linux_dsm_epyc7002/arch/powerpc/kernel/Makefile

182 lines
5.7 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for the linux kernel.
#
CFLAGS_ptrace.o += -DUTS_MACHINE='"$(UTS_MACHINE)"'
subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
ifdef CONFIG_PPC64
CFLAGS_prom_init.o += $(NO_MINIMAL_TOC)
endif
ifdef CONFIG_PPC32
CFLAGS_prom_init.o += -fPIC
CFLAGS_btext.o += -fPIC
endif
gcc-plugins: Add latent_entropy plugin This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 01:41:19 +07:00
CFLAGS_cputable.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
CFLAGS_prom_init.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
gcc-plugins: Add latent_entropy plugin This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 01:41:19 +07:00
CFLAGS_btext.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
CFLAGS_prom.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
ifdef CONFIG_FUNCTION_TRACER
# Do not trace early boot code
CFLAGS_REMOVE_cputable.o = $(CC_FLAGS_FTRACE)
CFLAGS_REMOVE_prom_init.o = $(CC_FLAGS_FTRACE)
CFLAGS_REMOVE_btext.o = $(CC_FLAGS_FTRACE)
CFLAGS_REMOVE_prom.o = $(CC_FLAGS_FTRACE)
endif
obj-y := cputable.o ptrace.o syscalls.o \
irq.o align.o signal_32.o pmc.o vdso.o \
process.o systbl.o idle.o \
signal.o sysfs.o cacheinfo.o time.o \
prom.o traps.o setup-common.o \
udbg.o misc.o io.o dma.o misc_$(BITS).o \
of_platform.o prom_parse.o
obj-$(CONFIG_PPC64) += setup_64.o sys_ppc32.o \
signal_64.o ptrace32.o \
paca.o nvram_64.o firmware.o
obj-$(CONFIG_VDSO32) += vdso32/
obj-$(CONFIG_PPC_WATCHDOG) += watchdog.o
obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o
obj-$(CONFIG_PPC_BOOK3S_64) += cpu_setup_ppc970.o cpu_setup_pa6t.o
obj-$(CONFIG_PPC_BOOK3S_64) += cpu_setup_power.o
obj-$(CONFIG_PPC_BOOK3S_64) += mce.o mce_power.o
obj-$(CONFIG_PPC_BOOK3E_64) += exceptions-64e.o idle_book3e.o
obj-$(CONFIG_PPC_BARRIER_NOSPEC) += security.o
obj-$(CONFIG_PPC64) += vdso64/
obj-$(CONFIG_ALTIVEC) += vecemu.o
obj-$(CONFIG_PPC_970_NAP) += idle_power4.o
obj-$(CONFIG_PPC_P7_NAP) += idle_book3s.o
procfs-y := proc_powerpc.o
obj-$(CONFIG_PROC_FS) += $(procfs-y)
rtaspci-$(CONFIG_PPC64)-$(CONFIG_PCI) := rtas_pci.o
obj-$(CONFIG_PPC_RTAS) += rtas.o rtas-rtc.o $(rtaspci-y-y)
obj-$(CONFIG_PPC_RTAS_DAEMON) += rtasd.o
obj-$(CONFIG_RTAS_FLASH) += rtas_flash.o
obj-$(CONFIG_RTAS_PROC) += rtas-proc.o
obj-$(CONFIG_PPC_DT_CPU_FTRS) += dt_cpu_ftrs.o
obj-$(CONFIG_EEH) += eeh.o eeh_pe.o eeh_dev.o eeh_cache.o \
eeh_driver.o eeh_event.o eeh_sysfs.o
obj-$(CONFIG_GENERIC_TBSYNC) += smp-tbsync.o
obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
obj-$(CONFIG_FA_DUMP) += fadump.o
ifdef CONFIG_PPC32
obj-$(CONFIG_E500) += idle_e500.o
endif
obj-$(CONFIG_6xx) += idle_6xx.o l2cr_6xx.o cpu_setup_6xx.o
obj-$(CONFIG_TAU) += tau_6xx.o
obj-$(CONFIG_HIBERNATION) += swsusp.o suspend.o
ifdef CONFIG_FSL_BOOKE
obj-$(CONFIG_HIBERNATION) += swsusp_booke.o
else
obj-$(CONFIG_HIBERNATION) += swsusp_$(BITS).o
endif
obj64-$(CONFIG_HIBERNATION) += swsusp_asm64.o
obj-$(CONFIG_MODULES) += module.o module_$(BITS).o
obj-$(CONFIG_44x) += cpu_setup_44x.o
obj-$(CONFIG_PPC_FSL_BOOK3E) += cpu_setup_fsl_booke.o
obj-$(CONFIG_PPC_DOORBELL) += dbell.o
obj-$(CONFIG_JUMP_LABEL) += jump_label.o
extra-y := head_$(BITS).o
extra-$(CONFIG_40x) := head_40x.o
extra-$(CONFIG_44x) := head_44x.o
extra-$(CONFIG_FSL_BOOKE) := head_fsl_booke.o
extra-$(CONFIG_PPC_8xx) := head_8xx.o
extra-y += vmlinux.lds
obj-$(CONFIG_RELOCATABLE) += reloc_$(BITS).o
obj-$(CONFIG_PPC32) += entry_32.o setup_32.o
obj-$(CONFIG_PPC64) += dma-iommu.o iommu.o
obj-$(CONFIG_KGDB) += kgdb.o
obj-$(CONFIG_BOOTX_TEXT) += btext.o
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_KPROBES) += kprobes.o
obj-$(CONFIG_OPTPROBES) += optprobes.o optprobes_head.o
obj-$(CONFIG_KPROBES_ON_FTRACE) += kprobes-ftrace.o
obj-$(CONFIG_UPROBES) += uprobes.o
obj-$(CONFIG_PPC_UDBG_16550) += legacy_serial.o udbg_16550.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-$(CONFIG_SWIOTLB) += dma-swiotlb.o
pci64-$(CONFIG_PPC64) += pci_dn.o pci-hotplug.o isa-bridge.o
obj-$(CONFIG_PCI) += pci_$(BITS).o $(pci64-y) \
