aes->ctx;
dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
DMA_TO_DEVICE);
if (aes->src.sg == aes->dst.sg) {
dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
DMA_BIDIRECTIONAL);
if (aes->src.sg != &aes->aligned_sg)
mtk_aes_restore_sg(&aes->src);
} else {
dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents,
DMA_FROM_DEVICE);
if (aes->dst.sg != &aes->aligned_sg)
mtk_aes_restore_sg(&aes->dst);
dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
DMA_TO_DEVICE);
if (aes->src.sg != &aes->aligned_sg)
mtk_aes_restore_sg(&aes->src);
}
if (aes->dst.sg == &aes->aligned_sg)
sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst),
aes->buf, aes->total);
}
static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
struct mtk_aes_base_ctx *ctx = aes->ctx;
struct mtk_aes_info *info = &ctx->info;
ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
goto exit;
ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);
if (aes->src.sg == aes->dst.sg) {
aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
aes->src.nents,
DMA_BIDIRECTIONAL);
aes->dst.sg_len = aes->src.sg_len;
if (unlikely(!aes->src.sg_len))
goto sg_map_err;
} else {
aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
aes->src.nents, DMA_TO_DEVICE);
if (unlikely(!aes->src.sg_len))
goto sg_map_err;
aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
aes->dst.nents, DMA_FROM_DEVICE);
if (unlikely(!aes->dst.sg_len)) {
dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
DMA_TO_DEVICE);
goto sg_map_err;
}
}
return mtk_aes_xmit(cryp, aes);
sg_map_err:
dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
exit:
return mtk_aes_complete(cryp, aes, -EINVAL);
}
/* Initialize transform information of CBC/ECB/CTR/OFB/CFB mode */
static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
size_t len)
{
struct skcipher_request *req = skcipher_request_cast(aes->areq);
struct mtk_aes_base_ctx *ctx = aes->ctx;
struct mtk_aes_info *info = &ctx->info;
u32 cnt = 0;
ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
info->cmd[cnt++] = AES_CMD1;
info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
if (aes->flags & AES_FLAGS_ENCRYPT)
info->tfm[0] |= AES_TFM_BASIC_OUT;
else
info->tfm[0] |= AES_TFM_BASIC_IN;
switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
case AES_FLAGS_CBC:
info->tfm[1] = AES_TFM_CBC;
break;
case AES_FLAGS_ECB:
info->tfm[1] = AES_TFM_ECB;
goto ecb;
case AES_FLAGS_CTR:
info->tfm[1] = AES_TFM_CTR_LOAD;
goto ctr;
case AES_FLAGS_OFB:
info->tfm[1] = AES_TFM_OFB;
break;
case AES_FLAGS_CFB128:
info->tfm[1] = AES_TFM_CFB128;
break;
default:
/* Should not happen... */
return;
}
mtk_aes_write_state_le(info->state + ctx->keylen, (void *)req->iv,
AES_BLOCK_SIZE);
ctr:
info->tfm[0] += AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE));
info->tfm[1] |= AES_TFM_FULL_IV;
info->cmd[cnt++] = AES_CMD2;
ecb:
ctx->ct_size = cnt;
}
static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
struct scatterlist *src, struct scatterlist *dst,
size_t len)
{
size_t padlen = 0;
bool src_aligned, dst_aligned;
aes->total = len;
aes->src.sg = src;
aes->dst.sg = dst;
aes->real_dst = dst;
src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
if (src == dst)
dst_aligned = src_aligned;
else
dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
if (!src_aligned || !dst_aligned) {
padlen = mtk_aes_padlen(len);
if (len + padlen > AES_BUF_SIZE)
return mtk_aes_complete(cryp, aes, -ENOMEM);
if (!src_aligned) {
sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
aes->src.sg = &aes->aligned_sg;
aes->src.nents = 1;
aes->src.remainder = 0;
}
if (!dst_aligned) {
aes->dst.sg = &aes->aligned_sg;
aes->dst.nents = 1;
aes->dst.remainder = 0;
}
sg_init_table(&aes->aligned_sg, 1);
sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
}
mtk_aes_info_init(cryp, aes, len + padlen);
return mtk_aes_map(cryp, aes);
}
static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
struct crypto_async_request *new_areq)
{
struct mtk_aes_rec *aes = cryp->aes[id];
struct crypto_async_request *areq, *backlog;
struct mtk_aes_base_ctx *ctx;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&aes->lock, flags);
if (new_areq)
ret = crypto_enqueue_request(&aes->queue, new_areq);
if (aes->flags & AES_FLAGS_BUSY) {
spin_unlock_irqrestore(&aes->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&aes->queue);
areq = crypto_dequeue_request(&aes->queue);
if (areq)
aes->flags |= AES_FLAGS_BUSY;
spin_unlock_irqrestore(&aes->lock, flags);
if (!areq)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(areq->tfm);
/* Write key into state buffer */
memcpy(ctx->info.state, ctx->key, sizeof(ctx->key));
aes->areq = areq;
aes->ctx = ctx;
return ctx->start(cryp, aes);
}