pci-common.o pci_of_scan.o
obj-$(CONFIG_PCI_MSI) += msi.o
obj-$(CONFIG_KEXEC_CORE) += machine_kexec.o crash.o \
machine_kexec_$(BITS).o
obj-$(CONFIG_KEXEC_FILE) += machine_kexec_file_$(BITS).o kexec_elf_$(BITS).o
ifdef CONFIG_HAVE_IMA_KEXEC
ifdef CONFIG_IMA
powerpc: ima: get the kexec buffer passed by the previous kernel Patch series "ima: carry the measurement list across kexec", v8. The TPM PCRs are only reset on a hard reboot. In order to validate a TPM's quote after a soft reboot (eg. kexec -e), the IMA measurement list of the running kernel must be saved and then restored on the subsequent boot, possibly of a different architecture. The existing securityfs binary_runtime_measurements file conveniently provides a serialized format of the IMA measurement list. This patch set serializes the measurement list in this format and restores it. Up to now, the binary_runtime_measurements was defined as architecture native format. The assumption being that userspace could and would handle any architecture conversions. With the ability of carrying the measurement list across kexec, possibly from one architecture to a different one, the per boot architecture information is lost and with it the ability of recalculating the template digest hash. To resolve this problem, without breaking the existing ABI, this patch set introduces the boot command line option "ima_canonical_fmt", which is arbitrarily defined as little endian. The need for this boot command line option will be limited to the existing version 1 format of the binary_runtime_measurements. Subsequent formats will be defined as canonical format (eg. TPM 2.0 support for larger digests). A simplified method of Thiago Bauermann's "kexec buffer handover" patch series for carrying the IMA measurement list across kexec is included in this patch set. The simplified method requires all file measurements be taken prior to executing the kexec load, as subsequent measurements will not be carried across the kexec and restored. This patch (of 10): The IMA kexec buffer allows the currently running kernel to pass the measurement list via a kexec segment to the kernel that will be kexec'd. The second kernel can check whether the previous kernel sent the buffer and retrieve it. This is the architecture-specific part which enables IMA to receive the measurement list passed by the previous kernel. It will be used in the next patch. The change in machine_kexec_64.c is to factor out the logic of removing an FDT memory reservation so that it can be used by remove_ima_buffer. Link: http://lkml.kernel.org/r/1480554346-29071-2-git-send-email-zohar@linux.vnet.ibm.com Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andreas Steffen <andreas.steffen@strongswan.org> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: Josh Sklar <sklar@linux.vnet.ibm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Stewart Smith <stewart@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-20 07:22:32 +07:00
obj-y += ima_kexec.o
endif
endif
powerpc: ima: get the kexec buffer passed by the previous kernel Patch series "ima: carry the measurement list across kexec", v8. The TPM PCRs are only reset on a hard reboot. In order to validate a TPM's quote after a soft reboot (eg. kexec -e), the IMA measurement list of the running kernel must be saved and then restored on the subsequent boot, possibly of a different architecture. The existing securityfs binary_runtime_measurements file conveniently provides a serialized format of the IMA measurement list. This patch set serializes the measurement list in this format and restores it. Up to now, the binary_runtime_measurements was defined as architecture native format. The assumption being that userspace could and would handle any architecture conversions. With the ability of carrying the measurement list across kexec, possibly from one architecture to a different one, the per boot architecture information is lost and with it the ability of recalculating the template digest hash. To resolve this problem, without breaking the existing ABI, this patch set introduces the boot command line option "ima_canonical_fmt", which is arbitrarily defined as little endian. The need for this boot command line option will be limited to the existing version 1 format of the binary_runtime_measurements. Subsequent formats will be defined as canonical format (eg. TPM 2.0 support for larger digests). A simplified method of Thiago Bauermann's "kexec buffer handover" patch series for carrying the IMA measurement list across kexec is included in this patch set. The simplified method requires all file measurements be taken prior to executing the kexec load, as subsequent measurements will not be carried across the kexec and restored. This patch (of 10): The IMA kexec buffer allows the currently running kernel to pass the measurement list via a kexec segment to the kernel that will be kexec'd. The second kernel can check whether the previous kernel sent the buffer and retrieve it. This is the architecture-specific part which enables IMA to receive the measurement list passed by the previous kernel. It will be used in the next patch. The change in machine_kexec_64.c is to factor out the logic of removing an FDT memory reservation so that it can be used by remove_ima_buffer. Link: http://lkml.kernel.org/r/1480554346-29071-2-git-send-email-zohar@linux.vnet.ibm.com Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andreas Steffen <andreas.steffen@strongswan.org> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: Josh Sklar <sklar@linux.vnet.ibm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Stewart Smith <stewart@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-20 07:22:32 +07:00
obj-$(CONFIG_AUDIT) += audit.o
obj64-$(CONFIG_AUDIT) += compat_audit.o
obj-$(CONFIG_PPC_IO_WORKAROUNDS) += io-workarounds.o
obj-y += trace/
ifneq ($(CONFIG_PPC_INDIRECT_PIO),y)
obj-y += iomap.o
[POWERPC] Allow hooking of PCI MMIO & PIO accessors on 64 bits This patch reworks the way iSeries hooks on PCI IO operations (both MMIO and PIO) and provides a generic way for other platforms to do so (we have need to do that for various other platforms). While reworking the IO ops, I ended up doing some spring cleaning in io.h and eeh.h which I might want to split into 2 or 3 patches (among others, eeh.h had a lot of useless stuff in it). A side effect is that EEH for PIO should work now (it used to pass IO ports down to the eeh address check functions which is bogus). Also, new are MMIO "repeat" ops, which other archs like ARM already had, and that we have too now: readsb, readsw, readsl, writesb, writesw, writesl. In the long run, I might also make EEH use the hooks instead of wrapping at the toplevel, which would make things even cleaner and relegate EEH completely in platforms/iseries, but we have to measure the performance impact there (though it's really only on MMIO reads) Since I also need to hook on ioremap, I shuffled the functions a bit there. I introduced ioremap_flags() to use by drivers who want to pass explicit flags to ioremap (and it can be hooked). The old __ioremap() is still there as a low level and cannot be hooked, thus drivers who use it should migrate unless they know they want the low level version. The patch "arch provides generic iomap missing accessors" (should be number 4 in this series) is a pre-requisite to provide full iomap API support with this patch. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-11-11 13:25:10 +07:00
endif
obj64-$(CONFIG_PPC_TRANSACTIONAL_MEM) += tm.o
obj-$(CONFIG_PPC64) += $(obj64-y)