static int mtk_aes_transfer_complete(struct mtk_cryp *cryp,
struct mtk_aes_rec *aes)
{
return mtk_aes_complete(cryp, aes, 0);
}
static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
struct skcipher_request *req = skcipher_request_cast(aes->areq);
struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
mtk_aes_set_mode(aes, rctx);
aes->resume = mtk_aes_transfer_complete;
return mtk_aes_dma(cryp, aes, req->src, req->dst, req->cryptlen);
}
static inline struct mtk_aes_ctr_ctx *
mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx)
{
return container_of(ctx, struct mtk_aes_ctr_ctx, base);
}
static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
struct mtk_aes_base_ctx *ctx = aes->ctx;
struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
struct skcipher_request *req = skcipher_request_cast(aes->areq);
struct scatterlist *src, *dst;
u32 start, end, ctr, blocks;
size_t datalen;
bool fragmented = false;
/* Check for transfer completion. */
cctx->offset += aes->total;
if (cctx->offset >= req->cryptlen)
return mtk_aes_transfer_complete(cryp, aes);
/* Compute data length. */
datalen = req->cryptlen - cctx->offset;
blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
ctr = be32_to_cpu(cctx->iv[3]);
/* Check 32bit counter overflow. */
start = ctr;
end = start + blocks - 1;
if (end < start) {
ctr = 0xffffffff;
datalen = AES_BLOCK_SIZE * -start;
fragmented = true;
}
/* Jump to offset. */
src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset);
dst = ((req->src == req->dst) ? src :
scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
/* Write IVs into transform state buffer. */
mtk_aes_write_state_le(ctx->info.state + ctx->keylen, cctx->iv,
AES_BLOCK_SIZE);
if (unlikely(fragmented)) {
/*
* Increment the counter manually to cope with the hardware
* counter overflow.
*/
cctx->iv[3] = cpu_to_be32(ctr);
crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE);
}
return mtk_aes_dma(cryp, aes, src, dst, datalen);
}
static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx);
struct skcipher_request *req = skcipher_request_cast(aes->areq);
struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
mtk_aes_set_mode(aes, rctx);
memcpy(cctx->iv, req->iv, AES_BLOCK_SIZE);
cctx->offset = 0;
aes->total = 0;
aes->resume = mtk_aes_ctr_transfer;
return mtk_aes_ctr_transfer(cryp, aes);
}
/* Check and set the AES key to transform state buffer */
static int mtk_aes_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
switch (keylen) {
case AES_KEYSIZE_128:
ctx->keymode = AES_TFM_128BITS;
break;
case AES_KEYSIZE_192:
ctx->keymode = AES_TFM_192BITS;
break;
case AES_KEYSIZE_256:
ctx->keymode = AES_TFM_256BITS;
break;
default:
return -EINVAL;
}
ctx->keylen = SIZE_IN_WORDS(keylen);
mtk_aes_write_state_le(ctx->key, (const u32 *)key, keylen);
return 0;
}
static int mtk_aes_crypt(struct skcipher_request *req, u64 mode)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct mtk_aes_reqctx *rctx;
struct mtk_cryp *cryp;
cryp = mtk_aes_find_dev(ctx);
if (!cryp)
return -ENODEV;
rctx = skcipher_request_ctx(req);
rctx->mode = mode;
return mtk_aes_handle_queue(cryp, !(mode & AES_FLAGS_ENCRYPT),
&req->base);
}
static int mtk_aes_ecb_encrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
}
static int mtk_aes_ecb_decrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_ECB);
}
static int mtk_aes_cbc_encrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
}
static int mtk_aes_cbc_decrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_CBC);
}
static int mtk_aes_ctr_encrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
}
static int mtk_aes_ctr_decrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_CTR);
}
static int mtk_aes_ofb_encrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
}
static int mtk_aes_ofb_decrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_OFB);
}
static int mtk_aes_cfb_encrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB128);
}
static int mtk_aes_cfb_decrypt(struct skcipher_request *req)
{
return mtk_aes_crypt(req, AES_FLAGS_CFB128);
}
static int mtk_aes_init_tfm(struct crypto_skcipher *tfm)
{
struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
ctx->base.start = mtk_aes_start;
return 0;
}
static int mtk_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
{
struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
ctx->base.start = mtk_aes_ctr_start;
return 0;
}
static struct skcipher_alg aes_algs[] = {
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-mtk",
.base.cra_priority = 400,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct mtk_aes_ctx),
.base.cra_alignmask = 0xf,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mtk_aes_setkey,