perf_counter: powerpc: Add processor back-end for MPC7450 family This adds support for the performance monitor hardware on the MPC7450 family of processors (7450, 7451, 7455, 7447/7457, 7447A, 7448), used in the later Apple G4 powermacs/powerbooks and other machines. These machines have 6 hardware counters with a unique set of events which can be counted on each counter, with some events being available on multiple counters. Raw event codes for these processors are (PMC << 8) + PMCSEL. If PMC is non-zero then the event is that selected by the given PMCSEL value for that PMC (hardware counter). If PMC is zero then the event selected is one of the low-numbered ones that are common to several PMCs. In this case PMCSEL must be <= 22 and the event is what that PMCSEL value would select on PMC1 (but it may be placed any other PMC that has the same event for that PMCSEL value). For events that count cycles or occurrences that exceed a threshold, the threshold requested can be specified in the 0x3f000 bits of the raw event codes. If the event uses the threshold multiplier bit and that bit should be set, that is indicated with the 0x40000 bit of the raw event code. This fills in some of the generic cache events. Unfortunately there are quite a few blank spaces in the table, partly because these processors tend to count cache hits rather than cache accesses. Signed-off-by: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: linuxppc-dev@ozlabs.org Cc: benh@kernel.crashing.org LKML-Reference: <19000.55631.802122.696927@cargo.ozlabs.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-17 18:53:51 +07:00
obj-$(CONFIG_PPC32) += $(obj32-y)
ifneq ($(CONFIG_XMON)$(CONFIG_KEXEC_CORE)(CONFIG_PPC_BOOK3S),)
obj-y += ppc_save_regs.o
endif
obj-$(CONFIG_EPAPR_PARAVIRT) += epapr_paravirt.o epapr_hcalls.o
obj-$(CONFIG_KVM_GUEST) += kvm.o kvm_emul.o
# Disable GCOV & sanitizers in odd or sensitive code
GCOV_PROFILE_prom_init.o := n
UBSAN_SANITIZE_prom_init.o := n
GCOV_PROFILE_machine_kexec_64.o := n
UBSAN_SANITIZE_machine_kexec_64.o := n
GCOV_PROFILE_machine_kexec_32.o := n
UBSAN_SANITIZE_machine_kexec_32.o := n
GCOV_PROFILE_kprobes.o := n
UBSAN_SANITIZE_kprobes.o := n
GCOV_PROFILE_kprobes-ftrace.o := n
UBSAN_SANITIZE_kprobes-ftrace.o := n
UBSAN_SANITIZE_vdso.o := n
[PATCH] powerpc: Fix handling of fpscr on 64-bit The recent merge of fpu.S broken the handling of fpscr for ARCH=powerpc and CONFIG_PPC64=y. FP registers could be corrupted, leading to strange random application crashes. The confusion arises, because the thread_struct has (and requires) a 64-bit area to save the fpscr, because we use load/store double instructions to get it in to/out of the FPU. However, only the low 32-bits are actually used, so we want to treat it as a 32-bit quantity when manipulating its bits to avoid extra load/stores on 32-bit. This patch replaces the current definition with a structure of two 32-bit quantities (pad and val), to clarify things as much as is possible. The 'val' field is used when manipulating bits, the structure itself is used when obtaining the address for loading/unloading the value from the FPU. While we're at it, consolidate the 4 (!) almost identical versions of cvt_fd() and cvt_df() (arch/ppc/kernel/misc.S, arch/ppc64/kernel/misc.S, arch/powerpc/kernel/misc_32.S, arch/powerpc/kernel/misc_64.S) into a single version in fpu.S. The new version takes a pointer to thread_struct and applies the correct offset itself, rather than a pointer to the fpscr field itself, again to avoid confusion as to which is the correct field to use. Finally, this patch makes ARCH=ppc64 also use the consolidated fpu.S code, which it previously did not. Built for G5 (ARCH=ppc64 and ARCH=powerpc), 32-bit powermac (ARCH=ppc and ARCH=powerpc) and Walnut (ARCH=ppc, CONFIG_MATH_EMULATION=y). Booted on G5 (ARCH=powerpc) and things which previously fell over no longer do. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-10-27 13:27:25 +07:00
extra-$(CONFIG_PPC_FPU) += fpu.o
extra-$(CONFIG_ALTIVEC) += vector.o
extra-$(CONFIG_PPC64) += entry_64.o
extra-$(CONFIG_PPC_OF_BOOT_TRAMPOLINE) += prom_init.o
extra-y += systbl_chk.i
$(obj)/systbl.o: systbl_chk
quiet_cmd_systbl_chk = CALL $<
cmd_systbl_chk = $(CONFIG_SHELL) $< $(obj)/systbl_chk.i
PHONY += systbl_chk
systbl_chk: $(src)/systbl_chk.sh $(obj)/systbl_chk.i
$(call cmd,systbl_chk)
ifdef CONFIG_PPC_OF_BOOT_TRAMPOLINE
$(obj)/built-in.a: prom_init_check
quiet_cmd_prom_init_check = CALL $<
cmd_prom_init_check = $(CONFIG_SHELL) $< "$(NM)" "$(obj)/prom_init.o"
PHONY += prom_init_check
prom_init_check: $(src)/prom_init_check.sh $(obj)/prom_init.o
$(call cmd,prom_init_check)
endif
clean-files := vmlinux.lds