.encrypt = mtk_aes_cbc_encrypt,
.decrypt = mtk_aes_cbc_decrypt,
.ivsize = AES_BLOCK_SIZE,
.init = mtk_aes_init_tfm,
},
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-mtk",
.base.cra_priority = 400,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct mtk_aes_ctx),
.base.cra_alignmask = 0xf,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mtk_aes_setkey,
.encrypt = mtk_aes_ecb_encrypt,
.decrypt = mtk_aes_ecb_decrypt,
.init = mtk_aes_init_tfm,
},
{
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-mtk",
.base.cra_priority = 400,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct mtk_aes_ctx),
.base.cra_alignmask = 0xf,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = mtk_aes_setkey,
.encrypt = mtk_aes_ctr_encrypt,
.decrypt = mtk_aes_ctr_decrypt,
.init = mtk_aes_ctr_init_tfm,
},
{
.base.cra_name = "ofb(aes)",
.base.cra_driver_name = "ofb-aes-mtk",
.base.cra_priority = 400,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct mtk_aes_ctx),
.base.cra_alignmask = 0xf,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = mtk_aes_setkey,
.encrypt = mtk_aes_ofb_encrypt,
.decrypt = mtk_aes_ofb_decrypt,
},
{
.base.cra_name = "cfb(aes)",
.base.cra_driver_name = "cfb-aes-mtk",
.base.cra_priority = 400,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct mtk_aes_ctx),
.base.cra_alignmask = 0xf,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = mtk_aes_setkey,
.encrypt = mtk_aes_cfb_encrypt,
.decrypt = mtk_aes_cfb_decrypt,
},
};
static inline struct mtk_aes_gcm_ctx *
mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx)
{
return container_of(ctx, struct mtk_aes_gcm_ctx, base);
}
/*
* Engine will verify and compare tag automatically, so we just need
* to check returned status which stored in the result descriptor.
*/
static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp,
struct mtk_aes_rec *aes)
{
u32 status = cryp->ring[aes->id]->res_prev->ct;
return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ?
-EBADMSG : 0);
}
/* Initialize transform information of GCM mode */
static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
struct mtk_aes_rec *aes,
size_t len)
{
struct aead_request *req = aead_request_cast(aes->areq);
struct mtk_aes_base_ctx *ctx = aes->ctx;
struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
struct mtk_aes_info *info = &ctx->info;
u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
u32 cnt = 0;
ctx->ct_hdr = AES_CT_CTRL_HDR | len;
info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
info->cmd[cnt++] = AES_GCM_CMD2;
info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
if (aes->flags & AES_FLAGS_ENCRYPT) {
info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
info->tfm[0] = AES_TFM_GCM_OUT;
} else {
info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
info->tfm[0] = AES_TFM_GCM_IN;
}
ctx->ct_size = cnt;
info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
ctx->keymode;
info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
AES_TFM_ENC_HASH;
mtk_aes_write_state_le(info->state + ctx->keylen + SIZE_IN_WORDS(
AES_BLOCK_SIZE), (const u32 *)req->iv, ivsize);
}
static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
struct scatterlist *src, struct scatterlist *dst,
size_t len)
{
bool src_aligned, dst_aligned;
aes->src.sg = src;
aes->dst.sg = dst;
aes->real_dst = dst;
src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
if (src == dst)
dst_aligned = src_aligned;
else
dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
if (!src_aligned || !dst_aligned) {
if (aes->total > AES_BUF_SIZE)
return mtk_aes_complete(cryp, aes, -ENOMEM);
if (!src_aligned) {
sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
aes->src.sg = &aes->aligned_sg;
aes->src.nents = 1;
aes->src.remainder = 0;
}
if (!dst_aligned) {
aes->dst.sg = &aes->aligned_sg;
aes->dst.nents = 1;
aes->dst.remainder = 0;
}
sg_init_table(&aes->aligned_sg, 1);
sg_set_buf(&aes->aligned_sg, aes->buf, aes->total);
}
mtk_aes_gcm_info_init(cryp, aes, len);
return mtk_aes_map(cryp, aes);
}
/* Todo: GMAC */
static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx);
struct aead_request *req = aead_request_cast(aes->areq);
struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
u32 len = req->assoclen + req->cryptlen;
mtk_aes_set_mode(aes, rctx);
if (aes->flags & AES_FLAGS_ENCRYPT) {
u32 tag[4];
aes->resume = mtk_aes_transfer_complete;
/* Compute total process length. */
aes->total = len + gctx->authsize;
/* Hardware will append authenticated tag to output buffer */
scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1);
} else {
aes->resume = mtk_aes_gcm_tag_verify;
aes->total = len;
}
return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len);
}
static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode)
{
struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
struct mtk_cryp *cryp;
bool enc = !!(mode & AES_FLAGS_ENCRYPT);
cryp = mtk_aes_find_dev(ctx);
if (!cryp)
return -ENODEV;
/* Compute text length. */
gctx->textlen = req->cryptlen - (enc ? 0 : gctx->authsize);
/* Empty messages are not supported yet */
if (!gctx->textlen && !req->assoclen)
return -EINVAL;
rctx->mode = AES_FLAGS_GCM | mode;
return mtk_aes_handle_queue(cryp, enc, &req->base);
}
/*
* Because of the hardware limitation, we need to pre-calculate key(H)
* for the GHASH operation. The result of the encryption operation
* need to be stored in the transform state buffer.
*/
static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
u32 keylen)
{
struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
struct crypto_skcipher *ctr = gctx->ctr;
struct {
u32 hash[4];
u8 iv[8];
struct crypto_wait wait;
struct scatterlist sg[1];
struct skcipher_request req;
} *data;
int err;
switch (keylen) {
case AES_KEYSIZE_128:
ctx->keymode = AES_TFM_128BITS;
break;
case AES_KEYSIZE_192:
ctx->keymode = AES_TFM_192BITS;
break;
case AES_KEYSIZE_256:
ctx->keymode = AES_TFM_256BITS;
break;
default:
return -EINVAL;
}
ctx->keylen = SIZE_IN_WORDS(keylen);
/* Same as crypto_gcm_setkey() from crypto/gcm.c */
crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(ctr, key, keylen);
if (err)
return err;
data = kzalloc(sizeof(*data) + crypto_skcipher_reqsize(ctr),
GFP_KERNEL);
if (!data)
return -ENOMEM;
crypto_init_wait(&data->wait);
sg_init_one(data->sg, &data->hash, AES_BLOCK_SIZE);
skcipher_request_set_tfm(&data->req, ctr);
skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &data->wait);
skcipher_request_set_crypt(&data->req, data->sg, data->sg,
AES_BLOCK_SIZE, data->iv);
err = crypto_wait_req(crypto_skcipher_encrypt(&data->req),
&data->wait);
if (err)
goto out;
mtk_aes_write_state_le(ctx->key, (const u32 *)key, keylen);
mtk_aes_write_state_be(ctx->key + ctx->keylen, data->hash,
AES_BLOCK_SIZE);
out:
kzfree(data);
return err;
}
static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead,
u32 authsize)
{
struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
/* Same as crypto_gcm_authsize() from crypto/gcm.c */
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
gctx->authsize = authsize;
return 0;
}
static int mtk_aes_gcm_encrypt(struct aead_request *req)
{
return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
}
static int mtk_aes_gcm_decrypt(struct aead_request *req)
{
return mtk_aes_gcm_crypt(req, 0);
}
static int mtk_aes_gcm_init(struct crypto_aead *aead)
{
struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
ctx->ctr = crypto_alloc_skcipher("ctr(aes)", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx->ctr)) {
pr_err("Error allocating ctr(aes)\n");
return PTR_ERR(ctx->ctr);
}
crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx));
ctx->base.start = mtk_aes_gcm_start;
return 0;
}
static void mtk_aes_gcm_exit(struct crypto_aead *aead)
{
struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
crypto_free_skcipher(ctx->ctr);
}
static struct aead_alg aes_gcm_alg = {
.setkey = mtk_aes_gcm_setkey,
.setauthsize = mtk_aes_gcm_setauthsize,
.encrypt = mtk_aes_gcm_encrypt,
.decrypt = mtk_aes_gcm_decrypt,
.init = mtk_aes_gcm_init,
.exit = mtk_aes_gcm_exit,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-mtk",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct mtk_aes_gcm_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
};
static void mtk_aes_queue_task(unsigned long data)
{
struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
mtk_aes_handle_queue(aes->cryp, aes->id, NULL);
}
static void mtk_aes_done_task(unsigned long data)
{
struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
struct mtk_cryp *cryp = aes->cryp;
mtk_aes_unmap(cryp, aes);
aes->resume(cryp, aes);
}
static irqreturn_t mtk_aes_irq(int irq, void *dev_id)
{
struct mtk_aes_rec *aes = (struct mtk_aes_rec *)dev_id;
struct mtk_cryp *cryp = aes->cryp;
u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id));
mtk_aes_write(cryp, RDR_STAT(aes->id), val);
if (likely(AES_FLAGS_BUSY & aes->flags)) {
mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST);
mtk_aes_write(cryp, RDR_THRESH(aes->id),
MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
tasklet_schedule(&aes->done_task);
} else {
dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
}
return IRQ_HANDLED;
}
/*
* The purpose of creating encryption and decryption records is
* to process outbound/inbound data in parallel, it can improve
* performance in most use cases, such as IPSec VPN, especially
* under heavy network traffic.
*/
static int mtk_aes_record_init(struct mtk_cryp *cryp)
{
struct mtk_aes_rec **aes = cryp->aes;
int i, err = -ENOMEM;
for (i = 0; i < MTK_REC_NUM; i++) {
aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
if (!aes[i])
goto err_cleanup;
aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
AES_BUF_ORDER);
if (!aes[i]->buf)
goto err_cleanup;
aes[i]->cryp = cryp;
spin_lock_init(&aes[i]->lock);
crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task,
(unsigned long)aes[i]);
tasklet_init(&aes[i]->done_task, mtk_aes_done_task,
(unsigned long)aes[i]);
}
/* Link to ring0 and ring1 respectively */
aes[0]->id = MTK_RING0;
aes[1]->id = MTK_RING1;
return 0;
err_cleanup:
for (; i--; ) {
free_page((unsigned long)aes[i]->buf);
kfree(aes[i]);
}
return err;
}
static void mtk_aes_record_free(struct mtk_cryp *cryp)
{
int i;
for (i = 0; i < MTK_REC_NUM; i++) {
tasklet_kill(&cryp->aes[i]->done_task);
tasklet_kill(&cryp->aes[i]->queue_task);
free_page((unsigned long)cryp->aes[i]->buf);
kfree(cryp->aes[i]);
}
}
static void mtk_aes_unregister_algs(void)
{
int i;
crypto_unregister_aead(&aes_gcm_alg);
for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
crypto_unregister_skcipher(&aes_algs[i]);
}
static int mtk_aes_register_algs(void)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
err = crypto_register_skcipher(&aes_algs[i]);
if (err)
goto err_aes_algs;
}
err = crypto_register_aead(&aes_gcm_alg);
if (err)
goto err_aes_algs;
return 0;
err_aes_algs:
for (; i--; )
crypto_unregister_skcipher(&aes_algs[i]);
return err;
}
int mtk_cipher_alg_register(struct mtk_cryp *cryp)
{
int ret;
INIT_LIST_HEAD(&cryp->aes_list);
/* Initialize two cipher records */
ret = mtk_aes_record_init(cryp);
if (ret)
goto err_record;
ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq,
0, "mtk-aes", cryp->aes[0]);
if (ret) {
dev_err(cryp->dev, "unable to request AES irq.\n");
goto err_res;
}
ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq,
0, "mtk-aes", cryp->aes[1]);
if (ret) {
dev_err(cryp->dev, "unable to request AES irq.\n");
goto err_res;
}
/* Enable ring0 and ring1 interrupt */
mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0);
mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1);
spin_lock(&mtk_aes.lock);
list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
spin_unlock(&mtk_aes.lock);
ret = mtk_aes_register_algs();
if (ret)
goto err_algs;
return 0;
err_algs:
spin_lock(&mtk_aes.lock);
list_del(&cryp->aes_list);
spin_unlock(&mtk_aes.lock);
err_res:
mtk_aes_record_free(cryp);
err_record:
dev_err(cryp->dev, "mtk-aes initialization failed.\n");
return ret;
}
void mtk_cipher_alg_release(struct mtk_cryp *cryp)
{
spin_lock(&mtk_aes.lock);
list_del(&cryp->aes_list);
spin_unlock(&mtk_aes.lock);
mtk_aes_unregister_algs();
mtk_aes_record_free(cryp);
}